PyTorch Lightning Documentation¶
Quick Start¶
Case 1: BERT¶
class BERT(pl.LightningModule):
def __init__(self, model_name, task):
self.task = task
if model_name == 'transformer':
self.net = Transformer()
elif model_name == 'my_cool_version':
self.net = MyCoolVersion()
def training_step(self, batch, batch_idx):
if self.task == 'standard_bert':
# do standard bert training with self.net...
# return loss
if self.task == 'my_cool_task':
# do my own version with self.net
# return loss
Case 2: COOLER NOT BERT¶
But if you wanted to try something completely different, you’d define a new module for that.
class CoolerNotBERT(pl.LightningModule):
def __init__(self):
self.net = ...
def training_step(self, batch, batch_idx):
# do some other cool task
# return loss
Rapid research flow¶
Then you could do rapid research by switching between these two and using the same trainer.
if use_bert:
model = BERT()
else:
model = CoolerNotBERT()
trainer = Trainer(gpus=4, precision=16)
trainer.fit(model)
Notice a few things about this flow:
You’re writing pure PyTorch… no unnecessary abstractions or new libraries to learn.
You get free GPU and 16-bit support without writing any of that code in your model.
You also get early stopping, multi-gpu training, 16-bit and MUCH more without coding anything!
Introduction Guide¶
PyTorch Lightning provides a very simple template for organizing your PyTorch code. Once you’ve organized it into a LightningModule, it automates most of the training for you.
To illustrate, here’s the typical PyTorch project structure organized in a LightningModule.

As your project grows in complexity with things like 16-bit precision, distributed training, etc… the part in blue quickly becomes onerous and starts distracting from the core research code.
Goal of this guide¶
This guide walks through the major parts of the library to help you understand what each parts does. But at the end of the day, you write the same PyTorch code… just organize it into the LightningModule template which means you keep ALL the flexibility without having to deal with any of the boilerplate code
To show how Lightning works, we’ll start with an MNIST classifier. We’ll end showing how to use inheritance to very quickly create an AutoEncoder.
Note
Any DL/ML PyTorch project fits into the Lightning structure. Here we just focus on 3 types of research to illustrate.
Installing Lightning¶
Lightning is trivial to install.
conda activate my_env
pip install pytorch-lightning
Or without conda environments, anywhere you can use pip.
pip install pytorch-lightning
Lightning Philosophy¶
Lightning factors DL/ML code into three types:
Research code
Engineering code
Non-essential code
Research code¶
In the MNIST generation example, the research code would be the particular system and how it’s trained (ie: A GAN or VAE). In Lightning, this code is abstracted out by the LightningModule.
l1 = nn.Linear(...)
l2 = nn.Linear(...)
decoder = Decoder()
x1 = l1(x)
x2 = l2(x2)
out = decoder(features, x)
loss = perceptual_loss(x1, x2, x) + CE(out, x)
Engineering code¶
The Engineering code is all the code related to training this system. Things such as early stopping, distribution over GPUs, 16-bit precision, etc. This is normally code that is THE SAME across most projects.
In Lightning, this code is abstracted out by the Trainer.
model.cuda(0)
x = x.cuda(0)
distributed = DistributedParallel(model)
with gpu_zero:
download_data()
dist.barrier()
Non-essential code¶
This is code that helps the research but isn’t relevant to the research code. Some examples might be: 1. Inspect gradients 2. Log to tensorboard.
In Lightning this code is abstracted out by Callbacks.
# log samples
z = Q.rsample()
generated = decoder(z)
self.experiment.log('images', generated)
Elements of a research project¶
Every research project requires the same core ingredients:
A model
Train/val/test data
Optimizer(s)
Training step computations
Validation step computations
Test step computations
The Model¶
The LightningModule provides the structure on how to organize these 5 ingredients.
Let’s first start with the model. In this case we’ll design a 3-layer neural network.
import torch
from torch.nn import functional as F
from torch import nn
import pytorch_lightning as pl
class LitMNIST(pl.LightningModule):
def __init__(self):
super().__init__()
# mnist images are (1, 28, 28) (channels, width, height)
self.layer_1 = torch.nn.Linear(28 * 28, 128)
self.layer_2 = torch.nn.Linear(128, 256)
self.layer_3 = torch.nn.Linear(256, 10)
def forward(self, x):
batch_size, channels, width, height = x.size()
# (b, 1, 28, 28) -> (b, 1*28*28)
x = x.view(batch_size, -1)
# layer 1
x = self.layer_1(x)
x = torch.relu(x)
# layer 2
x = self.layer_2(x)
x = torch.relu(x)
# layer 3
x = self.layer_3(x)
# probability distribution over labels
x = torch.log_softmax(x, dim=1)
return x
Notice this is a LightningModule instead of a torch.nn.Module. A LightningModule is equivalent to a PyTorch Module except it has added functionality. However, you can use it EXACTLY the same as you would a PyTorch Module.
net = LitMNIST()
x = torch.Tensor(1, 1, 28, 28)
out = net(x)
Out:
torch.Size([1, 10])
Data¶
The Lightning Module organizes your dataloaders and data processing as well. Here’s the PyTorch code for loading MNIST
from torch.utils.data import DataLoader, random_split
from torchvision.datasets import MNIST
import os
from torchvision import datasets, transforms
# transforms
# prepare transforms standard to MNIST
transform=transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))])
# data
mnist_train = MNIST(os.getcwd(), train=True, download=True)
mnist_train = DataLoader(mnist_train, batch_size=64)
When using PyTorch Lightning, we use the exact same code except we organize it into the LightningModule
from torch.utils.data import DataLoader, random_split
from torchvision.datasets import MNIST
import os
from torchvision import datasets, transforms
class LitMNIST(pl.LightningModule):
def train_dataloader(self):
transform=transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))])
mnist_train = MNIST(os.getcwd(), train=True, download=False,
transform=transform)
return DataLoader(mnist_train, batch_size=64)
Notice the code is exactly the same, except now the training dataloading has been organized by the LightningModule under the train_dataloader method. This is great because if you run into a project that uses Lightning and want to figure out how they prepare their training data you can just look in the train_dataloader method.
Usually though, we want to separate the things that write to disk in data-processing from things like transforms which happen in memory.
class LitMNIST(pl.LightningModule):
def prepare_data(self):
# download only
MNIST(os.getcwd(), train=True, download=True)
def train_dataloader(self):
# no download, just transform
transform=transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))])
mnist_train = MNIST(os.getcwd(), train=True, download=False,
transform=transform)
return DataLoader(mnist_train, batch_size=64)
Doing it in the prepare_data method ensures that when you have multiple GPUs you won’t overwrite the data. This is a contrived example but it gets more complicated with things like NLP or Imagenet.
In general fill these methods with the following:
class LitMNIST(pl.LightningModule):
def prepare_data(self):
# stuff here is done once at the very beginning of training
# before any distributed training starts
# download stuff
# save to disk
# etc...
def train_dataloader(self):
# data transforms
# dataset creation
# return a DataLoader
Optimizer¶
Next we choose what optimizer to use for training our system. In PyTorch we do it as follows:
from torch.optim import Adam
optimizer = Adam(LitMNIST().parameters(), lr=1e-3)
In Lightning we do the same but organize it under the configure_optimizers method.
class LitMNIST(pl.LightningModule):
def configure_optimizers(self):
return Adam(self.parameters(), lr=1e-3)
Note
The LightningModule itself has the parameters, so pass in self.parameters()
However, if you have multiple optimizers use the matching parameters
class LitMNIST(pl.LightningModule):
def configure_optimizers(self):
return Adam(self.generator(), lr=1e-3), Adam(self.discriminator(), lr=1e-3)
Training step¶
The training step is what happens inside the training loop.
for epoch in epochs:
for batch in data:
# TRAINING STEP
# ....
# TRAINING STEP
loss.backward()
optimizer.step()
optimizer.zero_grad()
In the case of MNIST we do the following
for epoch in epochs:
for batch in data:
# TRAINING STEP START
x, y = batch
logits = model(x)
loss = F.nll_loss(logits, y)
# TRAINING STEP END
loss.backward()
optimizer.step()
optimizer.zero_grad()
In Lightning, everything that is in the training step gets organized under the training_step function in the LightningModule
class LitMNIST(pl.LightningModule):
def training_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = F.nll_loss(logits, y)
return {'loss': loss}
# return loss (also works)
Again, this is the same PyTorch code except that it has been organized by the LightningModule. This code is not restricted which means it can be as complicated as a full seq-2-seq, RL loop, GAN, etc…
Training¶
So far we defined 4 key ingredients in pure PyTorch but organized the code inside the LightningModule.
Model.
Training data.
Optimizer.
What happens in the training loop.
For clarity, we’ll recall that the full LightningModule now looks like this.
class LitMNIST(pl.LightningModule):
def __init__(self):
super().__init__()
self.layer_1 = torch.nn.Linear(28 * 28, 128)
self.layer_2 = torch.nn.Linear(128, 256)
self.layer_3 = torch.nn.Linear(256, 10)
def forward(self, x):
batch_size, channels, width, height = x.size()
x = x.view(batch_size, -1)
x = self.layer_1(x)
x = torch.relu(x)
x = self.layer_2(x)
x = torch.relu(x)
x = self.layer_3(x)
x = torch.log_softmax(x, dim=1)
return x
def train_dataloader(self):
transform=transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))])
mnist_train = MNIST(os.getcwd(), train=True, download=False, transform=transform)
return DataLoader(mnist_train, batch_size=64)
def configure_optimizers(self):
return Adam(self.parameters(), lr=1e-3)
def training_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = F.nll_loss(logits, y)
# add logging
logs = {'loss': loss}
return {'loss': loss, 'log': logs}
Again, this is the same PyTorch code, except that it’s organized by the LightningModule. This organization now lets us train this model
Train on CPU¶
from pytorch_lightning import Trainer
model = LitMNIST()
trainer = Trainer()
trainer.fit(model)
You should see the following weights summary and progress bar

Logging¶
When we added the log key in the return dictionary it went into the built in tensorboard logger. But you could have also logged by calling:
def training_step(self, batch, batch_idx):
# ...
loss = ...
self.logger.summary.scalar('loss', loss)
Which will generate automatic tensorboard logs.

But you can also use any of the number of other loggers we support.
GPU training¶
But the beauty is all the magic you can do with the trainer flags. For instance, to run this model on a GPU:
model = LitMNIST()
trainer = Trainer(gpus=1)
trainer.fit(model)

Multi-GPU training¶
Or you can also train on multiple GPUs.
model = LitMNIST()
trainer = Trainer(gpus=8)
trainer.fit(model)
Or multiple nodes
# (32 GPUs)
model = LitMNIST()
trainer = Trainer(gpus=8, num_nodes=4, distributed_backend='ddp')
trainer.fit(model)
Refer to the distributed computing guide for more details.
TPUs¶
Did you know you can use PyTorch on TPUs? It’s very hard to do, but we’ve worked with the xla team to use their awesome library to get this to work out of the box!
Let’s train on Colab (full demo available here)
First, change the runtime to TPU (and reinstall lightning).


Next, install the required xla library (adds support for PyTorch on TPUs)
import collections
from datetime import datetime, timedelta
import os
import requests
import threading
_VersionConfig = collections.namedtuple('_VersionConfig', 'wheels,server')
VERSION = "torch_xla==nightly" #@param ["xrt==1.15.0", "torch_xla==nightly"]
CONFIG = {
'xrt==1.15.0': _VersionConfig('1.15', '1.15.0'),
'torch_xla==nightly': _VersionConfig('nightly', 'XRT-dev{}'.format(
(datetime.today() - timedelta(1)).strftime('%Y%m%d'))),
}[VERSION]
DIST_BUCKET = 'gs://tpu-pytorch/wheels'
TORCH_WHEEL = 'torch-{}-cp36-cp36m-linux_x86_64.whl'.format(CONFIG.wheels)
TORCH_XLA_WHEEL = 'torch_xla-{}-cp36-cp36m-linux_x86_64.whl'.format(CONFIG.wheels)
TORCHVISION_WHEEL = 'torchvision-{}-cp36-cp36m-linux_x86_64.whl'.format(CONFIG.wheels)
# Update TPU XRT version
def update_server_xrt():
print('Updating server-side XRT to {} ...'.format(CONFIG.server))
url = 'http://{TPU_ADDRESS}:8475/requestversion/{XRT_VERSION}'.format(
TPU_ADDRESS=os.environ['COLAB_TPU_ADDR'].split(':')[0],
XRT_VERSION=CONFIG.server,
)
print('Done updating server-side XRT: {}'.format(requests.post(url)))
update = threading.Thread(target=update_server_xrt)
update.start()
# Install Colab TPU compat PyTorch/TPU wheels and dependencies
!pip uninstall -y torch torchvision
!gsutil cp "$DIST_BUCKET/$TORCH_WHEEL" .
!gsutil cp "$DIST_BUCKET/$TORCH_XLA_WHEEL" .
!gsutil cp "$DIST_BUCKET/$TORCHVISION_WHEEL" .
!pip install "$TORCH_WHEEL"
!pip install "$TORCH_XLA_WHEEL"
!pip install "$TORCHVISION_WHEEL"
!sudo apt-get install libomp5
update.join()
In distributed training (multiple GPUs and multiple TPU cores) each GPU or TPU core will run a copy of this program. This means that without taking any care you will download the dataset N times which will cause all sorts of issues.
To solve this problem, move the download code to the prepare_data method in the LightningModule. In this method we do all the preparation we need to do once (instead of on every gpu).
class LitMNIST(pl.LightningModule):
def prepare_data(self):
# transform
transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
# download
mnist_train = MNIST(os.getcwd(), train=True, download=True, transform=transform)
mnist_test = MNIST(os.getcwd(), train=False, download=True, transform=transform)
# train/val split
mnist_train, mnist_val = random_split(mnist_train, [55000, 5000])
# assign to use in dataloaders
self.train_dataset = mnist_train
self.val_dataset = mnist_val
self.test_dataset = mnist_test
def train_dataloader(self):
return DataLoader(self.train_dataset, batch_size=64)
def val_dataloader(self):
return DataLoader(self.val_dataset, batch_size=64)
def test_dataloader(self):
return DataLoader(self.test_dataset, batch_size=64)
The prepare_data method is also a good place to do any data processing that needs to be done only once (ie: download or tokenize, etc…).
Note
Lightning inserts the correct DistributedSampler for distributed training. No need to add yourself!
Now we can train the LightningModule on a TPU without doing anything else!
model = LitMNIST()
trainer = Trainer(num_tpu_cores=8)
trainer.fit(model)
You’ll now see the TPU cores booting up.

Notice the epoch is MUCH faster!

Hyperparameters¶
Normally, we don’t hard-code the values to a model. We usually use the command line to modify the network.
from argparse import ArgumentParser
parser = ArgumentParser()
# parametrize the network
parser.add_argument('--layer_1_dim', type=int, default=128)
parser.add_argument('--layer_2_dim', type=int, default=256)
parser.add_argument('--batch_size', type=int, default=64)
args = parser.parse_args()
Now we can parametrize the LightningModule.
class LitMNIST(pl.LightningModule):
def __init__(self, hparams):
super().__init__()
self.hparams = hparams
self.layer_1 = torch.nn.Linear(28 * 28, hparams.layer_1_dim)
self.layer_2 = torch.nn.Linear(hparams.layer_1_dim, hparams.layer_2_dim)
self.layer_3 = torch.nn.Linear(hparams.layer_2_dim, 10)
def forward(self, x):
...
def train_dataloader(self):
...
return DataLoader(mnist_train, batch_size=self.hparams.batch_size)
def configure_optimizers(self):
return Adam(self.parameters(), lr=self.hparams.learning_rate)
hparams = parse_args()
model = LitMNIST(hparams)
Note
Bonus! if (hparams) is in your module, Lightning will save it into the checkpoint and restore your model using those hparams exactly.
And we can also add all the flags available in the Trainer to the Argparser.
# add all the available Trainer options to the ArgParser
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
And now you can start your program with
# now you can use any trainer flag
$ python main.py --num_nodes 2 --gpus 8
For a full guide on using hyperparameters, check out the hyperparameters docs.
Validating¶
For most cases, we stop training the model when the performance on a validation split of the data reaches a minimum.
Just like the training_step, we can define a validation_step to check whatever metrics we care about, generate samples or add more to our logs.
for epoch in epochs:
for batch in data:
# ...
# train
# validate
outputs = []
for batch in val_data:
x, y = batch # validation_step
y_hat = model(x) # validation_step
loss = loss(y_hat, x) # validation_step
outputs.append({'val_loss': loss}) # validation_step
full_loss = outputs.mean() # validation_epoch_end
Since the validation_step processes a single batch, in Lightning we also have a validation_epoch_end method which allows you to compute statistics on the full dataset after an epoch of validation data and not just the batch.
In addition, we define a val_dataloader method which tells the trainer what data to use for validation. Notice we split the train split of MNIST into train, validation. We also have to make sure to do the sample split in the train_dataloader method.
class LitMNIST(pl.LightningModule):
def validation_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = F.nll_loss(logits, y)
return {'val_loss': loss}
def validation_epoch_end(self, outputs):
avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
tensorboard_logs = {'val_loss': avg_loss}
return {'avg_val_loss': avg_loss, 'log': tensorboard_logs}
def val_dataloader(self):
transform=transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))])
mnist_train = MNIST(os.getcwd(), train=True, download=False,
transform=transform)
_, mnist_val = random_split(mnist_train, [55000, 5000])
mnist_val = DataLoader(mnist_val, batch_size=64)
return mnist_val
Again, we’ve just organized the regular PyTorch code into two steps, the validation_step method which operates on a single batch and the validation_epoch_end method to compute statistics on all batches.
If you have these methods defined, Lightning will call them automatically. Now we can train while checking the validation set.
from pytorch_lightning import Trainer
model = LitMNIST()
trainer = Trainer(num_tpu_cores=8)
trainer.fit(model)
You may have noticed the words Validation sanity check logged. This is because Lightning runs 5 batches of validation before starting to train. This is a kind of unit test to make sure that if you have a bug in the validation loop, you won’t need to potentially wait a full epoch to find out.
Note
Lightning disables gradients, puts model in eval mode and does everything needed for validation.
Testing¶
Once our research is done and we’re about to publish or deploy a model, we normally want to figure out how it will generalize in the “real world.” For this, we use a held-out split of the data for testing.
Just like the validation loop, we define exactly the same steps for testing:
test_step
test_epoch_end
test_dataloader
class LitMNIST(pl.LightningModule):
def test_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = F.nll_loss(logits, y)
return {'val_loss': loss}
def test_epoch_end(self, outputs):
avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
tensorboard_logs = {'val_loss': avg_loss}
return {'avg_val_loss': avg_loss, 'log': tensorboard_logs}
def test_dataloader(self):
transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
mnist_train = MNIST(os.getcwd(), train=False, download=False, transform=transform)
_, mnist_val = random_split(mnist_train, [55000, 5000])
mnist_val = DataLoader(mnist_val, batch_size=64)
return mnist_val
However, to make sure the test set isn’t used inadvertently, Lightning has a separate API to run tests. Once you train your model simply call .test().
from pytorch_lightning import Trainer
model = LitMNIST()
trainer = Trainer(num_tpu_cores=8)
trainer.fit(model)
# run test set
trainer.test()
Out:
--------------------------------------------------------------
TEST RESULTS
{'test_loss': tensor(1.1703, device='cuda:0')}
--------------------------------------------------------------
You can also run the test from a saved lightning model
model = LitMNIST.load_from_checkpoint(PATH)
trainer = Trainer(num_tpu_cores=8)
trainer.test(model)
Note
Lightning disables gradients, puts model in eval mode and does everything needed for testing.
Warning
.test() is not stable yet on TPUs. We’re working on getting around the multiprocessing challenges.
Predicting¶
Again, a LightningModule is exactly the same as a PyTorch module. This means you can load it and use it for prediction.
model = LitMNIST.load_from_checkpoint(PATH)
x = torch.Tensor(1, 1, 28, 28)
out = model(x)
On the surface, it looks like forward and training_step are similar. Generally, we want to make sure that what we want the model to do is what happens in the forward. whereas the training_step likely calls forward from within it.
class MNISTClassifier(pl.LightningModule):
def forward(self, x):
batch_size, channels, width, height = x.size()
x = x.view(batch_size, -1)
x = self.layer_1(x)
x = torch.relu(x)
x = self.layer_2(x)
x = torch.relu(x)
x = self.layer_3(x)
x = torch.log_softmax(x, dim=1)
return x
def training_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = F.nll_loss(logits, y)
return loss
model = MNISTClassifier()
x = mnist_image()
logits = model(x)
In this case, we’ve set this LightningModel to predict logits. But we could also have it predict feature maps:
class MNISTRepresentator(pl.LightningModule):
def forward(self, x):
batch_size, channels, width, height = x.size()
x = x.view(batch_size, -1)
x = self.layer_1(x)
x1 = torch.relu(x)
x = self.layer_2(x1)
x2 = torch.relu(x)
x3 = self.layer_3(x2)
return [x, x1, x2, x3]
def training_step(self, batch, batch_idx):
x, y = batch
out, l1_feats, l2_feats, l3_feats = self(x)
logits = torch.log_softmax(out, dim=1)
ce_loss = F.nll_loss(logits, y)
loss = perceptual_loss(l1_feats, l2_feats, l3_feats) + ce_loss
return loss
model = MNISTRepresentator.load_from_checkpoint(PATH)
x = mnist_image()
feature_maps = model(x)
Or maybe we have a model that we use to do generation
class LitMNISTDreamer(pl.LightningModule):
def forward(self, z):
imgs = self.decoder(z)
return imgs
def training_step(self, batch, batch_idx):
x, y = batch
representation = self.encoder(x)
imgs = self(representation)
loss = perceptual_loss(imgs, x)
return loss
model = LitMNISTDreamer.load_from_checkpoint(PATH)
z = sample_noise()
generated_imgs = model(z)
How you split up what goes in forward vs training_step depends on how you want to use this model for prediction.
Extensibility¶
Although lightning makes everything super simple, it doesn’t sacrifice any flexibility or control. Lightning offers multiple ways of managing the training state.
Training overrides¶
Any part of the training, validation and testing loop can be modified. For instance, if you wanted to do your own backward pass, you would override the default implementation
def backward(self, use_amp, loss, optimizer):
if use_amp:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
With your own
class LitMNIST(pl.LightningModule):
def backward(self, use_amp, loss, optimizer):
# do a custom way of backward
loss.backward(retain_graph=True)
Or if you wanted to initialize ddp in a different way than the default one
def configure_ddp(self, model, device_ids):
# Lightning DDP simply routes to test_step, val_step, etc...
model = LightningDistributedDataParallel(
model,
device_ids=device_ids,
find_unused_parameters=True
)
return model
you could do your own:
class LitMNIST(pl.LightningModule):
def configure_ddp(self, model, device_ids):
model = Horovod(model)
# model = Ray(model)
return model
Every single part of training is configurable this way. For a full list look at lightningModule.
Callbacks¶
Another way to add arbitrary functionality is to add a custom callback for hooks that you might care about
import pytorch_lightning as pl
class MyPrintingCallback(pl.Callback):
def on_init_start(self, trainer):
print('Starting to init trainer!')
def on_init_end(self, trainer):
print('trainer is init now')
def on_train_end(self, trainer, pl_module):
print('do something when training ends')
And pass the callbacks into the trainer
Trainer(callbacks=[MyPrintingCallback()])
Note
See full list of 12+ hooks in the Callbacks.
Child Modules¶
Research projects tend to test different approaches to the same dataset. This is very easy to do in Lightning with inheritance.
For example, imagine we now want to train an Autoencoder to use as a feature extractor for MNIST images. Recall that LitMNIST already defines all the dataloading etc… The only things that change in the Autoencoder model are the init, forward, training, validation and test step.
class Encoder(torch.nn.Module):
...
class AutoEncoder(LitMNIST):
def __init__(self):
self.encoder = Encoder()
self.decoder = Decoder()
def forward(self, x):
generated = self.decoder(x)
def training_step(self, batch, batch_idx):
x, _ = batch
representation = self.encoder(x)
x_hat = self(representation)
loss = MSE(x, x_hat)
return loss
def validation_step(self, batch, batch_idx):
return self._shared_eval(batch, batch_idx, 'val'):
def test_step(self, batch, batch_idx):
return self._shared_eval(batch, batch_idx, 'test'):
def _shared_eval(self, batch, batch_idx, prefix):
x, y = batch
representation = self.encoder(x)
x_hat = self(representation)
loss = F.nll_loss(logits, y)
return {f'{prefix}_loss': loss}
and we can train this using the same trainer
autoencoder = AutoEncoder()
trainer = Trainer()
trainer.fit(autoencoder)
And remember that the forward method is to define the practical use of a LightningModule. In this case, we want to use the AutoEncoder to extract image representations
some_images = torch.Tensor(32, 1, 28, 28)
representations = autoencoder(some_images)
Transfer Learning¶
Using Pretrained Models¶
Sometimes we want to use a LightningModule as a pretrained model. This is fine because a LightningModule is just a torch.nn.Module!
Note
Remember that a pl.LightningModule is EXACTLY a torch.nn.Module but with more capabilities.
Let’s use the AutoEncoder as a feature extractor in a separate model.
class Encoder(torch.nn.Module):
...
class AutoEncoder(pl.LightningModule):
def __init__(self):
self.encoder = Encoder()
self.decoder = Decoder()
class CIFAR10Classifier(pl.LightingModule):
def __init__(self):
# init the pretrained LightningModule
self.feature_extractor = AutoEncoder.load_from_checkpoint(PATH)
self.feature_extractor.freeze()
# the autoencoder outputs a 100-dim representation and CIFAR-10 has 10 classes
self.classifier = nn.Linear(100, 10)
def forward(self, x):
representations = self.feature_extractor(x)
x = self.classifier(representations)
...
We used our pretrained Autoencoder (a LightningModule) for transfer learning!
Example: Imagenet (computer Vision)¶
import torchvision.models as models
class ImagenetTranferLearning(pl.LightingModule):
def __init__(self):
# init a pretrained resnet
num_target_classes = 10
self.feature_extractor = model.resnet50(
pretrained=True,
num_classes=num_target_classes)
self.feature_extractor.eval()
# use the pretrained model to classify cifar-10 (10 image classes)
self.classifier = nn.Linear(2048, num_target_classes)
def forward(self, x):
representations = self.feature_extractor(x)
x = self.classifier(representations)
...
Finetune
model = ImagenetTranferLearning()
trainer = Trainer()
trainer.fit(model)
And use it to predict your data of interest
model = ImagenetTranferLearning.load_from_checkpoint(PATH)
model.freeze()
x = some_images_from_cifar10()
predictions = model(x)
We used a pretrained model on imagenet, finetuned on CIFAR-10 to predict on CIFAR-10. In the non-academic world we would finetune on a tiny dataset you have and predict on your dataset.
Example: BERT (NLP)¶
Lightning is completely agnostic to what’s used for transfer learning so long as it is a torch.nn.Module subclass.
Here’s a model that uses Huggingface transformers.
from transformers import BertModel
class BertMNLIFinetuner(pl.LightningModule):
def __init__(self):
super().__init__()
self.bert = BertModel.from_pretrained('bert-base-cased', output_attentions=True)
self.W = nn.Linear(bert.config.hidden_size, 3)
self.num_classes = 3
def forward(self, input_ids, attention_mask, token_type_ids):
h, _, attn = self.bert(input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids)
h_cls = h[:, 0]
logits = self.W(h_cls)
return logits, attn
Callbacks¶
Lightning has a callback system to execute arbitrary code. Callbacks should capture NON-ESSENTIAL
logic that is NOT required for your LightningModule
to run.
An overall Lightning system should have:
Trainer for all engineering
LightningModule for all research code.
Callbacks for non-essential code.
Example:
>>> import pytorch_lightning as pl
>>> class MyPrintingCallback(pl.Callback):
...
... def on_init_start(self, trainer):
... print('Starting to init trainer!')
...
... def on_init_end(self, trainer):
... print('trainer is init now')
...
... def on_train_end(self, trainer, pl_module):
... print('do something when training ends')
...
>>> trainer = pl.Trainer(callbacks=[MyPrintingCallback()])
Starting to init trainer!
trainer is init now
We successfully extended functionality without polluting our super clean
LightningModule
research code.
Callback Base¶
Abstract base class used to build new callbacks.
-
class
pytorch_lightning.callbacks.base.
Callback
[source] Bases:
abc.ABC
Abstract base class used to build new callbacks.
-
on_batch_end
(trainer, pl_module)[source] Called when the training batch ends.
-
on_batch_start
(trainer, pl_module)[source] Called when the training batch begins.
-
on_epoch_end
(trainer, pl_module)[source] Called when the epoch ends.
-
on_epoch_start
(trainer, pl_module)[source] Called when the epoch begins.
-
on_init_end
(trainer)[source] Called when the trainer initialization ends, model has not yet been set.
-
on_init_start
(trainer)[source] Called when the trainer initialization begins, model has not yet been set.
-
on_test_end
(trainer, pl_module)[source] Called when the test ends.
-
on_test_start
(trainer, pl_module)[source] Called when the test begins.
-
on_train_end
(trainer, pl_module)[source] Called when the train ends.
-
on_train_start
(trainer, pl_module)[source] Called when the train begins.
-
on_validation_end
(trainer, pl_module)[source] Called when the validation loop ends.
-
on_validation_start
(trainer, pl_module)[source] Called when the validation loop begins.
-
Early Stopping¶
Stop training when a monitored quantity has stopped improving.
-
class
pytorch_lightning.callbacks.early_stopping.
EarlyStopping
(monitor='val_loss', min_delta=0.0, patience=0, verbose=False, mode='auto', strict=True)[source] Bases:
pytorch_lightning.callbacks.base.Callback
- Parameters
monitor (
str
) – quantity to be monitored. Default:'val_loss'
.min_delta (
float
) – minimum change in the monitored quantity to qualify as an improvement, i.e. an absolute change of less than min_delta, will count as no improvement. Default:0
.patience (
int
) – number of epochs with no improvement after which training will be stopped. Default:0
.verbose (
bool
) – verbosity mode. Default:False
.mode (
str
) – one of {auto, min, max}. In min mode, training will stop when the quantity monitored has stopped decreasing; in max mode it will stop when the quantity monitored has stopped increasing; in auto mode, the direction is automatically inferred from the name of the monitored quantity. Default:'auto'
.strict (
bool
) – whether to crash the training if monitor is not found in the metrics. Default:True
.
Example:
>>> from pytorch_lightning import Trainer >>> from pytorch_lightning.callbacks import EarlyStopping >>> early_stopping = EarlyStopping('val_loss') >>> trainer = Trainer(early_stop_callback=early_stopping)
-
on_epoch_end
(trainer, pl_module)[source] Called when the epoch ends.
-
on_train_end
(trainer, pl_module)[source] Called when the train ends.
-
on_train_start
(trainer, pl_module)[source] Called when the train begins.
Model Checkpointing¶
Automatically save model checkpoints during training.
-
class
pytorch_lightning.callbacks.model_checkpoint.
ModelCheckpoint
(filepath, monitor='val_loss', verbose=False, save_top_k=1, save_weights_only=False, mode='auto', period=1, prefix='')[source] Bases:
pytorch_lightning.callbacks.base.Callback
Save the model after every epoch.
- Parameters
filepath (
str
) –path to save the model file. Can contain named formatting options to be auto-filled.
Example:
# custom path # saves a file like: my/path/epoch_0.ckpt >>> checkpoint_callback = ModelCheckpoint('my/path/') # save any arbitrary metrics like `val_loss`, etc. in name # saves a file like: my/path/epoch=2-val_loss=0.2_other_metric=0.3.ckpt >>> checkpoint_callback = ModelCheckpoint( ... filepath='my/path/{epoch}-{val_loss:.2f}-{other_metric:.2f}' ... )
monitor (
str
) – quantity to monitor.verbose (
bool
) – verbosity mode. Default:False
.save_top_k (
int
) – if save_top_k == k, the best k models according to the quantity monitored will be saved. ifsave_top_k == 0
, no models are saved. ifsave_top_k == -1
, all models are saved. Please note that the monitors are checked every period epochs. ifsave_top_k >= 2
and the callback is called multiple times inside an epoch, the name of the saved file will be appended with a version count starting with v0.mode (
str
) – one of {auto, min, max}. Ifsave_top_k != 0
, the decision to overwrite the current save file is made based on either the maximization or the minimization of the monitored quantity. For val_acc, this should be max, for val_loss this should be min, etc. In auto mode, the direction is automatically inferred from the name of the monitored quantity.save_weights_only (
bool
) – ifTrue
, then only the model’s weights will be saved (model.save_weights(filepath)
), else the full model is saved (model.save(filepath)
).period (
int
) – Interval (number of epochs) between checkpoints.
Example:
>>> from pytorch_lightning import Trainer >>> from pytorch_lightning.callbacks import ModelCheckpoint # saves checkpoints to 'my/path/' whenever 'val_loss' has a new min >>> checkpoint_callback = ModelCheckpoint(filepath='my/path/') >>> trainer = Trainer(checkpoint_callback=checkpoint_callback) # save epoch and val_loss in name # saves a file like: my/path/sample-mnist_epoch=02_val_loss=0.32.ckpt >>> checkpoint_callback = ModelCheckpoint( ... filepath='my/path/sample-mnist_{epoch:02d}-{val_loss:.2f}' ... )
-
format_checkpoint_name
(epoch, metrics, ver=None)[source] Generate a filename according to the defined template.
Example:
>>> tmpdir = os.path.dirname(__file__) >>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{epoch}')) >>> os.path.basename(ckpt.format_checkpoint_name(0, {})) 'epoch=0.ckpt' >>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{epoch:03d}')) >>> os.path.basename(ckpt.format_checkpoint_name(5, {})) 'epoch=005.ckpt' >>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{epoch}-{val_loss:.2f}')) >>> os.path.basename(ckpt.format_checkpoint_name(2, dict(val_loss=0.123456))) 'epoch=2-val_loss=0.12.ckpt' >>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{missing:d}')) >>> os.path.basename(ckpt.format_checkpoint_name(0, {})) 'missing=0.ckpt'
-
on_validation_end
(trainer, pl_module)[source] Called when the validation loop ends.
Gradient Accumulator¶
Change gradient accumulation factor according to scheduling.
-
class
pytorch_lightning.callbacks.gradient_accumulation_scheduler.
GradientAccumulationScheduler
(scheduling)[source] Bases:
pytorch_lightning.callbacks.base.Callback
Change gradient accumulation factor according to scheduling.
- Parameters
scheduling (
dict
) –scheduling in format {epoch: accumulation_factor}
Warning
Epochs indexing starts from “1” until v0.6.x, but will start from “0” in v0.8.0.
Example:
>>> from pytorch_lightning import Trainer >>> from pytorch_lightning.callbacks import GradientAccumulationScheduler # at epoch 5 start accumulating every 2 batches >>> accumulator = GradientAccumulationScheduler(scheduling={5: 2}) >>> trainer = Trainer(callbacks=[accumulator]) # alternatively, pass the scheduling dict directly to the Trainer >>> trainer = Trainer(accumulate_grad_batches={5: 2})
-
on_epoch_start
(trainer, pl_module)[source] Called when the epoch begins.
Hooks¶
Model Hooks¶
- There are cases when you might want to do something different at different parts of the training/validation loop.
To enable a hook, simply override the method in your LightningModule and the trainer will call it at the correct time.
Contributing If there’s a hook you’d like to add, simply:
Fork PyTorchLightning.
Add the hook
pytorch_lightning.base_module.hooks.py
.Add the correct place in the
pytorch_lightning.models.trainer
where it should be called.
-
class
pytorch_lightning.core.hooks.
ModelHooks
(*args, **kwargs)[source] Bases:
torch.nn.Module
-
backward
(trainer, loss, optimizer, optimizer_idx)[source] Override backward with your own implementation if you need to
- Parameters
Called to perform backward step. Feel free to override as needed.
The loss passed in has already been scaled for accumulated gradients if requested.
def backward(self, use_amp, loss, optimizer): if use_amp: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward()
- Return type
None
-
on_after_backward
()[source] Called in the training loop after loss.backward() and before optimizers do anything.
This is the ideal place to inspect or log gradient information
def on_after_backward(self): # example to inspect gradient information in tensorboard if self.trainer.global_step % 25 == 0: # don't make the tf file huge params = self.state_dict() for k, v in params.items(): grads = v name = k self.logger.experiment.add_histogram(tag=name, values=grads, global_step=self.trainer.global_step)
- Return type
None
-
on_batch_end
()[source] Called in the training loop after the batch.
- Return type
None
-
on_batch_start
(batch)[source] Called in the training loop before anything happens for that batch.
If you return -1 here, you will skip training for the rest of the current epoch.
- Parameters
batch (
Any
) –- Return type
None
-
on_before_zero_grad
(optimizer)[source] Called after optimizer.step() and before optimizer.zero_grad()
Called in the training loop after taking an optimizer step and before zeroing grads. Good place to inspect weight information with weights updated.
for optimizer in optimizers:
optimizer.step() model.on_before_zero_grad(optimizer) # < ---- called here optimizer.zero_grad
- Parameters
optimizer (
Optimizer
) – The optimizer for which grads should be zeroed.- Return type
None
-
on_epoch_end
()[source] Called in the training loop at the very end of the epoch.
- Return type
None
-
on_epoch_start
()[source] Called in the training loop at the very beginning of the epoch.
- Return type
None
-
on_post_performance_check
()[source] Called at the very end of the validation loop.
- Return type
None
-
on_pre_performance_check
()[source] Called at the very beginning of the validation loop.
- Return type
None
-
on_sanity_check_start
()[source] Called before starting evaluate .. warning:: will be deprecated. :return:
-
on_train_end
()[source] Called at the end of training before logger experiment is closed
- Return type
None
-
on_train_start
()[source] Called at the beginning of training before sanity check
- Return type
None
-
Hooks lifecycle¶
Training set-up¶
init_ddp_connection
init_optimizers
configure_apex
configure_ddp
train_dataloader
test_dataloaders
val_dataloaders
summarize
restore_weights
Training loop¶
on_epoch_start
on_batch_start
tbptt_split_batch
training_step
training_step_end (optional)
backward
on_after_backward
optimizer.step()
on_batch_end
on_epoch_end
Validation loop¶
model.zero_grad()
model.eval()
torch.set_grad_enabled(False)
validation_step
validation_end
model.train()
torch.set_grad_enabled(True)
on_post_performance_check
Test loop¶
model.zero_grad()
model.eval()
torch.set_grad_enabled(False)
test_step
test_end
model.train()
torch.set_grad_enabled(True)
on_post_performance_check
LightningModule¶
A LightningModule organizes your PyTorch code into the following sections:

Notice a few things.
It’s the SAME code.
The PyTorch code IS NOT abstracted - just organized.
- All the other code that not in the LightningModule has been automated for you by the trainer
net = Net() trainer = Trainer() trainer.fit(net)
- There are no .cuda() or .to() calls… Lightning does these for you.
# don't do in lightning x = torch.Tensor(2, 3) x = x.cuda() x = x.to(device) # do this instead x = x # leave it alone! # or to init a new tensor new_x = torch.Tensor(2, 3) new_x = new_x.type_as(x.type())
- There are no samplers for distributed, Lightning also does this for you.
# Don't do in Lightning... data = MNIST(...) sampler = DistributedSampler(data) DataLoader(data, sampler=sampler) # do this instead data = MNIST(...) DataLoader(data)
- A LightingModule is a torch.nn.Module but with added functionality. Use it as such!
net = Net.load_from_checkpoint(PATH) net.freeze() out = net(x)
Thus, to use Lightning, you just need to organize your code which takes about 30 minutes, (and let’s be real, you probably should do anyhow).
Minimal Example¶
Here are the only required methods.
import os
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
import torchvision.transforms as transforms
import pytorch_lightning as pl
class LitModel(pl.LightningModule):
def __init__(self):
super().__init__()
self.l1 = torch.nn.Linear(28 * 28, 10)
def forward(self, x):
return torch.relu(self.l1(x.view(x.size(0), -1)))
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
return {'loss': F.cross_entropy(y_hat, y)}
def train_dataloader(self):
return DataLoader(MNIST(os.getcwd(), train=True, download=True,
transform=transforms.ToTensor()), batch_size=32)
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=0.02)
Which you can train by doing:
trainer = pl.Trainer()
model = LitModel()
trainer.fit(model)
Training loop structure¶
The general pattern is that each loop (training, validation, test loop) has 3 methods:
` ___step `
` ___step_end `
` ___epoch_end`
To show how lightning calls these, let’s use the validation loop as an example
val_outs = []
for val_batch in val_data:
# do something with each batch
out = validation_step(val_batch)
val_outs.append(out)
# do something with the outputs for all batches
# like calculate validation set accuracy or loss
validation_epoch_end(val_outs)
if we use dp or ddp2 mode, we can also define the `XXX_step_end`
method to operate
on all parts of the batch
val_outs = []
for val_batch in val_data:
batches = split_batch(val_batch)
dp_outs = []
for sub_batch in batches:
dp_out = validation_step(sub_batch)
dp_outs.append(dp_out)
out = validation_step_end(dp_outs)
val_outs.append(out)
# do something with the outputs for all batches
# like calculate validation set accuracy or loss
validation_epoch_end(val_outs)
Note
`training_step_end`
is not available yet but coming in the next release.
Add validation loop¶
Thus, if we wanted to add a validation loop you would add this to your LightningModule
class LitModel(pl.LightningModule):
def validation_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
return {'val_loss': F.cross_entropy(y_hat, y)}
def validation_epoch_end(self, outputs):
val_loss_mean = torch.stack([x['val_loss'] for x in outputs]).mean()
return {'val_loss': val_loss_mean}
def val_dataloader(self):
# can also return a list of val dataloaders
return DataLoader(...)
Add test loop¶
class LitModel(pl.LightningModule):
def test_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
return {'test_loss': F.cross_entropy(y_hat, y)}
def test_epoch_end(self, outputs):
test_loss_mean = torch.stack([x['test_loss'] for x in outputs]).mean()
return {'test_loss': test_loss_mean}
def test_dataloader(self):
# can also return a list of test dataloaders
return DataLoader(...)
However, the test loop won’t ever be called automatically to make sure you don’t run your test data by accident. Instead you have to explicitly call:
# call after training
trainer = Trainer()
trainer.fit(model)
trainer.test()
# or call with pretrained model
model = MyLightningModule.load_from_checkpoint(PATH)
trainer = Trainer()
trainer.test(model)
Training_step_end method¶
When using dataParallel or distributedDataParallel2, the training_step will be operating on a portion of the batch. This is normally ok but in special cases like calculating NCE loss using negative samples, we might want to perform a softmax across all samples in the batch.
For these types of situations, each loop has an additional `__step_end`
method
which allows you to operate on the pieces of the batch
training_outs = []
for train_batch in train_data:
# dp, ddp2 splits the batch
sub_batches = split_batches_for_dp(batch)
# run training_step on each piece of the batch
batch_parts_outputs = [training_step(sub_batch) for sub_batch in sub_batches]
# do softmax with all pieces
out = training_step_end(batch_parts_outputs)
training_outs.append(out)
# do something with the outputs for all batches
# like calculate validation set accuracy or loss
training_epoch_end(val_outs)
Remove cuda calls¶
In a LightningModule, all calls to `.cuda()`
and `.to(device)`
should be removed. Lightning will do these
automatically. This will allow your code to work on CPUs, TPUs and GPUs.
When you init a new tensor in your code, just use type_as
def training_step(self, batch, batch_idx):
x, y = batch
# put the z on the appropriate gpu or tpu core
z = sample_noise()
z = z.type_as(x)
Data preparation¶
Data preparation in PyTorch follows 5 steps:
Download
Clean and (maybe) save to disk
Load inside dataset
Apply transforms (rotate, tokenize, etc…)
Wrap inside a dataloader
When working in distributed settings, steps 1 and 2 have to be done
from a single GPU, otherwise you will overwrite these files from
every GPU. The lightningModule has the `prepare_data`
method to
allow for this
def prepare_data(self):
# download
mnist_train = MNIST(os.getcwd(), train=True, download=True,
transform=transforms.ToTensor())
mnist_test = MNIST(os.getcwd(), train=False, download=True,
transform=transforms.ToTensor())
# train/val split
mnist_train, mnist_val = random_split(mnist_train, [55000, 5000])
# assign to use in dataloaders
self.train_dataset = mnist_train
self.val_dataset = mnist_val
self.test_dataset = mnist_test
def train_dataloader(self):
return DataLoader(self.train_dataset, batch_size=64)
def val_dataloader(self):
return DataLoader(self.mnist_val, batch_size=64)
def test_dataloader(self):
return DataLoader(self.mnist_test, batch_size=64)
Note
prepare_data
is called once.
Note
Do anything with data that needs to happen ONLY once here, like download, tokenize, etc…
Lifecycle¶
The methods in the LightningModule are called in this order:
`__init__`
`prepare_data`
`configure_optimizers`
`train_dataloader`
If you define a validation loop then
`val_dataloader`
And if you define a test loop:
`test_dataloader`
Note
test_dataloader
is only called with .test()
In every epoch, the loop methods are called in this frequency:
`validation_step`
called every batch`validation_epoch_end`
called every epoch
LightningModule Class¶
-
class
pytorch_lightning.core.
LightningModule
(*args, **kwargs)[source] Bases:
abc.ABC
,pytorch_lightning.core.grads.GradInformation
,pytorch_lightning.core.saving.ModelIO
,pytorch_lightning.core.hooks.ModelHooks
-
configure_apex
(amp, model, optimizers, amp_level)[source] Override to init AMP your own way. Must return a model and list of optimizers.
- Parameters
amp (
object
) – pointer to amp library object.model (
LightningModule
) – pointer to currentLightningModule
.optimizers (
List
[Optimizer
]) – list of optimizers passed inconfigure_optimizers()
.amp_level (
str
) – AMP mode chosen (‘O1’, ‘O2’, etc…)
- Return type
Tuple
[LightningModule
,List
[Optimizer
]]- Returns
Apex wrapped model and optimizers
Examples
# Default implementation used by Trainer. def configure_apex(self, amp, model, optimizers, amp_level): model, optimizers = amp.initialize( model, optimizers, opt_level=amp_level, ) return model, optimizers
-
configure_ddp
(model, device_ids)[source] Override to init DDP in your own way or with your own wrapper. The only requirements are that:
On a validation batch the call goes to
model.validation_step
.On a training batch the call goes to
model.training_step
.On a testing batch, the call goes to
model.test_step
.+
- Parameters
model (
LightningModule
) – theLightningModule
currently being optimized.
- Return type
- Returns
DDP wrapped model
Examples
# default implementation used in Trainer def configure_ddp(self, model, device_ids): # Lightning DDP simply routes to test_step, val_step, etc... model = LightningDistributedDataParallel( model, device_ids=device_ids, find_unused_parameters=True ) return model
-
configure_optimizers
()[source] Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you’d need one. But in the case of GANs or similar you might have multiple.
- Return type
Union
[Optimizer
,Sequence
[Optimizer
],Dict
,Sequence
[Dict
],Tuple
[List
,List
],None
]- Returns
Any of these 6 options.
Single optimizer.
List or Tuple - List of optimizers.
Two lists - The first list has multiple optimizers, the second a list of LR schedulers.
Dictionary, with an ‘optimizer’ key and (optionally) a ‘lr_scheduler’ key.
Tuple of dictionaries as described, with an optional ‘frequency’ key.
None - Fit will run without any optimizer.
Note
The ‘frequency’ value is an int corresponding to the number of sequential batches optimized with the specific optimizer. It should be given to none or to all of the optimizers. There is a difference between passing multiple optimizers in a list, and passing multiple optimizers in dictionaries with a frequency of 1: In the former case, all optimizers will operate on the given batch in each optimization step. In the latter, only one optimizer will operate on the given batch at every step.
Examples
# most cases def configure_optimizers(self): opt = Adam(self.parameters(), lr=1e-3) return opt # multiple optimizer case (e.g.: GAN) def configure_optimizers(self): generator_opt = Adam(self.model_gen.parameters(), lr=0.01) disriminator_opt = Adam(self.model_disc.parameters(), lr=0.02) return generator_opt, disriminator_opt # example with learning rate schedulers def configure_optimizers(self): generator_opt = Adam(self.model_gen.parameters(), lr=0.01) disriminator_opt = Adam(self.model_disc.parameters(), lr=0.02) discriminator_sched = CosineAnnealing(discriminator_opt, T_max=10) return [generator_opt, disriminator_opt], [discriminator_sched] # example with step-based learning rate schedulers def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_disc.parameters(), lr=0.02) gen_sched = {'scheduler': ExponentialLR(gen_opt, 0.99), 'interval': 'step'} # called after each training step dis_sched = CosineAnnealing(discriminator_opt, T_max=10) # called every epoch return [gen_opt, dis_opt], [gen_sched, dis_sched] # example with optimizer frequencies # see training procedure in `Improved Training of Wasserstein GANs`, Algorithm 1 # https://arxiv.org/abs/1704.00028 def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_disc.parameters(), lr=0.02) n_critic = 5 return ( {'optimizer': dis_opt, 'frequency': n_critic}, {'optimizer': gen_opt, 'frequency': 1} )
Note
Some things to know:
Lightning calls
.backward()
and.step()
on each optimizer and learning rate scheduler as needed.If you use 16-bit precision (
precision=16
), Lightning will automatically handle the optimizers for you.If you use multiple optimizers,
training_step()
will have an additionaloptimizer_idx
parameter.If you use LBFGS Lightning handles the closure function automatically for you.
If you use multiple optimizers, gradients will be calculated only for the parameters of current optimizer at each training step.
If you need to control how often those optimizers step or override the default
.step()
schedule, override theoptimizer_step()
hook.If you only want to call a learning rate scheduler every
x
step or epoch, or want to monitor a custom metric, you can specify these in a dictionary:{ 'scheduler': lr_scheduler, 'interval': 'step' # or 'epoch' 'monitor': 'val_f1', 'frequency': x }
-
abstract
forward
(*args, **kwargs)[source] Same as
torch.nn.Module.forward()
, however in Lightning you want this to define the operations you want to use for prediction (i.e.: on a server or as a feature extractor).Normally you’d call
self()
from yourtraining_step()
method. This makes it easy to write a complex system for training with the outputs you’d want in a prediction setting.- Parameters
*args – Whatever you decide to pass into the forward method.
**kwargs – Keyword arguments are also possible.
- Returns
Predicted output
Examples
# example if we were using this model as a feature extractor def forward(self, x): feature_maps = self.convnet(x) return feature_maps def training_step(self, batch, batch_idx): x, y = batch feature_maps = self(x) logits = self.classifier(feature_maps) # ... return loss # splitting it this way allows model to be used a feature extractor model = MyModelAbove() inputs = server.get_request() results = model(inputs) server.write_results(results) # ------------- # This is in stark contrast to torch.nn.Module where normally you would have this: def forward(self, batch): x, y = batch feature_maps = self.convnet(x) logits = self.classifier(feature_maps) return logits
-
freeze
()[source] Freeze all params for inference.
Example
model = MyLightningModule(...) model.freeze()
- Return type
None
-
get_tqdm_dict
()[source] Additional items to be displayed in the progress bar.
-
init_ddp_connection
(proc_rank, world_size)[source] Override to define your custom way of setting up a distributed environment.
Lightning’s implementation uses
env://
init by default and sets the first node as root.- Parameters
Examples
def init_ddp_connection(self): # use slurm job id for the port number # guarantees unique ports across jobs from same grid search try: # use the last 4 numbers in the job id as the id default_port = os.environ['SLURM_JOB_ID'] default_port = default_port[-4:] # all ports should be in the 10k+ range default_port = int(default_port) + 15000 except Exception as e: default_port = 12910 # if user gave a port number, use that one instead try: default_port = os.environ['MASTER_PORT'] except Exception: os.environ['MASTER_PORT'] = str(default_port) # figure out the root node addr try: root_node = os.environ['SLURM_NODELIST'].split(' ')[0] except Exception: root_node = '127.0.0.2' root_node = self.trainer.resolve_root_node_address(root_node) os.environ['MASTER_ADDR'] = root_node dist.init_process_group( 'nccl', rank=self.proc_rank, world_size=self.world_size )
- Return type
None
-
classmethod
load_from_checkpoint
(checkpoint_path, map_location=None, tags_csv=None, *args, **kwargs)[source] Primary way of loading a model from a checkpoint. When Lightning saves a checkpoint it stores the hyperparameters in the checkpoint if you initialized your
LightningModule
with an argument calledhparams
which is aNamespace
(output ofparse_args()
when parsing command line arguments).Example
from argparse import Namespace hparams = Namespace(**{'learning_rate': 0.1}) model = MyModel(hparams) class MyModel(LightningModule): def __init__(self, hparams): self.learning_rate = hparams.learning_rate
- Parameters
checkpoint_path (
str
) – Path to checkpoint.model_args – Any keyword args needed to init the model.
map_location (
Union
[Dict
[str
,str
],str
,device
,int
,Callable
,None
]) – If your checkpoint saved a GPU model and you now load on CPUs or a different number of GPUs, use this to map to the new setup. The behaviour is the same as intorch.load()
.Optional path to a .csv file with two columns (key, value) as in this example:
key,value drop_prob,0.2 batch_size,32
You most likely won’t need this since Lightning will always save the hyperparameters to the checkpoint. However, if your checkpoint weights don’t have the hyperparameters saved, use this method to pass in a .csv file with the hparams you’d like to use. These will be converted into a
Namespace
and passed into yourLightningModule
for use.
- Return type
- Returns
LightningModule
with loaded weights and hyperparameters (if available).
Example
# load weights without mapping ... MyLightningModule.load_from_checkpoint('path/to/checkpoint.ckpt') # or load weights mapping all weights from GPU 1 to GPU 0 ... map_location = {'cuda:1':'cuda:0'} MyLightningModule.load_from_checkpoint( 'path/to/checkpoint.ckpt', map_location=map_location ) # or load weights and hyperparameters from separate files. MyLightningModule.load_from_checkpoint( 'path/to/checkpoint.ckpt', tags_csv='/path/to/hparams_file.csv' ) # or load passing whatever args the model takes to load MyLightningModule.load_from_checkpoint( 'path/to/checkpoint.ckpt', learning_rate=0.1, layers=2, pretrained_model=some_model ) # predict pretrained_model.eval() pretrained_model.freeze() y_hat = pretrained_model(x)
-
classmethod
load_from_metrics
(weights_path, tags_csv, map_location=None)[source] Warning
Deprecated in version 0.7.0. You should use
load_from_checkpoint()
instead. Will be removed in v0.9.0.
-
on_load_checkpoint
(checkpoint)[source] Called by Lightning to restore your model. If you saved something with
on_save_checkpoint()
this is your chance to restore this.Example
def on_load_checkpoint(self, checkpoint): # 99% of the time you don't need to implement this method self.something_cool_i_want_to_save = checkpoint['something_cool_i_want_to_save']
Note
Lightning auto-restores global step, epoch, and train state including amp scaling. There is no need for you to restore anything regarding training.
- Return type
None
-
on_save_checkpoint
(checkpoint)[source] Called by Lightning when saving a checkpoint to give you a chance to store anything else you might want to save.
Example
def on_save_checkpoint(self, checkpoint): # 99% of use cases you don't need to implement this method checkpoint['something_cool_i_want_to_save'] = my_cool_pickable_object
Note
Lightning saves all aspects of training (epoch, global step, etc…) including amp scaling. There is no need for you to store anything about training.
- Return type
None
-
optimizer_step
(epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None)[source] Override this method to adjust the default way the
Trainer
calls each optimizer. By default, Lightning callsstep()
andzero_grad()
as shown in the example once per optimizer.- Parameters
Examples
# DEFAULT def optimizer_step(self, current_epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None): optimizer.step() optimizer.zero_grad() # Alternating schedule for optimizer steps (i.e.: GANs) def optimizer_step(self, current_epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None): # update generator opt every 2 steps if optimizer_idx == 0: if batch_idx % 2 == 0 : optimizer.step() optimizer.zero_grad() # update discriminator opt every 4 steps if optimizer_idx == 1: if batch_idx % 4 == 0 : optimizer.step() optimizer.zero_grad() # ... # add as many optimizers as you want
Here’s another example showing how to use this for more advanced things such as learning rate warm-up:
# learning rate warm-up def optimizer_step(self, current_epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None): # warm up lr if self.trainer.global_step < 500: lr_scale = min(1., float(self.trainer.global_step + 1) / 500.) for pg in optimizer.param_groups: pg['lr'] = lr_scale * self.hparams.learning_rate # update params optimizer.step() optimizer.zero_grad()
- Return type
None
-
prepare_data
()[source] Use this to download and prepare data. In distributed (GPU, TPU), this will only be called once. This is called before requesting the dataloaders:
model.prepare_data() model.train_dataloader() model.val_dataloader() model.test_dataloader()
Examples
def prepare_data(self): download_imagenet() clean_imagenet() cache_imagenet()
- Return type
None
-
print
(*args, **kwargs)[source] Prints only from process 0. Use this in any distributed mode to log only once.
- Parameters
*args – The thing to print. Will be passed to Python’s built-in print function.
**kwargs – Will be passed to Python’s built-in print function.
Example
def forward(self, x): self.print(x, 'in forward')
- Return type
None
-
tbptt_split_batch
(batch, split_size)[source] When using truncated backpropagation through time, each batch must be split along the time dimension. Lightning handles this by default, but for custom behavior override this function.
- Parameters
- Return type
- Returns
List of batch splits. Each split will be passed to
training_step()
to enable truncated back propagation through time. The default implementation splits root level Tensors and Sequences at dim=1 (i.e. time dim). It assumes that each time dim is the same length.
Examples
def tbptt_split_batch(self, batch, split_size): splits = [] for t in range(0, time_dims[0], split_size): batch_split = [] for i, x in enumerate(batch): if isinstance(x, torch.Tensor): split_x = x[:, t:t + split_size] elif isinstance(x, collections.Sequence): split_x = [None] * len(x) for batch_idx in range(len(x)): split_x[batch_idx] = x[batch_idx][t:t + split_size] batch_split.append(split_x) splits.append(batch_split) return splits
Note
Called in the training loop after
on_batch_start()
iftruncated_bptt_steps
> 0. Each returned batch split is passed separately totraining_step()
.
-
test_dataloader
()[source] Implement one or multiple PyTorch DataLoaders for testing.
The dataloader you return will not be called every epoch unless you set
reload_dataloaders_every_epoch
toTrue
.It’s recommended that all data downloads and preparation happen in
prepare_data()
.Note
Lightning adds the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself.
- Return type
- Returns
Single or multiple PyTorch DataLoaders.
Example
def test_dataloader(self): transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) dataset = MNIST(root='/path/to/mnist/', train=False, transform=transform, download=True) loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=self.hparams.batch_size, shuffle=True ) return loader
Note
If you don’t need a test dataset and a
test_step()
, you don’t need to implement this method.
-
test_end
(outputs)[source] Warning
Deprecated in v0.7.0. Use
test_epoch_end()
instead. Will be removed in 1.0.0.
-
test_epoch_end
(outputs)[source] Called at the end of a test epoch with the output of all test steps.
# the pseudocode for these calls test_outs = [] for test_batch in test_data: out = test_step(test_batch) test_outs.append(out) test_epoch_end(test_outs)
- Parameters
outputs (
Union
[List
[Dict
[str
,Tensor
]],List
[List
[Dict
[str
,Tensor
]]]]) – List of outputs you defined intest_step_end()
, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader- Returns
Dict has the following optional keys:
progress_bar -> Dict for progress bar display. Must have only tensors.
log -> Dict of metrics to add to logger. Must have only tensors (no images, etc).
- Return type
Dict or OrderedDict
Note
If you didn’t define a
test_step()
, this won’t be called.The outputs here are strictly for logging or progress bar.
If you don’t need to display anything, don’t return anything.
If you want to manually set current step, specify it with the ‘step’ key in the ‘log’ Dict
Examples
With a single dataloader:
def test_epoch_end(self, outputs): test_acc_mean = 0 for output in outputs: test_acc_mean += output['test_acc'] test_acc_mean /= len(outputs) tqdm_dict = {'test_acc': test_acc_mean.item()} # show test_loss and test_acc in progress bar but only log test_loss results = { 'progress_bar': tqdm_dict, 'log': {'test_acc': test_acc_mean.item()} } return results
With multiple dataloaders, outputs will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each test step for that dataloader.
def test_epoch_end(self, outputs): test_acc_mean = 0 i = 0 for dataloader_outputs in outputs: for output in dataloader_outputs: test_acc_mean += output['test_acc'] i += 1 test_acc_mean /= i tqdm_dict = {'test_acc': test_acc_mean.item()} # show test_loss and test_acc in progress bar but only log test_loss results = { 'progress_bar': tqdm_dict, 'log': {'test_acc': test_acc_mean.item(), 'step': self.current_epoch} } return results
-
test_step
(*args, **kwargs)[source] Operates on a single batch of data from the test set. In this step you’d normally generate examples or calculate anything of interest such as accuracy.
# the pseudocode for these calls test_outs = [] for test_batch in test_data: out = test_step(test_batch) test_outs.append(out) test_epoch_end(test_outs)
- Parameters
- Return type
- Returns
Dict or OrderedDict - passed to the
test_epoch_end()
method. If you definedtest_step_end()
it will go to that first.
# if you have one test dataloader: def test_step(self, batch, batch_idx) # if you have multiple test dataloaders: def test_step(self, batch, batch_idx, dataloader_idx)
Examples
# CASE 1: A single test dataset def test_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # all optional... # return whatever you need for the collation function test_epoch_end output = OrderedDict({ 'val_loss': loss_val, 'val_acc': torch.tensor(val_acc), # everything must be a tensor }) # return an optional dict return output
If you pass in multiple validation datasets,
test_step()
will have an additional argument.# CASE 2: multiple test datasets def test_step(self, batch, batch_idx, dataset_idx): # dataset_idx tells you which dataset this is.
Note
If you don’t need to validate you don’t need to implement this method.
Note
When the
test_step()
is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of the test epoch, the model goes back to training mode and gradients are enabled.
-
test_step_end
(*args, **kwargs)[source] Use this when testing with dp or ddp2 because
test_step()
will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss.Note
If you later switch to ddp or some other mode, this will still be called so that you don’t have to change your code.
# pseudocode sub_batches = split_batches_for_dp(batch) batch_parts_outputs = [test_step(sub_batch) for sub_batch in sub_batches] test_step_end(batch_parts_outputs)
- Parameters
batch_parts_outputs – What you return in
test_step()
for each batch part.- Return type
- Returns
Dict or OrderedDict - passed to the
test_epoch_end()
.
Examples
# WITHOUT test_step_end # if used in DP or DDP2, this batch is 1/num_gpus large def test_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self(x) loss = self.softmax(out) loss = nce_loss(loss) return {'loss': loss} # -------------- # with test_step_end to do softmax over the full batch def test_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self(x) return {'out': out} def test_step_end(self, outputs): # this out is now the full size of the batch out = outputs['out'] # this softmax now uses the full batch size loss = nce_loss(loss) return {'loss': loss}
See also
See the Multi-GPU training guide for more details.
-
tng_dataloader
()[source] Warning
Deprecated in v0.5.0. Use
train_dataloader()
instead. Will be removed in 1.0.0.
-
train_dataloader
()[source] Implement a PyTorch DataLoader for training.
- Return type
- Returns
Single PyTorch
DataLoader
.
The dataloader you return will not be called every epoch unless you set
reload_dataloaders_every_epoch
toTrue
.It’s recommended that all data downloads and preparation happen in
prepare_data()
.Note
Lightning adds the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself.
Example
def train_dataloader(self): transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) dataset = MNIST(root='/path/to/mnist/', train=True, transform=transform, download=True) loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=self.hparams.batch_size, shuffle=True ) return loader
-
training_end
(*args, **kwargs)[source] Warning
Deprecated in v0.7.0. Use
training_step_end()
instead.
-
training_epoch_end
(outputs)[source] Called at the end of the training epoch with the outputs of all training steps.
# the pseudocode for these calls train_outs = [] for train_batch in train_data: out = training_step(train_batch) train_outs.append(out) training_epoch_end(train_outs)
- Parameters
outputs (
Union
[List
[Dict
[str
,Tensor
]],List
[List
[Dict
[str
,Tensor
]]]]) – List of outputs you defined intraining_step()
, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader.- Return type
- Returns
Dict or OrderedDict. May contain the following optional keys:
log (metrics to be added to the logger; only tensors)
any metric used in a callback (e.g. early stopping).
Note
If this method is not overridden, this won’t be called.
The outputs here are strictly for logging or progress bar.
If you don’t need to display anything, don’t return anything.
If you want to manually set current step, you can specify the ‘step’ key in the ‘log’ dict.
Examples
With a single dataloader:
def training_epoch_end(self, outputs): train_acc_mean = 0 for output in outputs: train_acc_mean += output['train_acc'] train_acc_mean /= len(outputs) # log training accuracy at the end of an epoch results = { 'log': {'train_acc': train_acc_mean.item()} } return results
With multiple dataloaders,
outputs
will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each training step for that dataloader.def training_epoch_end(self, outputs): train_acc_mean = 0 i = 0 for dataloader_outputs in outputs: for output in dataloader_outputs: train_acc_mean += output['train_acc'] i += 1 train_acc_mean /= i # log training accuracy at the end of an epoch results = { 'log': {'train_acc': train_acc_mean.item(), 'step': self.current_epoch} } return results
-
training_step
(*args, **kwargs)[source] Here you compute and return the training loss and some additional metrics for e.g. the progress bar or logger.
- Parameters
batch (
Tensor
| (Tensor
, …) | [Tensor
, …]) – The output of yourDataLoader
. A tensor, tuple or list.batch_idx (int) – Integer displaying index of this batch
optimizer_idx (int) – When using multiple optimizers, this argument will also be present.
hiddens (
Tensor
) – Passed in iftruncated_bptt_steps
> 0.
- Return type
- Returns
Dict with loss key and optional log or progress bar keys. When implementing
training_step()
, return whatever you need in that step:loss -> tensor scalar REQUIRED
progress_bar -> Dict for progress bar display. Must have only tensors
log -> Dict of metrics to add to logger. Must have only tensors (no images, etc)
In this step you’d normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something model specific.
Examples
def training_step(self, batch, batch_idx): x, y, z = batch # implement your own out = self(x) loss = self.loss(out, x) logger_logs = {'training_loss': loss} # optional (MUST ALL BE TENSORS) # if using TestTubeLogger or TensorBoardLogger you can nest scalars logger_logs = {'losses': logger_logs} # optional (MUST ALL BE TENSORS) output = { 'loss': loss, # required 'progress_bar': {'training_loss': loss}, # optional (MUST ALL BE TENSORS) 'log': logger_logs } # return a dict return output
If you define multiple optimizers, this step will be called with an additional
optimizer_idx
parameter.# Multiple optimizers (e.g.: GANs) def training_step(self, batch, batch_idx, optimizer_idx): if optimizer_idx == 0: # do training_step with encoder if optimizer_idx == 1: # do training_step with decoder
If you add truncated back propagation through time you will also get an additional argument with the hidden states of the previous step.
# Truncated back-propagation through time def training_step(self, batch, batch_idx, hiddens): # hiddens are the hidden states from the previous truncated backprop step ... out, hiddens = self.lstm(data, hiddens) ... return { "loss": ..., "hiddens": hiddens # remember to detach() this }
Notes
The loss value shown in the progress bar is smoothed (averaged) over the last values, so it differs from the actual loss returned in train/validation step.
-
training_step_end
(*args, **kwargs)[source] Use this when training with dp or ddp2 because
training_step()
will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss.Note
If you later switch to ddp or some other mode, this will still be called so that you don’t have to change your code
# pseudocode sub_batches = split_batches_for_dp(batch) batch_parts_outputs = [training_step(sub_batch) for sub_batch in sub_batches] training_step_end(batch_parts_outputs)
- Parameters
batch_parts_outputs – What you return in training_step for each batch part.
- Return type
- Returns
Dict with loss key and optional log or progress bar keys.
loss -> tensor scalar REQUIRED
progress_bar -> Dict for progress bar display. Must have only tensors
log -> Dict of metrics to add to logger. Must have only tensors (no images, etc)
Examples
# WITHOUT training_step_end # if used in DP or DDP2, this batch is 1/num_gpus large def training_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self(x) loss = self.softmax(out) loss = nce_loss(loss) return {'loss': loss} # -------------- # with training_step_end to do softmax over the full batch def training_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self(x) return {'out': out} def training_step_end(self, outputs): # this out is now the full size of the batch out = outputs['out'] # this softmax now uses the full batch size loss = nce_loss(loss) return {'loss': loss}
See also
See the Multi-GPU training guide for more details.
-
unfreeze
()[source] Unfreeze all parameters for training.
model = MyLightningModule(...) model.unfreeze()
- Return type
None
-
val_dataloader
()[source] Implement one or multiple PyTorch DataLoaders for validation.
The dataloader you return will not be called every epoch unless you set
reload_dataloaders_every_epoch
toTrue
.It’s recommended that all data downloads and preparation happen in
prepare_data()
.Note
Lightning adds the correct sampler for distributed and arbitrary hardware There is no need to set it yourself.
- Return type
- Returns
Single or multiple PyTorch DataLoaders.
Examples
def val_dataloader(self): transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) dataset = MNIST(root='/path/to/mnist/', train=False, transform=transform, download=True) loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=self.hparams.batch_size, shuffle=True ) return loader # can also return multiple dataloaders def val_dataloader(self): return [loader_a, loader_b, ..., loader_n]
Note
If you don’t need a validation dataset and a
validation_step()
, you don’t need to implement this method.Note
In the case where you return multiple validation dataloaders, the
validation_step()
will have an argumentdataset_idx
which matches the order here.
-
validation_end
(outputs)[source] Warning
Deprecated in v0.7.0. Use
validation_epoch_end()
instead. Will be removed in 1.0.0.
-
validation_epoch_end
(outputs)[source] Called at the end of the validation epoch with the outputs of all validation steps.
# the pseudocode for these calls val_outs = [] for val_batch in val_data: out = validation_step(train_batch) val_outs.append(out) validation_epoch_end(val_outs)
- Parameters
outputs (
Union
[List
[Dict
[str
,Tensor
]],List
[List
[Dict
[str
,Tensor
]]]]) – List of outputs you defined invalidation_step()
, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader.- Return type
- Returns
Dict or OrderedDict. May have the following optional keys:
progress_bar (dict for progress bar display; only tensors)
log (dict of metrics to add to logger; only tensors).
Note
If you didn’t define a
validation_step()
, this won’t be called.The outputs here are strictly for logging or progress bar.
If you don’t need to display anything, don’t return anything.
If you want to manually set current step, you can specify the ‘step’ key in the ‘log’ dict.
Examples
With a single dataloader:
def validation_epoch_end(self, outputs): val_acc_mean = 0 for output in outputs: val_acc_mean += output['val_acc'] val_acc_mean /= len(outputs) tqdm_dict = {'val_acc': val_acc_mean.item()} # show val_acc in progress bar but only log val_loss results = { 'progress_bar': tqdm_dict, 'log': {'val_acc': val_acc_mean.item()} } return results
With multiple dataloaders, outputs will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each validation step for that dataloader.
def validation_epoch_end(self, outputs): val_acc_mean = 0 i = 0 for dataloader_outputs in outputs: for output in dataloader_outputs: val_acc_mean += output['val_acc'] i += 1 val_acc_mean /= i tqdm_dict = {'val_acc': val_acc_mean.item()} # show val_loss and val_acc in progress bar but only log val_loss results = { 'progress_bar': tqdm_dict, 'log': {'val_acc': val_acc_mean.item(), 'step': self.current_epoch} } return results
-
validation_step
(*args, **kwargs)[source] Operates on a single batch of data from the validation set. In this step you’d might generate examples or calculate anything of interest like accuracy.
# the pseudocode for these calls val_outs = [] for val_batch in val_data: out = validation_step(train_batch) val_outs.append(out) validation_epoch_end(val_outs)
- Parameters
- Return type
- Returns
Dict or OrderedDict - passed to
validation_epoch_end()
. If you definedvalidation_step_end()
it will go to that first.
# pseudocode of order out = validation_step() if defined('validation_step_end'): out = validation_step_end(out) out = validation_epoch_end(out)
# if you have one val dataloader: def validation_step(self, batch, batch_idx) # if you have multiple val dataloaders: def validation_step(self, batch, batch_idx, dataloader_idx)
Examples
# CASE 1: A single validation dataset def validation_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # all optional... # return whatever you need for the collation function validation_epoch_end output = OrderedDict({ 'val_loss': loss_val, 'val_acc': torch.tensor(val_acc), # everything must be a tensor }) # return an optional dict return output
If you pass in multiple val datasets, validation_step will have an additional argument.
# CASE 2: multiple validation datasets def validation_step(self, batch, batch_idx, dataset_idx): # dataset_idx tells you which dataset this is.
Note
If you don’t need to validate you don’t need to implement this method.
Note
When the
validation_step()
is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of validation, the model goes back to training mode and gradients are enabled.
-
validation_step_end
(*args, **kwargs)[source] Use this when validating with dp or ddp2 because
validation_step()
will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss.Note
If you later switch to ddp or some other mode, this will still be called so that you don’t have to change your code.
# pseudocode sub_batches = split_batches_for_dp(batch) batch_parts_outputs = [validation_step(sub_batch) for sub_batch in sub_batches] validation_step_end(batch_parts_outputs)
- Parameters
batch_parts_outputs – What you return in
validation_step()
for each batch part.- Return type
- Returns
Dict or OrderedDict - passed to the
validation_epoch_end()
method.
Examples
# WITHOUT validation_step_end # if used in DP or DDP2, this batch is 1/num_gpus large def validation_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self(x) loss = self.softmax(out) loss = nce_loss(loss) return {'loss': loss} # -------------- # with validation_step_end to do softmax over the full batch def validation_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self(x) return {'out': out} def validation_epoch_end(self, outputs): # this out is now the full size of the batch out = outputs['out'] # this softmax now uses the full batch size loss = nce_loss(loss) return {'loss': loss}
See also
See the Multi-GPU training guide for more details.
-
current_epoch
= None[source] The current epoch
-
dtype
= None[source] Current dtype
-
global_step
= None[source] Total training batches seen across all epochs
-
logger
= None[source] Pointer to the logger object
-
on_gpu
= None[source] True if your model is currently running on GPUs. Useful to set flags around the LightningModule for different CPU vs GPU behavior.
-
trainer
= None[source] Pointer to the trainer object
-
use_amp
= None[source] True if using amp
-
use_ddp
= None[source] True if using ddp
-
use_ddp2
= None[source] True if using ddp2
-
use_dp
= None[source] True if using dp
-
-
pytorch_lightning.core.
data_loader
(fn)[source] Decorator to make any fx with this use the lazy property.
Warning
This decorator deprecated in v0.7.0 and it will be removed v0.9.0.
Loggers¶
Lightning supports most popular logging frameworks (Tensorboard, comet, weights and biases, etc…).
To use a logger, simply pass it into the trainer. To use multiple loggers, simply pass in a list
or tuple
of loggers.
from pytorch_lightning import loggers
# lightning uses tensorboard by default
tb_logger = loggers.TensorBoardLogger()
trainer = Trainer(logger=tb_logger)
# or choose from any of the others such as MLFlow, Comet, Neptune, Wandb
comet_logger = loggers.CometLogger()
trainer = Trainer(logger=comet_logger)
# or pass a list
tb_logger = loggers.TensorBoardLogger()
comet_logger = loggers.CometLogger()
trainer = Trainer(logger=[tb_logger, comet_logger])
Note
All loggers log by default to os.getcwd()
. To change the path without creating a logger set
Trainer(default_save_path='/your/path/to/save/checkpoints')
Custom logger¶
You can implement your own logger by writing a class that inherits from
LightningLoggerBase
. Use the rank_zero_only
decorator to make sure that
only the first process in DDP training logs data.
from pytorch_lightning.loggers import LightningLoggerBase, rank_zero_only
class MyLogger(LightningLoggerBase):
@rank_zero_only
def log_hyperparams(self, params):
# params is an argparse.Namespace
# your code to record hyperparameters goes here
pass
@rank_zero_only
def log_metrics(self, metrics, step):
# metrics is a dictionary of metric names and values
# your code to record metrics goes here
pass
def save(self):
# Optional. Any code necessary to save logger data goes here
pass
@rank_zero_only
def finalize(self, status):
# Optional. Any code that needs to be run after training
# finishes goes here
If you write a logger that may be useful to others, please send a pull request to add it to Lighting!
Using loggers¶
Call the logger anywhere except __init__
in your LightningModule by doing:
def train_step(...):
# example
self.logger.experiment.whatever_method_summary_writer_supports(...)
def any_lightning_module_function_or_hook(...):
self.logger.experiment.add_histogram(...)
Read more in the Experiment Logging use case.
Supported Loggers¶
-
class
pytorch_lightning.loggers.
TensorBoardLogger
(save_dir, name='default', version=None, **kwargs)[source] Bases:
pytorch_lightning.loggers.base.LightningLoggerBase
Log to local file system in TensorBoard format
Implemented using
torch.utils.tensorboard.SummaryWriter
. Logs are saved toos.path.join(save_dir, name, version)
Example
logger = TensorBoardLogger("tb_logs", name="my_model") trainer = Trainer(logger=logger) trainer.train(model)
- Parameters
save_dir (
str
) – Save directoryname (
Optional
[str
]) – Experiment name. Defaults to “default”. If it is the empty string then no per-experiment subdirectory is used.version (
Union
[int
,str
,None
]) – Experiment version. If version is not specified the logger inspects the save directory for existing versions, then automatically assigns the next available version. If it is a string then it is used as the run-specific subdirectory name, otherwise version_${version} is used.**kwargs – Other arguments are passed directly to the
SummaryWriter
constructor.agg_key_funcs – Dictionary which maps a metric name to a function, which will aggregate the metric values for the same steps.
agg_default_func – Default function to aggregate metric values. If some metric name is not presented in the agg_key_funcs dictionary, then the agg_default_func will be used for aggregation.
Notes
agg_key_funcs and agg_default_func are used only when one logs metrics with LightningLoggerBase.agg_and_log_metrics method.
-
finalize
(status)[source] Do any processing that is necessary to finalize an experiment.
- Parameters
status (
str
) – Status that the experiment finished with (e.g. success, failed, aborted)- Return type
None
-
log_hyperparams
(params)[source] Record hyperparameters.
-
log_metrics
(metrics, step=None)[source] Records metrics. This method logs metrics as as soon as it received them. If you want to aggregate metrics for one specific step, use the agg_and_log_metrics method.
-
save
()[source] Save log data.
- Return type
None
-
property
experiment
[source] Actual tensorboard object. To use tensorboard features do the following.
Example:
self.logger.experiment.some_tensorboard_function()
- Return type
SummaryWriter
-
property
log_dir
[source] The directory for this run’s tensorboard checkpoint. By default, it is named ‘version_${self.version}’ but it can be overridden by passing a string value for the constructor’s version parameter instead of None or an int
- Return type
-
property
root_dir
[source] Parent directory for all tensorboard checkpoint subdirectories. If the experiment name parameter is None or the empty string, no experiment subdirectory is used and checkpoint will be saved in save_dir/version_dir
- Return type
-
class
pytorch_lightning.loggers.
CometLogger
(api_key=None, save_dir=None, workspace=None, project_name=None, rest_api_key=None, experiment_name=None, experiment_key=None, **kwargs)[source] Bases:
pytorch_lightning.loggers.base.LightningLoggerBase
Log using comet.ml.
Requires either an API Key (online mode) or a local directory path (offline mode)
# ONLINE MODE from pytorch_lightning.loggers import CometLogger # arguments made to CometLogger are passed on to the comet_ml.Experiment class comet_logger = CometLogger( api_key=os.environ["COMET_API_KEY"], workspace=os.environ["COMET_WORKSPACE"], # Optional project_name="default_project", # Optional rest_api_key=os.environ["COMET_REST_API_KEY"], # Optional experiment_name="default" # Optional ) trainer = Trainer(logger=comet_logger)
# OFFLINE MODE from pytorch_lightning.loggers import CometLogger # arguments made to CometLogger are passed on to the comet_ml.Experiment class comet_logger = CometLogger( save_dir=".", workspace=os.environ["COMET_WORKSPACE"], # Optional project_name="default_project", # Optional rest_api_key=os.environ["COMET_REST_API_KEY"], # Optional experiment_name="default" # Optional ) trainer = Trainer(logger=comet_logger)
- Parameters
api_key (str) – Required in online mode. API key, found on Comet.ml
save_dir (str) – Required in offline mode. The path for the directory to save local comet logs
workspace (str) – Optional. Name of workspace for this user
project_name (str) – Optional. Send your experiment to a specific project.
will be sent to Uncategorized Experiments. (Otherwise) –
ml will create a new project. (If) –
rest_api_key (str) – Optional. Rest API key found in Comet.ml settings. This is used to determine version number
experiment_name (str) – Optional. String representing the name for this particular experiment on Comet.ml.
experiment_key (str) – Optional. If set, restores from existing experiment.
-
finalize
(status)[source] When calling self.experiment.end(), that experiment won’t log any more data to Comet. That’s why, if you need to log any more data you need to create an ExistingCometExperiment. For example, to log data when testing your model after training, because when training is finalized CometLogger.finalize is called.
This happens automatically in the CometLogger.experiment property, when self._experiment is set to None i.e. self.reset_experiment().
- Return type
None
-
log_hyperparams
(params)[source] Record hyperparameters.
-
log_metrics
(metrics, step=None)[source] Records metrics. This method logs metrics as as soon as it received them. If you want to aggregate metrics for one specific step, use the agg_and_log_metrics method.
-
property
experiment
[source] Actual comet object. To use comet features do the following.
Example:
self.logger.experiment.some_comet_function()
- Return type
BaseExperiment
-
class
pytorch_lightning.loggers.
MLFlowLogger
(experiment_name, tracking_uri=None, tags=None)[source] Bases:
pytorch_lightning.loggers.base.LightningLoggerBase
Logs using MLFlow
- Parameters
-
finalize
(status='FINISHED')[source] Do any processing that is necessary to finalize an experiment.
- Parameters
status (
str
) – Status that the experiment finished with (e.g. success, failed, aborted)- Return type
None
-
log_hyperparams
(params)[source] Record hyperparameters.
-
log_metrics
(metrics, step=None)[source] Records metrics. This method logs metrics as as soon as it received them. If you want to aggregate metrics for one specific step, use the agg_and_log_metrics method.
-
save
()[source] Save log data.
-
property
experiment
[source] Actual mlflow object. To use mlflow features do the following.
Example:
self.logger.experiment.some_mlflow_function()
- Return type
MlflowClient
-
class
pytorch_lightning.loggers.
NeptuneLogger
(api_key=None, project_name=None, close_after_fit=True, offline_mode=False, experiment_name=None, upload_source_files=None, params=None, properties=None, tags=None, **kwargs)[source] Bases:
pytorch_lightning.loggers.base.LightningLoggerBase
Neptune logger can be used in the online mode or offline (silent) mode. To log experiment data in online mode, NeptuneLogger requries an API key:
Initialize a neptune.ai logger.
Note
Requires either an API Key (online mode) or a local directory path (offline mode)
# ONLINE MODE from pytorch_lightning.loggers import NeptuneLogger # arguments made to NeptuneLogger are passed on to the neptune.experiments.Experiment class # We are using an api_key for the anonymous user "neptuner" but you can use your own. neptune_logger = NeptuneLogger( api_key="ANONYMOUS" project_name="shared/pytorch-lightning-integration", experiment_name="default", # Optional, params={"max_epochs": 10}, # Optional, tags=["pytorch-lightning","mlp"] # Optional, ) trainer = Trainer(max_epochs=10, logger=neptune_logger)
# OFFLINE MODE from pytorch_lightning.loggers import NeptuneLogger # arguments made to NeptuneLogger are passed on to the neptune.experiments.Experiment class neptune_logger = NeptuneLogger( project_name="USER_NAME/PROJECT_NAME", experiment_name="default", # Optional, params={"max_epochs": 10}, # Optional, tags=["pytorch-lightning","mlp"] # Optional, ) trainer = Trainer(max_epochs=10, logger=neptune_logger)
Use the logger anywhere in you LightningModule as follows:
def train_step(...): # example self.logger.experiment.log_metric("acc_train", acc_train) # log metrics self.logger.experiment.log_image("worse_predictions", prediction_image) # log images self.logger.experiment.log_artifact("model_checkpoint.pt", prediction_image) # log model checkpoint self.logger.experiment.whatever_neptune_supports(...) def any_lightning_module_function_or_hook(...): self.logger.experiment.log_metric("acc_train", acc_train) # log metrics self.logger.experiment.log_image("worse_predictions", prediction_image) # log images self.logger.experiment.log_artifact("model_checkpoint.pt", prediction_image) # log model checkpoint self.logger.experiment.whatever_neptune_supports(...)
If you want to log objects after the training is finished use close_after_train=False:
neptune_logger = NeptuneLogger( ... close_after_fit=False, ...) trainer = Trainer(logger=neptune_logger) trainer.fit() # Log test metrics trainer.test(model) # Log additional metrics from sklearn.metrics import accuracy_score accuracy = accuracy_score(y_true, y_pred) neptune_logger.experiment.log_metric('test_accuracy', accuracy) # Log charts from scikitplot.metrics import plot_confusion_matrix import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(16, 12)) plot_confusion_matrix(y_true, y_pred, ax=ax) neptune_logger.experiment.log_image('confusion_matrix', fig) # Save checkpoints folder neptune_logger.experiment.log_artifact('my/checkpoints') # When you are done, stop the experiment neptune_logger.experiment.stop()
You can go and see an example experiment here: https://ui.neptune.ai/o/shared/org/pytorch-lightning-integration/e/PYTOR-66/charts
- Parameters
api_key (
Optional
[str
]) – Required in online mode. Neputne API token, found on https://neptune.ai Read how to get your API key https://docs.neptune.ai/python-api/tutorials/get-started.html#copy-api-token. It is recommended to keep it in the NEPTUNE_API_TOKEN environment variable and then you can leave api_key=Noneproject_name (
Optional
[str
]) – Required in online mode. Qualified name of a project in a form of “namespace/project_name” for example “tom/minst-classification”. If None, the value of NEPTUNE_PROJECT environment variable will be taken. You need to create the project in https://neptune.ai first.offline_mode (
bool
) – Optional default False. If offline_mode=True no logs will be send to neptune. Usually used for debug purposes.close_after_fit (
Optional
[bool
]) – Optional default True. If close_after_fit=False the experiment will not be closed after training and additional metrics, images or artifacts can be logged. Also, remember to close the experiment explicitly by running neptune_logger.experiment.stop().experiment_name (
Optional
[str
]) – Optional. Editable name of the experiment. Name is displayed in the experiment’s Details (Metadata section) and in experiments view as a column.upload_source_files (
Optional
[List
[str
]]) – Optional. List of source files to be uploaded. Must be list of str or single str. Uploaded sources are displayed in the experiment’s Source code tab. If None is passed, Python file from which experiment was created will be uploaded. Pass empty list ([]) to upload no files. Unix style pathname pattern expansion is supported. For example, you can pass ‘*.py’ to upload all python source files from the current directory. For recursion lookup use ‘**/*.py’ (for Python 3.5 and later). For more information see glob library.params (
Optional
[Dict
[str
,Any
]]) – Optional. Parameters of the experiment. After experiment creation params are read-only. Parameters are displayed in the experiment’s Parameters section and each key-value pair can be viewed in experiments view as a column.properties (
Optional
[Dict
[str
,Any
]]) – Optional default is {}. Properties of the experiment. They are editable after experiment is created. Properties are displayed in the experiment’s Details and each key-value pair can be viewed in experiments view as a column.tags (
Optional
[List
[str
]]) – Optional default []. Must be list of str. Tags of the experiment. They are editable after experiment is created (see: append_tag() and remove_tag()). Tags are displayed in the experiment’s Details and can be viewed in experiments view as a column.
-
append_tags
(tags)[source] appends tags to neptune experiment
-
finalize
(status)[source] Do any processing that is necessary to finalize an experiment.
- Parameters
status (
str
) – Status that the experiment finished with (e.g. success, failed, aborted)- Return type
None
-
log_artifact
(artifact, destination=None)[source] Save an artifact (file) in Neptune experiment storage.
-
log_hyperparams
(params)[source] Record hyperparameters.
-
log_image
(log_name, image, step=None)[source] Log image data in Neptune experiment
- Parameters
log_name (
str
) – The name of log, i.e. bboxes, visualisations, sample_images.image (str|PIL.Image|matplotlib.figure.Figure) – The value of the log (data-point). Can be one of the following types: PIL image, matplotlib.figure.Figure, path to image file (str)
step (
Optional
[int
]) – Step number at which the metrics should be recorded, must be strictly increasing
- Return type
None
-
log_metric
(metric_name, metric_value, step=None)[source] Log metrics (numeric values) in Neptune experiments
-
log_metrics
(metrics, step=None)[source] Log metrics (numeric values) in Neptune experiments
-
log_text
(log_name, text, step=None)[source] Log text data in Neptune experiment
-
set_property
(key, value)[source] Set key-value pair as Neptune experiment property.
-
property
experiment
[source] Actual neptune object. To use neptune features do the following.
Example:
self.logger.experiment.some_neptune_function()
- Return type
Experiment
-
class
pytorch_lightning.loggers.
TestTubeLogger
(save_dir, name='default', description=None, debug=False, version=None, create_git_tag=False)[source] Bases:
pytorch_lightning.loggers.base.LightningLoggerBase
Log to local file system in TensorBoard format but using a nicer folder structure. (see full docs).
Example
logger = TestTubeLogger("tt_logs", name="my_exp_name") trainer = Trainer(logger=logger) trainer.train(model)
Use the logger anywhere in you LightningModule as follows:
def train_step(...): # example self.logger.experiment.whatever_method_summary_writer_supports(...) def any_lightning_module_function_or_hook(...): self.logger.experiment.add_histogram(...)
- Parameters
save_dir (str) – Save directory
name (str) – Experiment name. Defaults to “default”.
description (str) – A short snippet about this experiment
debug (bool) – If True, it doesn’t log anything
version (int) – Experiment version. If version is not specified the logger inspects the save
for existing versions, then automatically assigns the next available version. (directory) –
create_git_tag (bool) – If True creates a git tag to save the code used in this experiment
-
close
()[source] Do any cleanup that is necessary to close an experiment.
- Return type
None
-
finalize
(status)[source] Do any processing that is necessary to finalize an experiment.
- Parameters
status (
str
) – Status that the experiment finished with (e.g. success, failed, aborted)- Return type
None
-
log_hyperparams
(params)[source] Record hyperparameters.
-
log_metrics
(metrics, step=None)[source] Records metrics. This method logs metrics as as soon as it received them. If you want to aggregate metrics for one specific step, use the agg_and_log_metrics method.
-
save
()[source] Save log data.
- Return type
None
-
property
experiment
[source] Actual test-tube object. To use test-tube features do the following.
Example:
self.logger.experiment.some_test_tube_function()
- Return type
Experiment
-
property
rank
[source] Process rank. In general, metrics should only be logged by the process with rank 0.
- Return type
-
class
pytorch_lightning.loggers.
WandbLogger
(name=None, save_dir=None, offline=False, id=None, anonymous=False, version=None, project=None, tags=None, log_model=False, experiment=None, entity=None)[source] Bases:
pytorch_lightning.loggers.base.LightningLoggerBase
Logger for W&B.
- Parameters
name (str) – display name for the run.
save_dir (str) – path where data is saved.
offline (bool) – run offline (data can be streamed later to wandb servers).
or version (id) – sets the version, mainly used to resume a previous run.
anonymous (bool) – enables or explicitly disables anonymous logging.
project (str) – the name of the project to which this run will belong.
tags (list of str) – tags associated with this run.
log_model (bool) – save checkpoints in wandb dir to upload on W&B servers.
Example
from pytorch_lightning.loggers import WandbLogger from pytorch_lightning import Trainer wandb_logger = WandbLogger() trainer = Trainer(logger=wandb_logger)
- Parameters
agg_key_funcs – Dictionary which maps a metric name to a function, which will aggregate the metric values for the same steps.
agg_default_func – Default function to aggregate metric values. If some metric name is not presented in the agg_key_funcs dictionary, then the agg_default_func will be used for aggregation.
Notes
agg_key_funcs and agg_default_func are used only when one logs metrics with LightningLoggerBase.agg_and_log_metrics method.
-
log_hyperparams
(params)[source] Record hyperparameters.
-
log_metrics
(metrics, step=None)[source] Records metrics. This method logs metrics as as soon as it received them. If you want to aggregate metrics for one specific step, use the agg_and_log_metrics method.
-
property
experiment
[source] Actual wandb object. To use wandb features do the following.
Example:
self.logger.experiment.some_wandb_function()
- Return type
Run
-
class
pytorch_lightning.loggers.
TrainsLogger
(project_name=None, task_name=None, task_type='training', reuse_last_task_id=True, output_uri=None, auto_connect_arg_parser=True, auto_connect_frameworks=True, auto_resource_monitoring=True)[source] Bases:
pytorch_lightning.loggers.base.LightningLoggerBase
Logs using TRAINS
- Parameters
project_name (
Optional
[str
]) – The name of the experiment’s project. Defaults to None.task_name (
Optional
[str
]) – The name of the experiment. Defaults to None.task_type (
str
) – The name of the experiment. Defaults to ‘training’.reuse_last_task_id (
bool
) – Start with the previously used task id. Defaults to True.output_uri (
Optional
[str
]) – Default location for output models. Defaults to None.auto_connect_arg_parser (
bool
) – Automatically grab the ArgParser and connect it with the task. Defaults to True.auto_connect_frameworks (
bool
) – If True, automatically patch to trains backend. Defaults to True.auto_resource_monitoring (
bool
) – If true, machine vitals will be sent along side the task scalars. Defaults to True.
Examples
>>> logger = TrainsLogger("lightning_log", "my-lightning-test", output_uri=".") TRAINS Task: ... TRAINS results page: ... >>> logger.log_metrics({"val_loss": 1.23}, step=0) >>> logger.log_text("sample test") sample test >>> import numpy as np >>> logger.log_artifact("confusion matrix", np.ones((2, 3))) >>> logger.log_image("passed", "Image 1", np.random.randint(0, 255, (200, 150, 3), dtype=np.uint8))
- Parameters
agg_key_funcs – Dictionary which maps a metric name to a function, which will aggregate the metric values for the same steps.
agg_default_func – Default function to aggregate metric values. If some metric name is not presented in the agg_key_funcs dictionary, then the agg_default_func will be used for aggregation.
Notes
agg_key_funcs and agg_default_func are used only when one logs metrics with LightningLoggerBase.agg_and_log_metrics method.
-
classmethod
bypass_mode
()[source] bypass_mode returns the bypass mode state. Notice GITHUB_ACTIONS env will automatically set bypass_mode to True unless overridden specifically with set_bypass_mode(False)
- Return type
- Returns
If True, all outside communication is skipped
-
finalize
(status=None)[source] Do any processing that is necessary to finalize an experiment.
-
log_artifact
(name, artifact, metadata=None, delete_after_upload=False)[source] Save an artifact (file/object) in TRAINS experiment storage.
- Parameters
name (
str
) – Artifact name. Notice! it will override previous artifact if name already existsartifact (
Union
[str
,Path
,Dict
[str
,Any
],ndarray
,Image
]) –Artifact object to upload. Currently supports:
string / pathlib2.Path are treated as path to artifact file to upload If wildcard or a folder is passed, zip file containing the local files will be created and uploaded
dict will be stored as .json file and uploaded
pandas.DataFrame will be stored as .csv.gz (compressed CSV file) and uploaded
numpy.ndarray will be stored as .npz and uploaded
PIL.Image will be stored to .png file and uploaded
metadata (
Optional
[Dict
[str
,Any
]]) – Simple key/value dictionary to store on the artifact. Defaults to None.delete_after_upload (
bool
) – If True local artifact will be deleted (only applies if artifact_object is a local file). Defaults to False.
- Return type
None
-
log_hyperparams
(params)[source] Log hyperparameters (numeric values) in TRAINS experiments
-
log_image
(title, series, image, step=None)[source] Log Debug image in TRAINS experiment
- Parameters
title (
str
) – The title of the debug image, i.e. “failed”, “passed”.series (
str
) – The series name of the debug image, i.e. “Image 0”, “Image 1”.image (
Union
[str
,ndarray
,Image
,Tensor
]) –- Debug image to log. Can be one of the following types:
Torch, Numpy, PIL image, path to image file (str)
- If Numpy or Torch, the image is assume to be the following:
shape: CHW color space: RGB value range: [0., 1.] (float) or [0, 255] (uint8)
step (
Optional
[int
]) – Step number at which the metrics should be recorded. Defaults to None.
- Return type
None
-
log_metric
(title, series, value, step=None)[source] - Log metrics (numeric values) in TRAINS experiments.
This method will be called by the users.
- Parameters
- Return type
None
-
log_metrics
(metrics, step=None)[source] - Log metrics (numeric values) in TRAINS experiments.
This method will be called by Trainer.
- Parameters
- Return type
None
-
log_text
(text)[source] Log console text data in TRAINS experiment
- Parameters
text (
str
) – The value of the log (data-point).- Return type
None
-
save
()[source] Save log data.
- Return type
None
-
classmethod
set_bypass_mode
(bypass)[source] set_bypass_mode will bypass all outside communication, and will drop all logs. Should only be used in “standalone mode”, when there is no access to the trains-server
- Parameters
bypass (
bool
) – If True, all outside communication is skipped- Return type
None
-
classmethod
set_credentials
(api_host=None, web_host=None, files_host=None, key=None, secret=None)[source] Set new default TRAINS-server host and credentials These configurations could be overridden by either OS environment variables or trains.conf configuration file
Notice! credentials needs to be set prior to Logger initialization
- Parameters
api_host (
Optional
[str
]) – Trains API server url, example: host=’http://localhost:8008’web_host (
Optional
[str
]) – Trains WEB server url, example: host=’http://localhost:8080’files_host (
Optional
[str
]) – Trains Files server url, example: host=’http://localhost:8081’key (
Optional
[str
]) – user key/secret pair, example: key=’thisisakey123’secret (
Optional
[str
]) – user key/secret pair, example: secret=’thisisseceret123’
- Return type
None
-
property
experiment
[source] Actual TRAINS object. To use TRAINS features do the following.
Example
self.logger.experiment.some_trains_function()
- Return type
Task
-
property
id
[source] ID is a uuid (string) representing this specific experiment in the entire system.
-
property
name
[source] Name is a human readable non-unique name (str) of the experiment.
Trainer¶
Once you’ve organized your PyTorch code into a LightningModule, the Trainer automates everything else.

This abstraction achieves the following:
You maintain control over all aspects via PyTorch code without an added abstraction.
The trainer uses best practices embedded by contributors and users from top AI labs such as Facebook AI Research, NYU, MIT, Stanford, etc…
The trainer allows overriding any key part that you don’t want automated.
Basic use¶
This is the basic use of the trainer:
from pytorch_lightning import Trainer
model = MyLightningModule()
trainer = Trainer()
trainer.fit(model)
Best Practices¶
For cluster computing, it’s recommended you structure your main.py file this way
from argparse import ArgumentParser
def main(hparams):
model = LightningModule()
trainer = Trainer(gpus=hparams.gpus)
trainer.fit(model)
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--gpus', default=None)
args = parser.parse_args()
main(args)
So you can run it like so:distributed_backend
python main.py --gpus 2
Note
If you want to stop a training run early, you can press “Ctrl + C” on your keyboard. The trainer will catch the KeyboardInterrupt and attempt a graceful shutdown, including running callbacks such as on_train_end. The trainer object will also set an attribute interrupted to True in such cases. If you have a callback which shuts down compute resources, for example, you can conditionally run the shutdown logic for only uninterrupted runs.
Testing¶
Once you’re done training, feel free to run the test set! (Only right before publishing your paper or pushing to production)
trainer.test()
Deployment / prediction¶
You just trained a LightningModule which is also just a torch.nn.Module. Use it to do whatever!
# load model
pretrained_model = LightningModule.load_from_checkpoint(PATH)
pretrained_model.freeze()
# use it for finetuning
def forward(self, x):
features = pretrained_model(x)
classes = classifier(features)
# or for prediction
out = pretrained_model(x)
api_write({'response': out}
Trainer flags¶
accumulate_grad_batches¶
Accumulates grads every k batches or as set up in the dict.
# default used by the Trainer (no accumulation)
trainer = Trainer(accumulate_grad_batches=1)
Example:
# accumulate every 4 batches (effective batch size is batch*4)
trainer = Trainer(accumulate_grad_batches=4)
# no accumulation for epochs 1-4. accumulate 3 for epochs 5-10. accumulate 20 after that
trainer = Trainer(accumulate_grad_batches={5: 3, 10: 20})
amp_level¶
The optimization level to use (O1, O2, etc…) for 16-bit GPU precision (using NVIDIA apex under the hood).
Check NVIDIA apex docs for level
Example:
# default used by the Trainer
trainer = Trainer(amp_level='O1')
benchmark¶
If true enables cudnn.benchmark. This flag is likely to increase the speed of your system if your input sizes don’t change. However, if it does, then it will likely make your system slower.
The speedup comes from allowing the cudnn auto-tuner to find the best algorithm for the hardware [see discussion here].
Example:
# default used by the Trainer
trainer = Trainer(benchmark=False)
callbacks¶
Add a list of user defined callbacks. These callbacks DO NOT replace the explicit callbacks (loggers, EarlyStopping or ModelCheckpoint).
Note
Only user defined callbacks (ie: Not EarlyStopping or ModelCheckpoint)
# a list of callbacks
callbacks = [PrintCallback()]
trainer = Trainer(callbacks=callbacks)
Example:
from pytorch_lightning.callbacks import Callback
class PrintCallback(Callback):
def on_train_start(self):
print("Training is started!")
def on_train_end(self):
print(f"Training is done. The logs are: {self.trainer.logs}")
check_val_every_n_epoch¶
Check val every n train epochs.
Example:
# default used by the Trainer
trainer = Trainer(check_val_every_n_epoch=1)
# run val loop every 10 training epochs
trainer = Trainer(check_val_every_n_epoch=10)
checkpoint_callback¶
Callback for checkpointing.
trainer = Trainer(checkpoint_callback=checkpoint_callback)
Example:
from pytorch_lightning.callbacks import ModelCheckpoint
# default used by the Trainer
checkpoint_callback = ModelCheckpoint(
filepath=os.getcwd(),
save_top_k=True,
verbose=True,
monitor='val_loss',
mode='min',
prefix=''
)
default_save_path¶
Default path for logs and weights when no logger
or pytorch_lightning.callbacks.ModelCheckpoint
callback passed.
On certain clusters you might want to separate where logs and checkpoints
are stored. If you don’t then use this method for convenience.
Example:
# default used by the Trainer
trainer = Trainer(default_save_path=os.getcwd())
distributed_backend¶
The distributed backend to use.
(
`dp`
) is DataParallel (split batch among GPUs of same machine)(
`ddp`
) is DistributedDataParallel (each gpu on each node trains, and syncs grads)- (
`ddp2`
) dp on node, ddp across nodes. Useful for things like increasing the number of negative samples
- (
# default used by the Trainer
trainer = Trainer(distributed_backend=None)
Example:
# dp = DataParallel
trainer = Trainer(gpus=2, distributed_backend='dp')
# ddp = DistributedDataParallel
trainer = Trainer(gpus=2, num_nodes=2, distributed_backend='ddp')
# ddp2 = DistributedDataParallel + dp
trainer = Trainer(gpus=2, num_nodes=2, distributed_backend='ddp2')
Note
this option does not apply to TPU. TPUs use `ddp`
by default (over each core)
early_stop_callback¶
Callback for early stopping.
early_stop_callback (pytorch_lightning.callbacks.EarlyStopping
)
True
: A default callback monitoring'val_loss'
is created.Will raise an error if
'val_loss'
is not found.
False
: Early stopping will be disabled.None
: The default callback monitoring'val_loss'
is created.Default:
None
.
trainer = Trainer(early_stop_callback=early_stop_callback)
Example:
from pytorch_lightning.callbacks import EarlyStopping
# default used by the Trainer
early_stop_callback = EarlyStopping(
monitor='val_loss',
patience=3,
strict=False,
verbose=False,
mode='min'
)
Note
If 'val_loss'
is not found will work as if early stopping is disabled.
fast_dev_run¶
Runs 1 batch of train, test and val to find any bugs (ie: a sort of unit test).
Under the hood the pseudocode looks like this:
# loading
__init__()
prepare_data
# test training step
training_batch = next(train_dataloader)
training_step(training_batch)
# test val step
val_batch = next(val_dataloader)
out = validation_step(val_batch)
validation_epoch_end([out])
Example:
# default used by the Trainer
trainer = Trainer(fast_dev_run=False)
# runs 1 train, val, test batch and program ends
trainer = Trainer(fast_dev_run=True)
gpus¶
Number of GPUs to train on
or Which GPUs to train on
can handle strings
Example:
# default used by the Trainer (ie: train on CPU)
trainer = Trainer(gpus=None)
# int: train on 2 gpus
trainer = Trainer(gpus=2)
# list: train on GPUs 1, 4 (by bus ordering)
trainer = Trainer(gpus=[1, 4])
trainer = Trainer(gpus='1, 4') # equivalent
# -1: train on all gpus
trainer = Trainer(gpus=-1)
trainer = Trainer(gpus='-1') # equivalent
# combine with num_nodes to train on multiple GPUs across nodes
# uses 8 gpus in total
trainer = Trainer(gpus=2, num_nodes=4)
Note
See the multi-gpu computing guide
gradient_clip_val¶
Gradient clipping value
0 means don’t clip.
Example:
# default used by the Trainer
trainer = Trainer(gradient_clip_val=0.0)
gradient_clip:
Warning
Deprecated since version 0.5.0.
Use gradient_clip_val instead. Will remove 0.8.0.
log_gpu_memory¶
Options:
None
‘min_max’
‘all’
Example:
# default used by the Trainer
trainer = Trainer(log_gpu_memory=None)
# log all the GPUs (on master node only)
trainer = Trainer(log_gpu_memory='all')
# log only the min and max memory on the master node
trainer = Trainer(log_gpu_memory='min_max')
Note
Might slow performance because it uses the output of nvidia-smi.
log_save_interval¶
Writes logs to disk this often.
Example:
# default used by the Trainer
trainer = Trainer(log_save_interval=100)
logger¶
Logger (or iterable collection of loggers) for experiment tracking.
Trainer(logger=logger)
Example:
from pytorch_lightning.loggers import TensorBoardLogger
# default logger used by trainer
logger = TensorBoardLogger(
save_dir=os.getcwd(),
version=self.slurm_job_id,
name='lightning_logs'
)
max_epochs¶
Stop training once this number of epochs is reached
Example:
# default used by the Trainer
trainer = Trainer(max_epochs=1000)
max_nb_epochs:
Warning
Deprecated since version 0.5.0.
Use max_epochs instead. Will remove 0.8.0.
min_epochs¶
Force training for at least these many epochs
Example:
# default used by the Trainer
trainer = Trainer(min_epochs=1)
min_nb_epochs:
Warning
deprecated:: 0.5.0 Use min_epochs instead. Will remove 0.8.0.
max_steps¶
Stop training after this number of steps Training will stop if max_steps or max_epochs have reached (earliest).
# Default (disabled)
trainer = Trainer(max_steps=None)
Example:
# Stop after 100 steps
trainer = Trainer(max_steps=100)
min_steps¶
Force training for at least these number of steps. Trainer will train model for at least min_steps or min_epochs (latest).
# Default (disabled)
trainer = Trainer(min_steps=None)
Example:
# Run at least for 100 steps (disable min_epochs)
trainer = Trainer(min_steps=100, min_epochs=0)
num_nodes¶
Number of GPU nodes for distributed training.
Example:
# default used by the Trainer
trainer = Trainer(num_nodes=1)
# to train on 8 nodes
trainer = Trainer(num_nodes=8)
nb_gpu_nodes:
Warning
Deprecated since version 0.5.0.
Use num_nodes instead. Will remove 0.8.0.
num_sanity_val_steps¶
Sanity check runs n batches of val before starting the training routine. This catches any bugs in your validation without having to wait for the first validation check. The Trainer uses 5 steps by default. Turn it off or modify it here.
Example:
# default used by the Trainer
trainer = Trainer(num_sanity_val_steps=5)
# turn it off
trainer = Trainer(num_sanity_val_steps=0)
nb_sanity_val_steps:
Warning
Deprecated since version 0.5.0.
Use num_sanity_val_steps instead. Will remove 0.8.0.
num_tpu_cores¶
How many TPU cores to train on (1 or 8).
A single TPU v2 or v3 has 8 cores. A TPU pod has up to 2048 cores. A slice of a POD means you get as many cores as you request.
Your effective batch size is batch_size * total tpu cores.
Note
No need to add a DistributedDataSampler, Lightning automatically does it for you.
This parameter can be either 1 or 8.
Example:
# your_trainer_file.py
# default used by the Trainer (ie: train on CPU)
trainer = Trainer(num_tpu_cores=None)
# int: train on a single core
trainer = Trainer(num_tpu_cores=1)
# int: train on all cores few cores
trainer = Trainer(num_tpu_cores=8)
# for 8+ cores must submit via xla script with
# a max of 8 cores specified. The XLA script
# will duplicate script onto each TPU in the POD
trainer = Trainer(num_tpu_cores=8)
# -1: train on all available TPUs
trainer = Trainer(num_tpu_cores=-1)
To train on more than 8 cores (ie: a POD), submit this script using the xla_dist script.
Example:
python -m torch_xla.distributed.xla_dist
--tpu=$TPU_POD_NAME
--conda-env=torch-xla-nightly
--env=XLA_USE_BF16=1
-- python your_trainer_file.py
overfit_pct¶
Uses this much data of all datasets (training, validation, test). Useful for quickly debugging or trying to overfit on purpose.
Example:
# default used by the Trainer
trainer = Trainer(overfit_pct=0.0)
# use only 1% of the train, test, val datasets
trainer = Trainer(overfit_pct=0.01)
# equivalent:
trainer = Trainer(
train_percent_check=0.01,
val_percent_check=0.01,
test_percent_check=0.01
)
precision¶
Full precision (32), half precision (16). Can be used on CPU, GPU or TPUs.
If used on TPU will use torch.bfloat16 but tensor printing will still show torch.float32.
Example:
# default used by the Trainer
trainer = Trainer(precision=32)
# 16-bit precision
trainer = Trainer(precision=16)
# one day
trainer = Trainer(precision=8|4|2)
print_nan_grads¶
Warning
Deprecated since version 0.7.2..
Has no effect. When detected, NaN grads will be printed automatically. Will remove 0.9.0.
process_position¶
Orders the tqdm bar. Useful when running multiple trainers on the same node.
Example:
# default used by the Trainer
trainer = Trainer(process_position=0)
profiler¶
To profile individual steps during training and assist in identifying bottlenecks.
See the profiler documentation. for more details.
Example:
from pytorch_lightning.profiler import Profiler, AdvancedProfiler
# default used by the Trainer
trainer = Trainer(profiler=None)
# to profile standard training events
trainer = Trainer(profiler=True)
# equivalent to profiler=True
profiler = Profiler()
trainer = Trainer(profiler=profiler)
# advanced profiler for function-level stats
profiler = AdvancedProfiler()
trainer = Trainer(profiler=profiler)
progress_bar_refresh_rate¶
How often to refresh progress bar (in steps). In notebooks, faster refresh rates (lower number) is known to crash them because of their screen refresh rates, so raise it to 50 or more.
Example:
# default used by the Trainer
trainer = Trainer(progress_bar_refresh_rate=1)
# disable progress bar
trainer = Trainer(progress_bar_refresh_rate=0)
reload_dataloaders_every_epoch¶
Set to True to reload dataloaders every epoch.
# if False (default)
train_loader = model.train_dataloader()
for epoch in epochs:
for batch in train_loader:
...
# if True
for epoch in epochs:
train_loader = model.train_dataloader()
for batch in train_loader:
resume_from_checkpoint¶
To resume training from a specific checkpoint pass in the path here.
Example:
# default used by the Trainer
trainer = Trainer(resume_from_checkpoint=None)
# resume from a specific checkpoint
trainer = Trainer(resume_from_checkpoint='some/path/to/my_checkpoint.ckpt')
row_log_interval¶
How often to add logging rows (does not write to disk)
Example:
# default used by the Trainer
trainer = Trainer(row_log_interval=10)
add_row_log_interval:
Warning
Deprecated since version 0.5.0.
Use row_log_interval instead. Will remove 0.8.0.
use_amp:
Warning
Deprecated since version 0.7.0.
Use precision instead. Will remove 0.9.0.
show_progress_bar¶
Warning
Deprecated since version 0.7.2.
Set progress_bar_refresh_rate to 0 instead. Will remove 0.9.0.
test_percent_check¶
How much of test dataset to check.
Example:
# default used by the Trainer
trainer = Trainer(test_percent_check=1.0)
# run through only 25% of the test set each epoch
trainer = Trainer(test_percent_check=0.25)
val_check_interval¶
How often within one training epoch to check the validation set. Can specify as float or int.
use (float) to check within a training epoch
use (int) to check every n steps (batches)
# default used by the Trainer
trainer = Trainer(val_check_interval=1.0)
Example:
# check validation set 4 times during a training epoch
trainer = Trainer(val_check_interval=0.25)
# check validation set every 1000 training batches
# use this when using iterableDataset and your dataset has no length
# (ie: production cases with streaming data)
trainer = Trainer(val_check_interval=1000)
track_grad_norm¶
no tracking (-1)
Otherwise tracks that norm (2 for 2-norm)
# default used by the Trainer
trainer = Trainer(track_grad_norm=-1)
Example:
# track the 2-norm
trainer = Trainer(track_grad_norm=2)
train_percent_check¶
How much of training dataset to check. Useful when debugging or testing something that happens at the end of an epoch.
Example:
# default used by the Trainer
trainer = Trainer(train_percent_check=1.0)
# run through only 25% of the training set each epoch
trainer = Trainer(train_percent_check=0.25)
truncated_bptt_steps¶
Truncated back prop breaks performs backprop every k steps of a much longer sequence.
If this is enabled, your batches will automatically get truncated and the trainer will apply Truncated Backprop to it.
Example:
# default used by the Trainer (ie: disabled)
trainer = Trainer(truncated_bptt_steps=None)
# backprop every 5 steps in a batch
trainer = Trainer(truncated_bptt_steps=5)
Note
Make sure your batches have a sequence dimension.
Lightning takes care to split your batch along the time-dimension.
# we use the second as the time dimension
# (batch, time, ...)
sub_batch = batch[0, 0:t, ...]
Using this feature requires updating your LightningModule’s
pytorch_lightning.core.LightningModule.training_step()
to include a hiddens arg
with the hidden
# Truncated back-propagation through time
def training_step(self, batch, batch_idx, hiddens):
# hiddens are the hiddens from the previous truncated backprop step
out, hiddens = self.lstm(data, hiddens)
return {
"loss": ...,
"hiddens": hiddens # remember to detach() this
}
To modify how the batch is split,
override pytorch_lightning.core.LightningModule.tbptt_split_batch()
:
class LitMNIST(pl.LightningModule):
def tbptt_split_batch(self, batch, split_size):
# do your own splitting on the batch
return splits
val_percent_check¶
How much of validation dataset to check. Useful when debugging or testing something that happens at the end of an epoch.
Example:
# default used by the Trainer
trainer = Trainer(val_percent_check=1.0)
# run through only 25% of the validation set each epoch
trainer = Trainer(val_percent_check=0.25)
weights_save_path¶
Directory of where to save weights if specified.
# default used by the Trainer
trainer = Trainer(weights_save_path=os.getcwd())
Example:
# save to your custom path
trainer = Trainer(weights_save_path='my/path')
# if checkpoint callback used, then overrides the weights path
# **NOTE: this saves weights to some/path NOT my/path
checkpoint_callback = ModelCheckpoint(filepath='some/path')
trainer = Trainer(
checkpoint_callback=checkpoint_callback,
weights_save_path='my/path'
)
weights_summary¶
Prints a summary of the weights when training begins. Options: ‘full’, ‘top’, None.
Example:
# default used by the Trainer (ie: print all weights)
trainer = Trainer(weights_summary='full')
# print only the top level modules
trainer = Trainer(weights_summary='top')
# don't print a summary
trainer = Trainer(weights_summary=None)
Trainer class¶
-
class
pytorch_lightning.trainer.
Trainer
(logger=True, checkpoint_callback=True, early_stop_callback=False, callbacks=[], default_save_path=None, gradient_clip_val=0, process_position=0, num_nodes=1, gpus=None, num_tpu_cores=None, log_gpu_memory=None, progress_bar_refresh_rate=1, overfit_pct=0.0, track_grad_norm=-1, check_val_every_n_epoch=1, fast_dev_run=False, accumulate_grad_batches=1, max_epochs=1000, min_epochs=1, max_steps=None, min_steps=None, train_percent_check=1.0, val_percent_check=1.0, test_percent_check=1.0, val_check_interval=1.0, log_save_interval=100, row_log_interval=10, add_row_log_interval=None, distributed_backend=None, precision=32, print_nan_grads=False, weights_summary='full', weights_save_path=None, amp_level='O1', num_sanity_val_steps=5, truncated_bptt_steps=None, resume_from_checkpoint=None, profiler=None, benchmark=False, reload_dataloaders_every_epoch=False, gradient_clip=None, nb_gpu_nodes=None, max_nb_epochs=None, min_nb_epochs=None, use_amp=None, show_progress_bar=None, nb_sanity_val_steps=None, **kwargs)[source] Bases:
pytorch_lightning.trainer.training_io.TrainerIOMixin
,pytorch_lightning.trainer.optimizers.TrainerOptimizersMixin
,pytorch_lightning.trainer.auto_mix_precision.TrainerAMPMixin
,pytorch_lightning.trainer.distrib_parts.TrainerDPMixin
,pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin
,pytorch_lightning.trainer.logging.TrainerLoggingMixin
,pytorch_lightning.trainer.model_hooks.TrainerModelHooksMixin
,pytorch_lightning.trainer.training_tricks.TrainerTrainingTricksMixin
,pytorch_lightning.trainer.data_loading.TrainerDataLoadingMixin
,pytorch_lightning.trainer.evaluation_loop.TrainerEvaluationLoopMixin
,pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin
,pytorch_lightning.trainer.callback_config.TrainerCallbackConfigMixin
,pytorch_lightning.trainer.callback_hook.TrainerCallbackHookMixin
,pytorch_lightning.trainer.deprecated_api.TrainerDeprecatedAPITillVer0_8
,pytorch_lightning.trainer.deprecated_api.TrainerDeprecatedAPITillVer0_9
Customize every aspect of training via flags
- Parameters
logger (
Union
[LightningLoggerBase
,Iterable
[LightningLoggerBase
],bool
]) – Logger (or iterable collection of loggers) for experiment tracking.checkpoint_callback (
Union
[ModelCheckpoint
,bool
]) – Callback for checkpointing.early_stop_callback (
pytorch_lightning.callbacks.EarlyStopping
) –default_save_path (
Optional
[str
]) – Default path for logs and weights when no logger/ckpt_callback passedgradient_clip_val (
float
) – 0 means don’t clip.gradient_clip –
Warning
Deprecated since version 0.7.0.
Use gradient_clip_val instead. Will remove 0.9.0.
process_position (
int
) – orders the tqdm bar when running multiple models on same machine.num_nodes (
int
) – number of GPU nodes for distributed training.nb_gpu_nodes –
Warning
Deprecated since version 0.7.0.
Use num_nodes instead. Will remove 0.9.0.
gpus (
Union
[List
[int
],str
,int
,None
]) – Which GPUs to train on.num_tpu_cores (
Optional
[int
]) – How many TPU cores to train on (1 or 8).log_gpu_memory (
Optional
[str
]) – None, ‘min_max’, ‘all’. Might slow performanceshow_progress_bar –
Warning
Deprecated since version 0.7.2.
Set progress_bar_refresh_rate to postive integer to enable. Will remove 0.9.0.
progress_bar_refresh_rate (
int
) – How often to refresh progress bar (in steps). Value0
disables progress bar.overfit_pct (
float
) – How much of training-, validation-, and test dataset to check.track_grad_norm (
int
) – -1 no tracking. Otherwise tracks that normcheck_val_every_n_epoch (
int
) – Check val every n train epochs.fast_dev_run (
bool
) – runs 1 batch of train, test and val to find any bugs (ie: a sort of unit test).accumulate_grad_batches (
Union
[int
,Dict
[int
,int
],List
[list
]]) – Accumulates grads every k batches or as set up in the dict.max_epochs (
int
) – Stop training once this number of epochs is reached.max_nb_epochs –
Warning
Deprecated since version 0.7.0.
Use max_epochs instead. Will remove 0.9.0.
min_epochs (
int
) – Force training for at least these many epochsmin_nb_epochs –
Warning
Deprecated since version 0.7.0.
Use min_epochs instead. Will remove 0.9.0.
max_steps (
Optional
[int
]) – Stop training after this number of steps. Disabled by default (None).min_steps (
Optional
[int
]) – Force training for at least these number of steps. Disabled by default (None).train_percent_check (
float
) – How much of training dataset to check.val_percent_check (
float
) – How much of validation dataset to check.test_percent_check (
float
) – How much of test dataset to check.val_check_interval (
float
) – How often within one training epoch to check the validation setlog_save_interval (
int
) – Writes logs to disk this oftenrow_log_interval (
int
) – How often to add logging rows (does not write to disk)add_row_log_interval –
Warning
Deprecated since version 0.7.0.
Use row_log_interval instead. Will remove 0.9.0.
distributed_backend (
Optional
[str
]) – The distributed backend to use.use_amp –
Warning
Deprecated since version 0.7.0.
Use precision instead. Will remove 0.9.0.
precision (
int
) – Full precision (32), half precision (16).print_nan_grads (
bool
) –Warning
Deprecated since version 0.7.2.
Has no effect. When detected, NaN grads will be printed automatically. Will remove 0.9.0.
weights_summary (
Optional
[str
]) – Prints a summary of the weights when training begins.weights_save_path (
Optional
[str
]) – Where to save weights if specified.amp_level (
str
) – The optimization level to use (O1, O2, etc…).num_sanity_val_steps (
int
) – Sanity check runs n batches of val before starting the training routine.nb_sanity_val_steps –
Warning
Deprecated since version 0.7.0.
Use num_sanity_val_steps instead. Will remove 0.8.0.
truncated_bptt_steps (
Optional
[int
]) – Truncated back prop breaks performs backprop every k steps ofresume_from_checkpoint (
Optional
[str
]) – To resume training from a specific checkpoint pass in the path here.profiler (
Optional
[BaseProfiler
]) – To profile individual steps during training and assist inreload_dataloaders_every_epoch (
bool
) – Set to True to reload dataloaders every epochbenchmark (
bool
) – If true enables cudnn.benchmark.
-
classmethod
add_argparse_args
(parent_parser)[source] Extends existing argparse by default Trainer attributes.
- Parameters
parent_parser (
ArgumentParser
) – The custom cli arguments parser, which will be extended by the Trainer default arguments.
Only arguments of the allowed types (str, float, int, bool) will extend the parent_parser.
- Return type
-
check_model_configuration
(model)[source] Checks that the model is configured correctly before training is started.
- Parameters
model (
LightningModule
) – The model to test.
-
fit
(model, train_dataloader=None, val_dataloaders=None, test_dataloaders=None)[source] Runs the full optimization routine.
- Parameters
model (
LightningModule
) – Model to fit.train_dataloader (
Optional
[DataLoader
]) – A Pytorch DataLoader with training samples. If the model has a predefined train_dataloader method this will be skipped.val_dataloaders (
Optional
[DataLoader
]) – Either a single Pytorch Dataloader or a list of them, specifying validation samples. If the model has a predefined val_dataloaders method this will be skippedtest_dataloaders (
Optional
[DataLoader
]) – Either a single Pytorch Dataloader or a list of them, specifying validation samples. If the model has a predefined test_dataloaders method this will be skipped
Example:
# Option 1, # Define the train_dataloader(), test_dataloader() and val_dataloader() fxs # in the lightningModule # RECOMMENDED FOR MOST RESEARCH AND APPLICATIONS TO MAINTAIN READABILITY trainer = Trainer() model = LightningModule() trainer.fit(model) # Option 2 # in production cases we might want to pass different datasets to the same model # Recommended for PRODUCTION SYSTEMS train, val, test = DataLoader(...), DataLoader(...), DataLoader(...) trainer = Trainer() model = LightningModule() trainer.fit(model, train_dataloader=train, val_dataloader=val, test_dataloader=test) # Option 1 & 2 can be mixed, for example the training set can be # defined as part of the model, and validation/test can then be # feed to .fit()
-
classmethod
get_deprecated_arg_names
()[source] Returns a list with deprecated Trainer arguments.
- Return type
-
classmethod
get_init_arguments_and_types
()[source] Scans the Trainer signature and returns argument names, types and default values.
- Returns
(argument name, set with argument types, argument default value).
- Return type
List with tuples of 3 values
Examples
>>> args = Trainer.get_init_arguments_and_types() >>> import pprint >>> pprint.pprint(sorted(args)) [('accumulate_grad_batches', (<class 'int'>, typing.Dict[int, int], typing.List[list]), 1), ... ('callbacks', (<class 'pytorch_lightning.callbacks.base.Callback'>,), []), ('check_val_every_n_epoch', (<class 'int'>,), 1), ... ('max_epochs', (<class 'int'>,), 1000), ... ('precision', (<class 'int'>,), 32), ('print_nan_grads', (<class 'bool'>,), False), ('process_position', (<class 'int'>,), 0), ('profiler', (<class 'pytorch_lightning.profiler.profilers.BaseProfiler'>, <class 'NoneType'>), None), ...
-
test
(model=None)[source] Separates from fit to make sure you never run on your test set until you want to.
- Parameters
model (
Optional
[LightningModule
]) – The model to test.
Example:
# Option 1 # run test after fitting trainer = Trainer() model = LightningModule() trainer.fit() trainer.test() # Option 2 # run test from a loaded model model = LightningModule.load_from_checkpoint('path/to/checkpoint.ckpt') trainer = Trainer() trainer.test(model)
16-bit training¶
Lightning offers 16-bit training for CPUs, GPUs and TPUs.
GPU 16-bit¶
Lightning uses NVIDIA apex to handle 16-bit precision training.
To use 16-bit precision, do two things:
Install Apex
Set the “precision” trainer flag.
Install apex¶
$ git clone https://github.com/NVIDIA/apex
$ cd apex
# ------------------------
# OPTIONAL: on your cluster you might need to load cuda 10 or 9
# depending on how you installed PyTorch
# see available modules
module avail
# load correct cuda before install
module load cuda-10.0
# ------------------------
# make sure you've loaded a cuda version > 4.0 and < 7.0
module load gcc-6.1.0
$ pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
Enable 16-bit¶
# turn on 16-bit
trainer = Trainer(amp_level='O1', precision=16)
If you need to configure the apex init for your particular use case or want to use a different way of doing
16-bit training, override pytorch_lightning.core.LightningModule.configure_apex()
.
TPU 16-bit¶
16-bit on TPus is much simpler. To use 16-bit with TPUs set precision to 16 when using the tpu flag
# DEFAULT
trainer = Trainer(num_tpu_cores=8, precision=32)
# turn on 16-bit
trainer = Trainer(num_tpu_cores=8, precision=16)
Computing cluster (SLURM)¶
Lightning automates job the details behind training on a SLURM powered cluster.
Multi-node training¶
To train a model using multiple-nodes do the following:
Design your LightningModule.
Add torch.DistributedSampler which enables access to a subset of your full dataset to each GPU.
Enable ddp in the trainer
# train on 32 GPUs across 4 nodes
trainer = Trainer(gpus=8, num_nodes=4, distributed_backend='ddp')
It’s a good idea to structure your train.py file like this:
# train.py
def main(hparams):
model = LightningTemplateModel(hparams)
trainer = pl.Trainer(
gpus=8,
num_nodes=4,
distributed_backend='ddp'
)
trainer.fit(model)
if __name__ == '__main__':
root_dir = os.path.dirname(os.path.realpath(__file__))
parent_parser = ArgumentParser(add_help=False)
hyperparams = parser.parse_args()
# TRAIN
main(hyperparams)
Submit the appropriate SLURM job
#!/bin/bash -l
# SLURM SUBMIT SCRIPT
#SBATCH --nodes=4
#SBATCH --gres=gpu:8
#SBATCH --ntasks-per-node=8
#SBATCH --mem=0
#SBATCH --time=0-02:00:00
# activate conda env
source activate $1
# -------------------------
# debugging flags (optional)
export NCCL_DEBUG=INFO
export PYTHONFAULTHANDLER=1
# on your cluster you might need these:
# set the network interface
# export NCCL_SOCKET_IFNAME=^docker0,lo
# might need the latest cuda
# module load NCCL/2.4.7-1-cuda.10.0
# -------------------------
# run script from above
srun python3 train.py
Walltime auto-resubmit¶
When you use Lightning in a SLURM cluster, lightning automatically detects when it is about to run into the walltime, and it does the following:
Saves a temporary checkpoint.
Requeues the job.
When the job starts, it loads the temporary checkpoint.
To get this behavior make sure to add the correct signal to your SLURM script
# 90 seconds before training ends
#SBATCH --signal=SIGUSR1@90
Child Modules¶
Research projects tend to test different approaches to the same dataset. This is very easy to do in Lightning with inheritance.
For example, imagine we now want to train an Autoencoder to use as a feature extractor for MNIST images. Recall that LitMNIST already defines all the dataloading etc… The only things that change in the Autoencoder model are the init, forward, training, validation and test step.
class Encoder(torch.nn.Module):
...
class AutoEncoder(LitMNIST):
def __init__(self):
self.encoder = Encoder()
self.decoder = Decoder()
def forward(self, x):
generated = self.decoder(x)
def training_step(self, batch, batch_idx):
x, _ = batch
representation = self.encoder(x)
x_hat = self(representation)
loss = MSE(x, x_hat)
return loss
def validation_step(self, batch, batch_idx):
return self._shared_eval(batch, batch_idx, 'val'):
def test_step(self, batch, batch_idx):
return self._shared_eval(batch, batch_idx, 'test'):
def _shared_eval(self, batch, batch_idx, prefix):
x, y = batch
representation = self.encoder(x)
x_hat = self(representation)
loss = F.nll_loss(logits, y)
return {f'{prefix}_loss': loss}
and we can train this using the same trainer
autoencoder = AutoEncoder()
trainer = Trainer()
trainer.fit(autoencoder)
And remember that the forward method is to define the practical use of a LightningModule. In this case, we want to use the AutoEncoder to extract image representations
some_images = torch.Tensor(32, 1, 28, 28)
representations = autoencoder(some_images)
Debugging¶
The following are flags that make debugging much easier.
Fast dev run¶
This flag runs a “unit test” by running 1 training batch and 1 validation batch. The point is to detect any bugs in the training/validation loop without having to wait for a full epoch to crash.
(See: fast_dev_run
argument of Trainer
)
trainer = pl.Trainer(fast_dev_run=True)
Inspect gradient norms¶
Logs (to a logger), the norm of each weight matrix.
(See: track_grad_norm
argument of Trainer
)
# the 2-norm
trainer = pl.Trainer(track_grad_norm=2)
Log GPU usage¶
Logs (to a logger) the GPU usage for each GPU on the master machine.
(See: log_gpu_memory
argument of Trainer
)
trainer = pl.Trainer(log_gpu_memory=True)
Make model overfit on subset of data¶
A good debugging technique is to take a tiny portion of your data (say 2 samples per class), and try to get your model to overfit. If it can’t, it’s a sign it won’t work with large datasets.
(See: overfit_pct
argument of Trainer
)
trainer = pl.Trainer(overfit_pct=0.01)
Print the parameter count by layer¶
Whenever the .fit() function gets called, the Trainer will print the weights summary for the lightningModule. To disable this behavior, turn off this flag:
(See: weights_summary
argument of Trainer
)
trainer = pl.Trainer(weights_summary=None)
Set the number of validation sanity steps¶
Lightning runs a few steps of validation in the beginning of training. This avoids crashing in the validation loop sometime deep into a lengthy training loop.
(See: num_sanity_val_steps
argument of Trainer
)
# DEFAULT
trainer = Trainer(num_sanity_val_steps=5)
Experiment Logging¶
Comet.ml¶
Comet.ml is a third-party logger. To use CometLogger as your logger do the following.
See also
CometLogger
docs.
from pytorch_lightning.loggers import CometLogger
comet_logger = CometLogger(
api_key=os.environ["COMET_KEY"],
workspace=os.environ["COMET_WORKSPACE"], # Optional
project_name="default_project", # Optional
rest_api_key=os.environ["COMET_REST_KEY"], # Optional
experiment_name="default" # Optional
)
trainer = Trainer(logger=comet_logger)
The CometLogger is available anywhere except __init__
in your LightningModule
class MyModule(pl.LightningModule):
def any_lightning_module_function_or_hook(self, ...):
some_img = fake_image()
self.logger.experiment.add_image('generated_images', some_img, 0)
Neptune.ai¶
Neptune.ai is a third-party logger. To use Neptune.ai as your logger do the following.
See also
NeptuneLogger
docs.
from pytorch_lightning.loggers import NeptuneLogger
neptune_logger = NeptuneLogger(
project_name="USER_NAME/PROJECT_NAME",
experiment_name="default", # Optional,
params={"max_epochs": 10}, # Optional,
tags=["pytorch-lightning","mlp"] # Optional,
)
trainer = Trainer(logger=neptune_logger)
The Neptune.ai is available anywhere except __init__
in your LightningModule
class MyModule(pl.LightningModule):
def any_lightning_module_function_or_hook(self, ...):
some_img = fake_image()
self.logger.experiment.add_image('generated_images', some_img, 0)
allegro.ai TRAINS¶
allegro.ai is a third-party logger. To use TRAINS as your logger do the following.
See also
TrainsLogger
docs.
from pytorch_lightning.loggers import TrainsLogger
trains_logger = TrainsLogger(
project_name="examples",
task_name="pytorch lightning test"
)
trainer = Trainer(logger=trains_logger)
The TrainsLogger is available anywhere in your LightningModule
class MyModule(pl.LightningModule):
def __init__(self, ...):
some_img = fake_image()
self.logger.log_image('debug', 'generated_image_0', some_img, 0)
Tensorboard¶
To use Tensorboard as your logger do the following.
See also
TensorBoardLogger
docs.
from pytorch_lightning.loggers import TensorBoardLogger
logger = TensorBoardLogger("tb_logs", name="my_model")
trainer = Trainer(logger=logger)
The TensorBoardLogger is available anywhere except __init__
in your LightningModule
class MyModule(pl.LightningModule):
def any_lightning_module_function_or_hook(self, ...):
some_img = fake_image()
self.logger.experiment.add_image('generated_images', some_img, 0)
Test Tube¶
Test Tube is a tensorboard logger but with nicer file structure. To use TestTube as your logger do the following.
See also
TestTubeLogger
docs.
from pytorch_lightning.loggers import TestTubeLogger
logger = TestTubeLogger("tb_logs", name="my_model")
trainer = Trainer(logger=logger)
The TestTubeLogger is available anywhere except __init__
in your LightningModule
class MyModule(pl.LightningModule):
def any_lightning_module_function_or_hook(self, ...):
some_img = fake_image()
self.logger.experiment.add_image('generated_images', some_img, 0)
Wandb¶
Wandb is a third-party logger. To use Wandb as your logger do the following.
See also
WandbLogger
docs.
from pytorch_lightning.loggers import WandbLogger
wandb_logger = WandbLogger()
trainer = Trainer(logger=wandb_logger)
The Wandb logger is available anywhere except __init__
in your LightningModule
class MyModule(pl.LightningModule):
def any_lightning_module_function_or_hook(self, ...):
some_img = fake_image()
self.logger.experiment.add_image('generated_images', some_img, 0)
Multiple Loggers¶
PyTorch-Lightning supports use of multiple loggers, just pass a list to the Trainer.
from pytorch_lightning.loggers import TensorBoardLogger, TestTubeLogger
logger1 = TensorBoardLogger("tb_logs", name="my_model")
logger2 = TestTubeLogger("tt_logs", name="my_model")
trainer = Trainer(logger=[logger1, logger2])
The loggers are available as a list anywhere except __init__
in your LightningModule
class MyModule(pl.LightningModule):
def any_lightning_module_function_or_hook(self, ...):
some_img = fake_image()
# Option 1
self.logger.experiment[0].add_image('generated_images', some_img, 0)
# Option 2
self.logger[0].experiment.add_image('generated_images', some_img, 0)
Experiment Reporting¶
Lightning supports many different experiment loggers. These loggers allow you to monitor losses, images, text, etc… as training progresses. They usually provide a GUI to visualize and can sometimes even snapshot hyperparameters used in each experiment.
Control logging frequency¶
It may slow training down to log every single batch. Trainer has an option to log every k batches instead.
# k = 10
Trainer(row_log_interval=10)
Control log writing frequency¶
Writing to a logger can be expensive. In Lightning you can set the interval at which you want to log using this trainer flag.
See also
k = 100
Trainer(log_save_interval=k)
Log metrics¶
To plot metrics into whatever logger you passed in (tensorboard, comet, neptune, TRAINS, etc…)
training_epoch_end, validation_epoch_end, test_epoch_end will all log anything in the “log” key of the return dict.
def training_epoch_end(self, outputs):
loss = some_loss()
...
logs = {'train_loss': loss}
results = {'log': logs}
return results
def validation_epoch_end(self, outputs):
loss = some_loss()
...
logs = {'val_loss': loss}
results = {'log': logs}
return results
def test_epoch_end(self, outputs):
loss = some_loss()
...
logs = {'test_loss': loss}
results = {'log': logs}
return results
2. In addition, you can also use any arbitrary functionality from a particular logger from within your LightningModule. For instance, here we log images using tensorboard.
def training_step(self, batch, batch_idx):
self.generated_imgs = self.decoder.generate()
sample_imgs = self.generated_imgs[:6]
grid = torchvision.utils.make_grid(sample_imgs)
self.logger.experiment.add_image('generated_images', grid, 0)
...
return results
Modify progress bar¶
Each return dict from the training_end, validation_end, testing_end and training_step also has a key called “progress_bar”.
Here we show the validation loss in the progress bar
def validation_epoch_end(self, outputs):
loss = some_loss()
...
logs = {'val_loss': loss}
results = {'progress_bar': logs}
return results
Snapshot hyperparameters¶
When training a model, it’s useful to know what hyperparams went into that model. When Lightning creates a checkpoint, it stores a key “hparams” with the hyperparams.
lightning_checkpoint = torch.load(filepath, map_location=lambda storage, loc: storage)
hyperparams = lightning_checkpoint['hparams']
Some loggers also allow logging the hyperparams used in the experiment. For instance, when using the TestTubeLogger or the TensorBoardLogger, all hyperparams will show in the hparams tab.
Snapshot code¶
Loggers also allow you to snapshot a copy of the code used in this experiment. For example, TestTubeLogger does this with a flag:
from pytorch_lightning.loggers import TestTubeLogger
logger = TestTubeLogger(create_git_tag=True)
Early stopping¶
Stopping an epoch early¶
You can stop an epoch early by overriding on_batch_start()
to return -1 when some condition is met.
If you do this repeatedly, for every epoch you had originally requested, then this will stop your entire run.
Default Epoch End Callback Behavior¶
By default early stopping will be enabled if ‘val_loss’
is found in validation_epoch_end()
’s
return dict. Otherwise training will proceed with early stopping disabled.
Enable Early Stopping using Callbacks on epoch end¶
There are two ways to enable early stopping using callbacks on epoch end.
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.callbacks import EarlyStopping
# A) Set early_stop_callback to True. Will look for 'val_loss'
# in validation_epoch_end() return dict. If it is not found an error is raised.
>>> trainer = Trainer(early_stop_callback=True)
# B) Or configure your own callback
>>> early_stop_callback = EarlyStopping(
... monitor='val_loss',
... min_delta=0.00,
... patience=3,
... verbose=False,
... mode='min'
... )
>>> trainer = Trainer(early_stop_callback=early_stop_callback)
In any case, the callback will fall back to the training metrics (returned in
training_step()
,
training_step_end()
)
looking for a key to monitor if validation is disabled or
validation_epoch_end()
is not defined.
See also
Disable Early Stopping with callbacks on epoch end¶
To disable early stopping pass False
to the
early_stop_callback
.
Note that None
will not disable early stopping but will lead to the
default behaviour.
See also
Fast Training¶
There are multiple options to speed up different parts of the training by choosing to train on a subset of data. This could be done for speed or debugging purposes.
Check validation every n epochs¶
If you have a small dataset you might want to check validation every n epochs
# DEFAULT
trainer = Trainer(check_val_every_n_epoch=1)
Force training for min or max epochs¶
It can be useful to force training for a minimum number of epochs or limit to a max number.
See also
# DEFAULT
trainer = Trainer(min_epochs=1, max_epochs=1000)
Set validation check frequency within 1 training epoch¶
For large datasets it’s often desirable to check validation multiple times within a training loop. Pass in a float to check that often within 1 training epoch. Pass in an int k to check every k training batches. Must use an int if using an IterableDataset.
# DEFAULT
trainer = Trainer(val_check_interval=0.95)
# check every .25 of an epoch
trainer = Trainer(val_check_interval=0.25)
# check every 100 train batches (ie: for IterableDatasets or fixed frequency)
trainer = Trainer(val_check_interval=100)
Use training data subset¶
If you don’t want to check 100% of the training set (for debugging or if it’s huge), set this flag.
# DEFAULT
trainer = Trainer(train_percent_check=1.0)
# check 10% only
trainer = Trainer(train_percent_check=0.1)
Note
train_percent_check
will be overwritten by overfit_pct
if overfit_pct
> 0.
Use test data subset¶
If you don’t want to check 100% of the test set (for debugging or if it’s huge), set this flag.
# DEFAULT
trainer = Trainer(test_percent_check=1.0)
# check 10% only
trainer = Trainer(test_percent_check=0.1)
Note
test_percent_check
will be overwritten by overfit_pct
if overfit_pct
> 0.
Use validation data subset¶
If you don’t want to check 100% of the validation set (for debugging or if it’s huge), set this flag.
# DEFAULT
trainer = Trainer(val_percent_check=1.0)
# check 10% only
trainer = Trainer(val_percent_check=0.1)
Note
val_percent_check
will be overwritten by overfit_pct
if overfit_pct
> 0 and ignored if
fast_dev_run=True
.
Hyperparameters¶
Lightning has utilities to interact seamlessly with the command line ArgumentParser and plays well with the hyperparameter optimization framework of your choice.
LightiningModule hparams¶
Normally, we don’t hard-code the values to a model. We usually use the command line to modify the network. The Trainer can add all the available options to an ArgumentParser.
from argparse import ArgumentParser
parser = ArgumentParser()
# parametrize the network
parser.add_argument('--layer_1_dim', type=int, default=128)
parser.add_argument('--layer_2_dim', type=int, default=256)
parser.add_argument('--batch_size', type=int, default=64)
# add all the available options to the trainer
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
Now we can parametrize the LightningModule.
class LitMNIST(pl.LightningModule):
def __init__(self, hparams):
super().__init__()
self.hparams = hparams
self.layer_1 = torch.nn.Linear(28 * 28, hparams.layer_1_dim)
self.layer_2 = torch.nn.Linear(hparams.layer_1_dim, hparams.layer_2_dim)
self.layer_3 = torch.nn.Linear(hparams.layer_2_dim, 10)
def forward(self, x):
...
def train_dataloader(self):
...
return DataLoader(mnist_train, batch_size=self.hparams.batch_size)
def configure_optimizers(self):
return Adam(self.parameters(), lr=self.hparams.learning_rate)
hparams = parse_args()
model = LitMNIST(hparams)
Note
Bonus! if (hparams) is in your module, Lightning will save it into the checkpoint and restore your model using those hparams exactly.
And we can also add all the flags available in the Trainer to the Argparser.
# add all the available Trainer options to the ArgParser
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
And now you can start your program with
# now you can use any trainer flag
$ python main.py --num_nodes 2 --gpus 8
Trainer args¶
It also gets annoying to map each argument into the Argparser. Luckily we have a default parser
parser = ArgumentParser()
# add all options available in the trainer such as (max_epochs, etc...)
parser = Trainer.add_argparse_args(parser)
We set up the main training entry point file like this:
def main(args):
model = LitMNIST(hparams=args)
trainer = Trainer(max_epochs=args.max_epochs)
trainer.fit(model)
if __name__ == '__main__':
parser = ArgumentParser()
# adds all the trainer options as default arguments (like max_epochs)
parser = Trainer.add_argparse_args(parser)
# parametrize the network
parser.add_argument('--layer_1_dim', type=int, default=128)
parser.add_argument('--layer_1_dim', type=int, default=256)
parser.add_argument('--batch_size', type=int, default=64)
args = parser.parse_args()
# train
main(args)
And now we can train like this:
$ python main.py --layer_1_dim 128 --layer_2_dim 256 --batch_size 64 --max_epochs 64
But it would also be nice to pass in any arbitrary argument to the trainer. We can do it by changing how we init the trainer.
def main(args):
model = LitMNIST(hparams=args)
# makes all trainer options available from the command line
trainer = Trainer.from_argparse_args(args)
and now we can do this:
$ python main.py --gpus 1 --min_epochs 12 --max_epochs 64 --arbitrary_trainer_arg some_value
Multiple Lightning Modules¶
We often have multiple Lightning Modules where each one has different arguments. Instead of polluting the main.py file, the LightningModule lets you define arguments for each one.
class LitMNIST(pl.LightningModule):
def __init__(self, hparams):
super().__init__()
self.layer_1 = torch.nn.Linear(28 * 28, hparams.layer_1_dim)
@staticmethod
def add_model_specific_args(parent_parser):
parser = ArgumentParser(parents=[parent_parser])
parser.add_argument('--layer_1_dim', type=int, default=128)
return parser
class GoodGAN(pl.LightningModule):
def __init__(self, hparams):
super().__init__()
self.encoder = Encoder(layers=hparams.encoder_layers)
@staticmethod
def add_model_specific_args(parent_parser):
parser = ArgumentParser(parents=[parent_parser])
parser.add_argument('--encoder_layers', type=int, default=12)
return parser
Now we can allow each model to inject the arguments it needs in the main.py
def main(args):
# pick model
if args.model_name == 'gan':
model = GoodGAN(hparams=args)
elif args.model_name == 'mnist':
model = LitMNIST(hparams=args)
model = LitMNIST(hparams=args)
trainer = Trainer(max_epochs=args.max_epochs)
trainer.fit(model)
if __name__ == '__main__':
parser = ArgumentParser()
parser = Trainer.add_argparse_args(parser)
# figure out which model to use
parser.add_argument('--model_name', type=str, default='gan', help='gan or mnist')
temp_args = parser.parse_known_args()
# let the model add what it wants
if temp_args.model_name == 'gan':
parser = GoodGAN.add_model_specific_args(parser)
elif temp_args.model_name == 'mnist':
parser = LitMNIST.add_model_specific_args(parser)
args = parser.parse_args()
# train
main(args)
and now we can train MNIST or the gan using the command line interface!
$ python main.py --model_name gan --encoder_layers 24
$ python main.py --model_name mnist --layer_1_dim 128
Multi-GPU training¶
Lightning supports multiple ways of doing distributed training.
Preparing your code¶
To train on CPU/GPU/TPU without changing your code, we need to build a few good habits :)
Delete .cuda() or .to() calls¶
Delete any calls to .cuda() or .to(device).
# before lightning
def forward(self, x):
x = x.cuda(0)
layer_1.cuda(0)
x_hat = layer_1(x)
# after lightning
def forward(self, x):
x_hat = layer_1(x)
Init using type_as¶
When you need to create a new tensor, use type_as. This will make your code scale to any arbitrary number of GPUs or TPUs with Lightning
# before lightning
def forward(self, x):
z = torch.Tensor(2, 3)
z = z.cuda(0)
# with lightning
def forward(self, x):
z = torch.Tensor(2, 3)
z = z.type_as(x)
Remove samplers¶
For multi-node or TPU training, in PyTorch we must use torch.nn.DistributedSampler. The sampler makes sure each GPU sees the appropriate part of your data.
# without lightning
def train_dataloader(self):
dataset = MNIST(...)
sampler = None
if self.on_tpu:
sampler = DistributedSampler(dataset)
return DataLoader(dataset, sampler=sampler)
With Lightning, you don’t need to do this because it takes care of adding the correct samplers when needed.
# with lightning
def train_dataloader(self):
dataset = MNIST(...)
return DataLoader(dataset)
Distributed modes¶
Lightning allows multiple ways of training
Data Parallel (distributed_backend=’dp’) (multiple-gpus, 1 machine)
DistributedDataParallel (distributed_backend=’ddp’) (multiple-gpus across many machines).
DistributedDataParallel2 (distributed_backend=’ddp2’) (dp in a machine, ddp across machines).
TPUs (num_tpu_cores=8|x) (tpu or TPU pod)
Data Parallel (dp)¶
DataParallel splits a batch across k GPUs. That is, if you have a batch of 32 and use dp with 2 gpus, each GPU will process 16 samples, after which the root node will aggregate the results.
# train on 1 GPU (using dp mode)
trainer = pl.Trainer(gpus=2, distributed_backend='dp')
Distributed Data Parallel¶
DistributedDataParallel works as follows.
Each GPU across every node gets its own process.
Each GPU gets visibility into a subset of the overall dataset. It will only ever see that subset.
Each process inits the model.
Note
Make sure to set the random seed so that each model inits with the same weights
Each process performs a full forward and backward pass in parallel.
The gradients are synced and averaged across all processes.
Each process updates its optimizer.
# train on 8 GPUs (same machine (ie: node))
trainer = pl.Trainer(gpus=8, distributed_backend='ddp')
# train on 32 GPUs (4 nodes)
trainer = pl.Trainer(gpus=8, distributed_backend='ddp', num_nodes=4)
Distributed Data Parallel 2¶
In certain cases, it’s advantageous to use all batches on the same machine instead of a subset. For instance you might want to compute a NCE loss where it pays to have more negative samples.
In this case, we can use ddp2 which behaves like dp in a machine and ddp across nodes. DDP2 does the following:
Copies a subset of the data to each node.
Inits a model on each node.
Runs a forward and backward pass using DP.
Syncs gradients across nodes.
Applies the optimizer updates.
# train on 32 GPUs (4 nodes)
trainer = pl.Trainer(gpus=8, distributed_backend='ddp2', num_nodes=4)
DP/DDP2 caveats¶
In DP and DDP2 each GPU within a machine sees a portion of a batch. DP and ddp2 roughly do the following:
def distributed_forward(batch, model):
batch = torch.Tensor(32, 8)
gpu_0_batch = batch[:8]
gpu_1_batch = batch[8:16]
gpu_2_batch = batch[16:24]
gpu_3_batch = batch[24:]
y_0 = model_copy_gpu_0(gpu_0_batch)
y_1 = model_copy_gpu_0(gpu_1_batch)
y_2 = model_copy_gpu_0(gpu_2_batch)
y_3 = model_copy_gpu_0(gpu_3_batch)
return [y_0, y_1, y_2, y_3]
So, when Lightning calls any of the training_step, validation_step, test_step you will only be operating on one of those pieces.
# the batch here is a portion of the FULL batch
def training_step(self, batch, batch_idx):
y_0 = batch
For most metrics, this doesn’t really matter. However, if you want to add something to your computational graph (like softmax) using all batch parts you can use the training_step_end step.
def training_step_end(self, outputs):
# only use when on dp
outputs = torch.cat(outputs, dim=1)
softmax = softmax(outputs, dim=1)
out = softmax.mean()
return out
In pseudocode, the full sequence is:
# get data
batch = next(dataloader)
# copy model and data to each gpu
batch_splits = split_batch(batch, num_gpus)
models = copy_model_to_gpus(model)
# in parallel, operate on each batch chunk
all_results = []
for gpu_num in gpus:
batch_split = batch_splits[gpu_num]
gpu_model = models[gpu_num]
out = gpu_model(batch_split)
all_results.append(out)
# use the full batch for something like softmax
full out = model.training_step_end(all_results)
to illustrate why this is needed, let’s look at dataparallel
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self(batch)
# on dp or ddp2 if we did softmax now it would be wrong
# because batch is actually a piece of the full batch
return y_hat
def training_step_end(self, batch_parts_outputs):
# batch_parts_outputs has outputs of each part of the batch
# do softmax here
outputs = torch.cat(outputs, dim=1)
softmax = softmax(outputs, dim=1)
out = softmax.mean()
return out
If training_step_end is defined it will be called regardless of tpu, dp, ddp, etc… which means it will behave the same no matter the backend.
Validation and test step also have the same option when using dp
def validation_step_end(self, batch_parts_outputs):
...
def test_step_end(self, batch_parts_outputs):
...
Implement Your Own Distributed (DDP) training¶
If you need your own way to init PyTorch DDP you can override pytorch_lightning.core.LightningModule.()
.
If you also need to use your own DDP implementation, override: pytorch_lightning.core.LightningModule.configure_ddp()
.
Multiple Datasets¶
Lightning supports multiple dataloaders in a few ways.
Create a dataloader that iterates both datasets under the hood.
In the validation and test loop you also have the option to return multiple dataloaders which lightning will call sequentially.
Multiple training dataloaders¶
For training, the best way to use multiple-dataloaders is to create a Dataloader class which wraps both your dataloaders. (This of course also works for testing and validation dataloaders).
class ConcatDataset(torch.utils.data.Dataset):
def __init__(self, *datasets):
self.datasets = datasets
def __getitem__(self, i):
return tuple(d[i] for d in self.datasets)
def __len__(self):
return min(len(d) for d in self.datasets)
class LitModel(LightningModule):
def train_dataloader(self):
concat_dataset = ConcatDataset(
datasets.ImageFolder(traindir_A),
datasets.ImageFolder(traindir_B)
)
loader = torch.utils.data.DataLoader(
concat_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers,
pin_memory=True
)
return loader
def val_dataloader(self):
# SAME
def test_dataloader(self):
# SAME
Test/Val dataloaders¶
For validation, test dataloaders lightning also gives you the additional option of passing in multiple dataloaders back from each call.
See the following for more details:
def val_dataloader(self):
loader_1 = Dataloader()
loader_2 = Dataloader()
return [loader_1, loader_2]
Saving and loading weights¶
Lightning can automate saving and loading checkpoints.
Checkpoint saving¶
A Lightning checkpoint has everything needed to restore a training session including:
16-bit scaling factor (apex)
Current epoch
Global step
Model state_dict
State of all optimizers
State of all learningRate schedulers
State of all callbacks
The hyperparameters used for that model if passed in as hparams (Argparse.Namespace)
Automatic saving¶
Checkpointing is enabled by default to the current working directory. To change the checkpoint path pass in:
Trainer(default_save_path='/your/path/to/save/checkpoints')
To modify the behavior of checkpointing pass in your own callback.
from pytorch_lightning.callbacks import ModelCheckpoint
# DEFAULTS used by the Trainer
checkpoint_callback = ModelCheckpoint(
filepath=os.getcwd(),
save_top_k=True,
verbose=True,
monitor='val_loss',
mode='min',
prefix=''
)
trainer = Trainer(checkpoint_callback=checkpoint_callback)
Or disable it by passing
trainer = Trainer(checkpoint_callback=False)
The Lightning checkpoint also saves the hparams (hyperparams) passed into the LightningModule init.
Note
hparams is a Namespace.
from argparse import Namespace
# usually these come from command line args
args = Namespace(learning_rate=0.001)
# define you module to have hparams as the first arg
# this means your checkpoint will have everything that went into making
# this model (in this case, learning rate)
class MyLightningModule(pl.LightningModule):
def __init__(self, hparams, ...):
self.hparams = hparams
Manual saving¶
You can manually save checkpoints and restore your model from the checkpointed state.
model = MyModel(hparams)
trainer.fit(model)
trainer.save_checkpoint("example.ckpt")
new_model = MyModel.load_from_checkpoint(checkpoint_path="example.ckpt")
Checkpoint Loading¶
To load a model along with its weights, biases and hyperparameters use following method.
model = MyLightingModule.load_from_checkpoint(PATH)
model.eval()
y_hat = model(x)
The above only works if you used hparams in your model definition
class MyModel(pl.LightningModule):
def __init__(self, hparams):
self.hparams = hparams
self.l1 = nn.Linear(hparams.in_dim, hparams.out_dim)
But if you don’t and instead pass individual parameters
class MyModel(pl.LightningModule):
def __init__(self, in_dim, out_dim):
self.l1 = nn.Linear(in_dim, out_dim)
you can restore the model like this
model = MyModel.load_from_checkpoint(PATH, in_dim=128, out_dim=10)
Restoring Training State¶
If you don’t just want to load weights, but instead restore the full training, do the following:
model = LitModel()
trainer = Trainer(resume_from_checkpoint='some/path/to/my_checkpoint.ckpt')
# automatically restores model, epoch, step, LR schedulers, apex, etc...
trainer.fit(model)
Optimization¶
Learning rate scheduling¶
Every optimizer you use can be paired with any LearningRateScheduler.
# no LR scheduler
def configure_optimizers(self):
return Adam(...)
# Adam + LR scheduler
def configure_optimizers(self):
return [Adam(...)], [ReduceLROnPlateau()]
# Two optimziers each with a scheduler
def configure_optimizers(self):
return [Adam(...), SGD(...)], [ReduceLROnPlateau(), LambdaLR()]
# Same as above with additional params passed to the first scheduler
def configure_optimizers(self):
optimizers = [Adam(...), SGD(...)]
schedulers = [
{
'scheduler': ReduceLROnPlateau(mode='max', patience=7),
'monitor': 'val_recall', # Default: val_loss
'interval': 'epoch',
'frequency': 1
},
LambdaLR()
]
return optimizers, schedulers
Use multiple optimizers (like GANs)¶
To use multiple optimizers return > 1 optimizers from pytorch_lightning.core.LightningModule.configure_optimizers()
# one optimizer
def configure_optimizers(self):
return Adam(...)
# two optimizers, no schedulers
def configure_optimizers(self):
return Adam(...), SGD(...)
# Two optimizers, one scheduler for adam only
def configure_optimizers(self):
return [Adam(...), SGD(...)], [ReduceLROnPlateau()]
Lightning will call each optimizer sequentially:
for epoch in epochs:
for batch in data:
for opt in optimizers:
train_step(opt)
opt.step()
for scheduler in scheduler:
scheduler.step()
Step optimizers at arbitrary intervals¶
To do more interesting things with your optimizers such as learning rate warm-up or odd scheduling,
override the optimizer_step()
function.
For example, here step optimizer A every 2 batches and optimizer B every 4 batches
def optimizer_step(self, current_epoch, batch_nb, optimizer, optimizer_i, second_order_closure=None):
optimizer.step()
optimizer.zero_grad()
# Alternating schedule for optimizer steps (ie: GANs)
def optimizer_step(self, current_epoch, batch_nb, optimizer, optimizer_i, second_order_closure=None):
# update generator opt every 2 steps
if optimizer_i == 0:
if batch_nb % 2 == 0 :
optimizer.step()
optimizer.zero_grad()
# update discriminator opt every 4 steps
if optimizer_i == 1:
if batch_nb % 4 == 0 :
optimizer.step()
optimizer.zero_grad()
# ...
# add as many optimizers as you want
Here we add a learning-rate warm up
# learning rate warm-up
def optimizer_step(self, current_epoch, batch_nb, optimizer, optimizer_i, second_order_closure=None):
# warm up lr
if self.trainer.global_step < 500:
lr_scale = min(1., float(self.trainer.global_step + 1) / 500.)
for pg in optimizer.param_groups:
pg['lr'] = lr_scale * self.hparams.learning_rate
# update params
optimizer.step()
optimizer.zero_grad()
Performance and Bottleneck Profiler¶
Profiling your training run can help you understand if there are any bottlenecks in your code.
Built-in checks¶
PyTorch Lightning supports profiling standard actions in the training loop out of the box, including:
on_epoch_start
on_epoch_end
on_batch_start
tbptt_split_batch
model_forward
model_backward
on_after_backward
optimizer_step
on_batch_end
training_step_end
on_training_end
Enable simple profiling¶
If you only wish to profile the standard actions, you can set profiler=True when constructing your Trainer object.
trainer = Trainer(..., profiler=True)
The profiler’s results will be printed at the completion of a training fit().
Profiler Report
Action | Mean duration (s) | Total time (s)
-----------------------------------------------------------------
on_epoch_start | 5.993e-06 | 5.993e-06
get_train_batch | 0.0087412 | 16.398
on_batch_start | 5.0865e-06 | 0.0095372
model_forward | 0.0017818 | 3.3408
model_backward | 0.0018283 | 3.4282
on_after_backward | 4.2862e-06 | 0.0080366
optimizer_step | 0.0011072 | 2.0759
on_batch_end | 4.5202e-06 | 0.0084753
on_epoch_end | 3.919e-06 | 3.919e-06
on_train_end | 5.449e-06 | 5.449e-06
Advanced Profiling¶
If you want more information on the functions called during each event, you can use the AdvancedProfiler. This option uses Python’s cProfiler to provide a report of time spent on each function called within your code.
profiler = AdvancedProfiler()
trainer = Trainer(..., profiler=profiler)
The profiler’s results will be printed at the completion of a training fit(). This profiler report can be quite long, so you can also specify an output_filename to save the report instead of logging it to the output in your terminal. The output below shows the profiling for the action get_train_batch.
Profiler Report
Profile stats for: get_train_batch
4869394 function calls (4863767 primitive calls) in 18.893 seconds
Ordered by: cumulative time
List reduced from 76 to 10 due to restriction <10>
ncalls tottime percall cumtime percall filename:lineno(function)
3752/1876 0.011 0.000 18.887 0.010 {built-in method builtins.next}
1876 0.008 0.000 18.877 0.010 dataloader.py:344(__next__)
1876 0.074 0.000 18.869 0.010 dataloader.py:383(_next_data)
1875 0.012 0.000 18.721 0.010 fetch.py:42(fetch)
1875 0.084 0.000 18.290 0.010 fetch.py:44(<listcomp>)
60000 1.759 0.000 18.206 0.000 mnist.py:80(__getitem__)
60000 0.267 0.000 13.022 0.000 transforms.py:68(__call__)
60000 0.182 0.000 7.020 0.000 transforms.py:93(__call__)
60000 1.651 0.000 6.839 0.000 functional.py:42(to_tensor)
60000 0.260 0.000 5.734 0.000 transforms.py:167(__call__)
You can also reference this profiler in your LightningModule to profile specific actions of interest. If you don’t want to always have the profiler turned on, you can optionally pass a PassThroughProfiler which will allow you to skip profiling without having to make any code changes. Each profiler has a method profile() which returns a context handler. Simply pass in the name of your action that you want to track and the profiler will record performance for code executed within this context.
from pytorch_lightning.profiler import Profiler, PassThroughProfiler
class MyModel(LightningModule):
def __init__(self, hparams, profiler=None):
self.hparams = hparams
self.profiler = profiler or PassThroughProfiler()
def custom_processing_step(self, data):
with profiler.profile('my_custom_action'):
# custom processing step
return data
profiler = Profiler()
model = MyModel(hparams, profiler)
trainer = Trainer(profiler=profiler, max_epochs=1)
-
class
pytorch_lightning.profiler.
BaseProfiler
(output_streams=None)[source] Bases:
abc.ABC
If you wish to write a custom profiler, you should inhereit from this class.
- Params:
stream_out: callable
-
describe
()[source] Logs a profile report after the conclusion of the training run.
- Return type
None
-
profile
(action_name)[source] Yields a context manager to encapsulate the scope of a profiled action.
Example:
with self.profile('load training data'): # load training data code
The profiler will start once you’ve entered the context and will automatically stop once you exit the code block.
- Return type
None
-
abstract
start
(action_name)[source] Defines how to start recording an action.
- Return type
None
-
abstract
stop
(action_name)[source] Defines how to record the duration once an action is complete.
- Return type
None
-
class
pytorch_lightning.profiler.
SimpleProfiler
(output_filename=None)[source] Bases:
pytorch_lightning.profiler.profilers.BaseProfiler
This profiler simply records the duration of actions (in seconds) and reports the mean duration of each action and the total time spent over the entire training run.
- Params:
- output_filename (str): optionally save profile results to file instead of printing
to std out when training is finished.
-
describe
()[source] Logs a profile report after the conclusion of the training run.
-
start
(action_name)[source] Defines how to start recording an action.
- Return type
None
-
stop
(action_name)[source] Defines how to record the duration once an action is complete.
- Return type
None
-
class
pytorch_lightning.profiler.
AdvancedProfiler
(output_filename=None, line_count_restriction=1.0)[source] Bases:
pytorch_lightning.profiler.profilers.BaseProfiler
This profiler uses Python’s cProfiler to record more detailed information about time spent in each function call recorded during a given action. The output is quite verbose and you should only use this if you want very detailed reports.
- Parameters
output_filename (
Optional
[str
]) – optionally save profile results to file instead of printing to std out when training is finished.line_count_restriction (
float
) – this can be used to limit the number of functions reported for each action. either an integer (to select a count of lines), or a decimal fraction between 0.0 and 1.0 inclusive (to select a percentage of lines)
-
describe
()[source] Logs a profile report after the conclusion of the training run.
-
start
(action_name)[source] Defines how to start recording an action.
- Return type
None
-
stop
(action_name)[source] Defines how to record the duration once an action is complete.
- Return type
None
-
class
pytorch_lightning.profiler.
PassThroughProfiler
[source] Bases:
pytorch_lightning.profiler.profilers.BaseProfiler
This class should be used when you don’t want the (small) overhead of profiling. The Trainer uses this class by default.
Params: stream_out: callable
-
start
(action_name)[source] Defines how to start recording an action.
- Return type
None
-
stop
(action_name)[source] Defines how to record the duration once an action is complete.
- Return type
None
-
Single GPU Training¶
Make sure you are running on a machine that has at least one GPU. Lightning handles all the NVIDIA flags for you, there’s no need to set them yourself.
# train on 1 GPU (using dp mode)
trainer = pl.Trainer(gpus=1)
Sequential Data¶
Lightning has built in support for dealing with sequential data.
Packed sequences as inputs¶
When using PackedSequence, do 2 things:
return either a padded tensor in dataset or a list of variable length tensors in the dataloader collate_fn (example above shows the list implementation).
Pack the sequence in forward or training and validation steps depending on use case.
# For use in dataloader
def collate_fn(batch):
x = [item[0] for item in batch]
y = [item[1] for item in batch]
return x, y
# In module
def training_step(self, batch, batch_nb):
x = rnn.pack_sequence(batch[0], enforce_sorted=False)
y = rnn.pack_sequence(batch[1], enforce_sorted=False)
Truncated Backpropagation Through Time¶
There are times when multiple backwards passes are needed for each batch. For example, it may save memory to use Truncated Backpropagation Through Time when training RNNs.
Lightning can handle TBTT automatically via this flag.
# DEFAULT (single backwards pass per batch)
trainer = Trainer(truncated_bptt_steps=None)
# (split batch into sequences of size 2)
trainer = Trainer(truncated_bptt_steps=2)
Note
If you need to modify how the batch is split,
override pytorch_lightning.core.LightningModule.tbptt_split_batch()
.
Note
Using this feature requires updating your LightningModule’s pytorch_lightning.core.LightningModule.training_step()
to include
a hiddens arg.
Iterable Datasets¶
Lightning supports using IterableDatasets as well as map-style Datasets. IterableDatasets provide a more natural option when using sequential data.
Note
When using an IterableDataset you must set the val_check_interval to 1.0 (the default) or to an int (specifying the number of training batches to run before validation) when initializing the Trainer. This is due to the fact that the IterableDataset does not have a __len__ and Lightning requires this to calculate the validation interval when val_check_interval is less than one.
# IterableDataset
class CustomDataset(IterableDataset):
def __init__(self, data):
self.data_source
def __iter__(self):
return iter(self.data_source)
# Setup DataLoader
def train_dataloader(self):
seq_data = ['A', 'long', 'time', 'ago', 'in', 'a', 'galaxy', 'far', 'far', 'away']
iterable_dataset = CustomDataset(seq_data)
dataloader = DataLoader(dataset=iterable_dataset, batch_size=5)
return dataloader
# Set val_check_interval
trainer = pl.Trainer()
Training Tricks¶
Lightning implements various tricks to help during training
Accumulate gradients¶
Accumulated gradients runs K small batches of size N before doing a backwards pass. The effect is a large effective batch size of size KxN.
See also
# DEFAULT (ie: no accumulated grads)
trainer = Trainer(accumulate_grad_batches=1)
Gradient Clipping¶
Gradient clipping may be enabled to avoid exploding gradients. Specifically, this will clip the gradient norm computed over all model parameters together.
See also
# DEFAULT (ie: don't clip)
trainer = Trainer(gradient_clip_val=0)
# clip gradients with norm above 0.5
trainer = Trainer(gradient_clip_val=0.5)
Transfer Learning¶
Using Pretrained Models¶
Sometimes we want to use a LightningModule as a pretrained model. This is fine because a LightningModule is just a torch.nn.Module!
Note
Remember that a pl.LightningModule is EXACTLY a torch.nn.Module but with more capabilities.
Let’s use the AutoEncoder as a feature extractor in a separate model.
class Encoder(torch.nn.Module):
...
class AutoEncoder(pl.LightningModule):
def __init__(self):
self.encoder = Encoder()
self.decoder = Decoder()
class CIFAR10Classifier(pl.LightingModule):
def __init__(self):
# init the pretrained LightningModule
self.feature_extractor = AutoEncoder.load_from_checkpoint(PATH)
self.feature_extractor.freeze()
# the autoencoder outputs a 100-dim representation and CIFAR-10 has 10 classes
self.classifier = nn.Linear(100, 10)
def forward(self, x):
representations = self.feature_extractor(x)
x = self.classifier(representations)
...
We used our pretrained Autoencoder (a LightningModule) for transfer learning!
Example: Imagenet (computer Vision)¶
import torchvision.models as models
class ImagenetTranferLearning(pl.LightingModule):
def __init__(self):
# init a pretrained resnet
num_target_classes = 10
self.feature_extractor = model.resnet50(
pretrained=True,
num_classes=num_target_classes)
self.feature_extractor.eval()
# use the pretrained model to classify cifar-10 (10 image classes)
self.classifier = nn.Linear(2048, num_target_classes)
def forward(self, x):
representations = self.feature_extractor(x)
x = self.classifier(representations)
...
Finetune
model = ImagenetTranferLearning()
trainer = Trainer()
trainer.fit(model)
And use it to predict your data of interest
model = ImagenetTranferLearning.load_from_checkpoint(PATH)
model.freeze()
x = some_images_from_cifar10()
predictions = model(x)
We used a pretrained model on imagenet, finetuned on CIFAR-10 to predict on CIFAR-10. In the non-academic world we would finetune on a tiny dataset you have and predict on your dataset.
Example: BERT (NLP)¶
Lightning is completely agnostic to what’s used for transfer learning so long as it is a torch.nn.Module subclass.
Here’s a model that uses Huggingface transformers.
from transformers import BertModel
class BertMNLIFinetuner(pl.LightningModule):
def __init__(self):
super().__init__()
self.bert = BertModel.from_pretrained('bert-base-cased', output_attentions=True)
self.W = nn.Linear(bert.config.hidden_size, 3)
self.num_classes = 3
def forward(self, input_ids, attention_mask, token_type_ids):
h, _, attn = self.bert(input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids)
h_cls = h[:, 0]
logits = self.W(h_cls)
return logits, attn
TPU support¶
Lightning supports running on TPUs. At this moment, TPUs are only available on Google Cloud (GCP). For more information on TPUs watch this video.
Live demo¶
Check out this Google Colab to see how to train MNIST on TPUs.
TPU Terminology¶
A TPU is a Tensor processing unit. Each TPU has 8 cores where each core is optimized for 128x128 matrix multiplies. In general, a single TPU is about as fast as 5 V100 GPUs!
A TPU pod hosts many TPUs on it. Currently, TPU pod v2 has 2048 cores! You can request a full pod from Google cloud or a “slice” which gives you some subset of those 2048 cores.
How to access TPUs¶
To access TPUs there are two main ways.
Using google colab.
Using Google Cloud (GCP).
Colab TPUs¶
Colab is like a jupyter notebook with a free GPU or TPU hosted on GCP.
To get a TPU on colab, follow these steps:
Click “new notebook” (bottom right of pop-up).
Click runtime > change runtime settings. Select Python 3, and hardware accelerator “TPU”. This will give you a TPU with 8 cores.
Next, insert this code into the first cell and execute. This will install the xla library that interfaces between PyTorch and the TPU.
import collections from datetime import datetime, timedelta import os import requests import threading _VersionConfig = collections.namedtuple('_VersionConfig', 'wheels,server') VERSION = "xrt==1.15.0" #@param ["xrt==1.15.0", "torch_xla==nightly"] CONFIG = { 'xrt==1.15.0': _VersionConfig('1.15', '1.15.0'), 'torch_xla==nightly': _VersionConfig('nightly', 'XRT-dev{}'.format( (datetime.today() - timedelta(1)).strftime('%Y%m%d'))), }[VERSION] DIST_BUCKET = 'gs://tpu-pytorch/wheels' TORCH_WHEEL = 'torch-{}-cp36-cp36m-linux_x86_64.whl'.format(CONFIG.wheels) TORCH_XLA_WHEEL = 'torch_xla-{}-cp36-cp36m-linux_x86_64.whl'.format(CONFIG.wheels) TORCHVISION_WHEEL = 'torchvision-{}-cp36-cp36m-linux_x86_64.whl'.format(CONFIG.wheels) # Update TPU XRT version def update_server_xrt(): print('Updating server-side XRT to {} ...'.format(CONFIG.server)) url = 'http://{TPU_ADDRESS}:8475/requestversion/{XRT_VERSION}'.format( TPU_ADDRESS=os.environ['COLAB_TPU_ADDR'].split(':')[0], XRT_VERSION=CONFIG.server, ) print('Done updating server-side XRT: {}'.format(requests.post(url))) update = threading.Thread(target=update_server_xrt) update.start()
# Install Colab TPU compat PyTorch/TPU wheels and dependencies !pip uninstall -y torch torchvision !gsutil cp "$DIST_BUCKET/$TORCH_WHEEL" . !gsutil cp "$DIST_BUCKET/$TORCH_XLA_WHEEL" . !gsutil cp "$DIST_BUCKET/$TORCHVISION_WHEEL" . !pip install "$TORCH_WHEEL" !pip install "$TORCH_XLA_WHEEL" !pip install "$TORCHVISION_WHEEL" !sudo apt-get install libomp5 update.join()
Once the above is done, install PyTorch Lightning (v 0.7.0+).
!pip install pytorch-lightning
Then set up your LightningModule as normal.
DistributedSamplers¶
Lightning automatically inserts the correct samplers - no need to do this yourself!
Usually, with TPUs (and DDP), you would need to define a DistributedSampler to move the right chunk of data to the appropriate TPU. As mentioned, this is not needed in Lightning
Note
Don’t add distributedSamplers. Lightning does this automatically
If for some reason you still need to, this is how to construct the sampler for TPU use
import torch_xla.core.xla_model as xm
def train_dataloader(self):
dataset = MNIST(
os.getcwd(),
train=True,
download=True,
transform=transforms.ToTensor()
)
# required for TPU support
sampler = None
if use_tpu:
sampler = torch.utils.data.distributed.DistributedSampler(
dataset,
num_replicas=xm.xrt_world_size(),
rank=xm.get_ordinal(),
shuffle=True
)
loader = DataLoader(
dataset,
sampler=sampler,
batch_size=32
)
return loader
Configure the number of TPU cores in the trainer. You can only choose 1 or 8. To use a full TPU pod skip to the TPU pod section.
import pytorch_lightning as pl
my_model = MyLightningModule()
trainer = pl.Trainer(num_tpu_cores=8)
trainer.fit(my_model)
That’s it! Your model will train on all 8 TPU cores.
Distributed Backend with TPU¶
The `distributed_backend`
option used for GPUs does not apply to TPUs.
TPUs work in DDP mode by default (distributing over each core)
TPU Pod¶
To train on more than 8 cores, your code actually doesn’t change! All you need to do is submit the following command:
$ python -m torch_xla.distributed.xla_dist
--tpu=$TPU_POD_NAME
--conda-env=torch-xla-nightly
-- python /usr/share/torch-xla-0.5/pytorch/xla/test/test_train_imagenet.py --fake_data
16 bit precision¶
Lightning also supports training in 16-bit precision with TPUs. By default, TPU training will use 32-bit precision. To enable 16-bit, also set the 16-bit flag.
import pytorch_lightning as pl
my_model = MyLightningModule()
trainer = pl.Trainer(num_tpu_cores=8, precision=16)
trainer.fit(my_model)
Under the hood the xla library will use the bfloat16 type.
About XLA¶
XLA is the library that interfaces PyTorch with the TPUs. For more information check out XLA.
Guide for troubleshooting XLA
Test set¶
Lightning forces the user to run the test set separately to make sure it isn’t evaluated by mistake
Test after fit¶
To run the test set after training completes, use this method
# run full training
trainer.fit(model)
# run test set
trainer.test()
Test pre-trained model¶
To run the test set on a pretrained model, use this method.
model = MyLightningModule.load_from_metrics(
weights_path='/path/to/pytorch_checkpoint.ckpt',
tags_csv='/path/to/test_tube/experiment/version/meta_tags.csv',
on_gpu=True,
map_location=None
)
# init trainer with whatever options
trainer = Trainer(...)
# test (pass in the model)
trainer.test(model)
In this case, the options you pass to trainer will be used when running the test set (ie: 16-bit, dp, ddp, etc…
Contributor Covenant Code of Conduct¶
Our Pledge¶
In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation.
Our Standards¶
Examples of behavior that contributes to creating a positive environment include:
Using welcoming and inclusive language
Being respectful of differing viewpoints and experiences
Gracefully accepting constructive criticism
Focusing on what is best for the community
Showing empathy towards other community members
Examples of unacceptable behavior by participants include:
The use of sexualized language or imagery and unwelcome sexual attention or advances
Trolling, insulting/derogatory comments, and personal or political attacks
Public or private harassment
Publishing others’ private information, such as a physical or electronic address, without explicit permission
Other conduct which could reasonably be considered inappropriate in a professional setting
Our Responsibilities¶
Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior.
Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.
Scope¶
This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers.
Enforcement¶
Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at waf2107@columbia.edu. All complaints will be reviewed and investigated and will result in a response that is deemed necessary and appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.
Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project’s leadership.
Attribution¶
This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
For answers to common questions about this code of conduct, see https://www.contributor-covenant.org/faq
Contributing¶
Welcome to the PyTorch Lightning community! We’re building the most advanced research platform on the planet to implement the latest, best practices that the amazing PyTorch team rolls out!
Main Core Value: One less thing to remember¶
Simplify the API as much as possible from the user perspective. Any additions or improvements should minimize things the user needs to remember.
For example: One benefit of the validation_step is that the user doesn’t have to remember to set the model to .eval(). This avoids all sorts of subtle errors the user could make.
Lightning Design Principles¶
We encourage all sorts of contributions you’re interested in adding! When coding for lightning, please follow these principles.
No PyTorch Interference¶
We don’t want to add any abstractions on top of pure PyTorch. This gives researchers all the control they need without having to learn yet another framework.
Simple Internal Code¶
It’s useful for users to look at the code and understand very quickly what’s happening. Many users won’t be engineers. Thus we need to value clear, simple code over condensed ninja moves. While that’s super cool, this isn’t the project for that :)
Force User Decisions To Best Practices¶
There are 1,000 ways to do something. However, something eventually becomes standard practice that everyone does. Thus we pick one way of doing it and force everyone to do it this way. A good example is accumulated gradients. There are many ways to implement, we just pick one and force users to use that one. A bad forced decision would be to make users use a specific library to do something.
When something becomes a best practice, we add it to the framework. This likely looks like code in utils or in the model file that everyone keeps adding over and over again across projects. When this happens, bring that code inside the trainer and add a flag for it.
Simple External API¶
What makes sense to you may not make sense to others. Create an issue with an API change suggestion and validate that it makes sense for others. Treat code changes how you treat a startup: validate that it’s a needed feature, then add if it makes sense for many people.
Backward-compatible API¶
We all hate updating our deep learning packages because we don’t want to refactor a bunch of stuff. In Lightning, we make sure every change we make which could break an API is backwards compatible with good deprecation warnings.
You shouldn’t be afraid to upgrade Lightning :)
Gain User Trust¶
As a researcher you can’t have any part of your code going wrong. So, make thorough tests that ensure an implementation of a new trick or subbtle change is correct.
Interoperability¶
Have a favorite feature from other libraries like fast.ai or transformers? Those should just work with lightning as well. Grab your favorite model or learning rate scheduler from your favorite library and run it in Lightning.
Contribution Types¶
Currently looking for help implementing new features or adding bug fixes.
A lot of good work has already been done in project mechanics (requirements.txt, setup.py, pep8, badges, ci, etc…) we’re in a good state there thanks to all the early contributors (even pre-beta release)!
Bug Fixes:¶
Submit a github issue - try to decried what happen so other can reproduce it too.
Try to ix it or recommend a solution…
Submit a PR!
New Features:¶
Submit a github issue - describe what is motivation of such feature (plus an use-case).
Let’s discuss to agree on the feature scope.
Submit a PR! (with updated docs and tests 🙃).
Guidelines¶
Coding Style¶
Use f-strings for output formation (except logging when we stay with lazy
logging.info("Hello %s!
, name).Test the code with flake8, run locally PEP8 fixes:
autopep8 -v -r --max-line-length 120 --in-place .
Documentation¶
We are using Sphinx with Napoleon extension. Moreover we set Google style to follow with type convention.
See following short example of a sample function taking one position string and optional
from typing import Optional
def my_func(param_a: int, param_b: Optional[float] = None) -> str:
"""Sample function.
Args:
param_a: first parameter
param_b: second parameter
Return:
sum of both numbers
Example:
Sample doctest example...
>>> my_func(1, 2)
3
.. note:: If you want to add something.
"""
p = param_b if param_b else 0
return str(param_a + p)
Testing¶
Test your work locally to speed up your work since so you can focus only in particular (failing) test-cases. To setup a local development environment, install both local and test dependencies:
pip install -r requirements.txt
pip install -r tests/requirements.txt
You can run the full test-case in your terminal via this bash script:
bash .run_local_tests.sh
Note: if your computer does not have multi-GPU nor TPU these tests are skipped.
For convenience, you can use also your own CircleCI building which will be triggered with each commit. This is useful if you do not test against all required dependencies version. To do so, login to CircleCI and enable your forked project in the dashboard. It will just work after that.
Pull Request¶
We welcome any useful contribution! For convinece here’s a recommended workflow:
Think about what you want to do - fix a bug, repair docs, etc.
Start your work locally (usually until you need our CI testing)
create a branch and prepare your changes
hint: do not work with your master directly, it may become complicated when you need to rebase
hint: give your PR a good name! it will be useful later when you may work on multiple tasks/PRs
Create a “Draft PR” which is clearly marked which lets us know you don’t need feedback yet.
When you feel like you are ready for integrating your work, turn your PR to “Ready for review”.
Use tags in PR name for following cases:
[blocked by #
] if you work is depending on others changes[wip] when you start to re-edit your work, mark it so no one will accidentally merge it in meantime
How to become a core contributor¶
Thanks for your interest in joining the Lightning team! We’re a rapidly growing project which is poised to become the go-to framework for DL researchers! We’re currently recruiting for a team of 5 core maintainers.
As a core maintainer you will have a strong say in the direction of the project. Big changes will require a majority of maintainers to agree.
Code of conduct¶
First and foremost, you’ll be evaluated against these core values. Any code we commit or feature we add needs to align with those core values.
The bar for joining the team¶
Lightning is being used to solve really hard problems at the top AI labs in the world. As such, the bar for adding team members is extremely high. Candidates must have solid engineering skills, have a good eye for user experience, and must be a power user of Lightning and PyTorch.
With that said, the Lightning team will be diverse and a reflection of an inclusive AI community. You don’t have to be an engineer to conntribute! Scientists with great usability intuition and PyTorch ninja skills are welcomed!
Responsibilities:¶
The responsibilities mainly revolve around 3 things.
Github issues¶
Here we want to help users have an amazing experience. These range from questions from new people getting into DL to questions from researchers about doing something esoteric with Lightning Often, these issues require some sort of bug fix, document clarification or new functionality to be scoped out.
To become a core member you must resolve at least 10 Github issues which align with the API design goals for Lightning. By the end of these 10 issues I should feel comfortable in the way you answer user questions Pleasant/helpful tone.
Can abstract from that issue or bug into functionality that might solve other related issues or makes the platform more flexible.
Don’t make users feel like they don’t know what they’re doing. We’re here to help and to make everyone’s experience delightful.
Pull requests¶
Here we need to ensure the code that enters Lightning is high quality. For each PR we need to:
Make sure code coverage does not decrease
Documents are updated
Code is elegant and simple
Code is NOT overly engineered or hard to read
Ask yourself, could a non-engineer understand what’s happening here?
Make sure new tests are written
Is this NECESSARY for Lightning? There are some PRs which are just purely about adding engineering complexity which have no place in Lightning. Guidance
Some other PRs are for people who are wanting to get involved and add something unnecessary. We do want their help though! So don’t approve the PR, but direct them to a Github issue that they might be interested in helping with instead!
To be considered for core contributor, please review 10 PRs and help the authors land it on master. Once you’ve finished the review, ping me for a sanity check. At the end of 10 PRs if your PR reviews are inline with expectations described above, then you can merge PRs on your own going forward, otherwise we’ll do a few more until we’re both comfortable :)
Project directions¶
There are some big decisions which the project must make. For these I expect core contributors to have something meaningful to add if it’s their area of expertise.
Diversity¶
Lightning should reflect the broader community it serves. As such we should have scientists/researchers from different fields contributing!
The first 5 core contributors will fit this profile. Thus if you overlap strongly with experiences and expertise as someone else on the team, you might have to wait until the next set of contributors are added.
Summary: Requirements to apply¶
Solve 10 Github issues. The goal is to be inline with expectations for solving issues by the last one so you can do them on your own. If not, I might ask you to solve a few more specific ones.
Do 10 PR reviews. The goal is to be inline with expectations for solving issues by the last one so you can do them on your own. If not, I might ask you to solve a few more specific ones.
If you want to be considered, ping me on gitter and start tracking your progress here.
Before submitting¶
[ ] Was this discussed/approved via a Github issue? (no need for typos and docs improvements)
[ ] Did you read the contributor guideline, Pull Request section?
[ ] Did you make sure to update the docs?
[ ] Did you write any new necessary tests?
[ ] If you made a notable change (that affects users), did you update the CHANGELOG?
What does this PR do?¶
Fixes # (issue).
PR review¶
Anyone in the community is free to review the PR once the tests have passed.If we didn’t discuss your PR in Github issues there’s a high chance it will not be merged.
Did you have fun?¶
Make sure you had fun coding 🙃
Pytorch Lightning Governance | Persons of interest¶
Leads¶
William Falcon (williamFalcon) (Lightning founder)
Jirka Borovec (Borda)
Ethan Harris (ethanwharris) (Torchbearer founder)
Matthew Painter (MattPainter01) (Torchbearer founder)
Justus Schock (justusschock) (Former Core Member PyTorch Ignite)
Core Maintainers¶
Nic Eggert (neggert)
Jeff Ling (jeffling)
Jeremy Jordan (jeremyjordan)
Tullie Murrell (tullie)
Indices and tables¶
pytorch_lightning.core package¶
A LightningModule organizes your PyTorch code into the following sections:

Notice a few things.
It’s the SAME code.
The PyTorch code IS NOT abstracted - just organized.
- All the other code that not in the LightningModule has been automated for you by the trainer
net = Net() trainer = Trainer() trainer.fit(net)
- There are no .cuda() or .to() calls… Lightning does these for you.
# don't do in lightning x = torch.Tensor(2, 3) x = x.cuda() x = x.to(device) # do this instead x = x # leave it alone! # or to init a new tensor new_x = torch.Tensor(2, 3) new_x = new_x.type_as(x.type())
- There are no samplers for distributed, Lightning also does this for you.
# Don't do in Lightning... data = MNIST(...) sampler = DistributedSampler(data) DataLoader(data, sampler=sampler) # do this instead data = MNIST(...) DataLoader(data)
- A LightingModule is a torch.nn.Module but with added functionality. Use it as such!
net = Net.load_from_checkpoint(PATH) net.freeze() out = net(x)
Thus, to use Lightning, you just need to organize your code which takes about 30 minutes, (and let’s be real, you probably should do anyhow).
Minimal Example¶
Here are the only required methods.
import os
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
import torchvision.transforms as transforms
import pytorch_lightning as pl
class LitModel(pl.LightningModule):
def __init__(self):
super().__init__()
self.l1 = torch.nn.Linear(28 * 28, 10)
def forward(self, x):
return torch.relu(self.l1(x.view(x.size(0), -1)))
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
return {'loss': F.cross_entropy(y_hat, y)}
def train_dataloader(self):
return DataLoader(MNIST(os.getcwd(), train=True, download=True,
transform=transforms.ToTensor()), batch_size=32)
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=0.02)
Which you can train by doing:
trainer = pl.Trainer()
model = LitModel()
trainer.fit(model)
Training loop structure¶
The general pattern is that each loop (training, validation, test loop) has 3 methods:
` ___step `
` ___step_end `
` ___epoch_end`
To show how lightning calls these, let’s use the validation loop as an example
val_outs = []
for val_batch in val_data:
# do something with each batch
out = validation_step(val_batch)
val_outs.append(out)
# do something with the outputs for all batches
# like calculate validation set accuracy or loss
validation_epoch_end(val_outs)
if we use dp or ddp2 mode, we can also define the `XXX_step_end`
method to operate
on all parts of the batch
val_outs = []
for val_batch in val_data:
batches = split_batch(val_batch)
dp_outs = []
for sub_batch in batches:
dp_out = validation_step(sub_batch)
dp_outs.append(dp_out)
out = validation_step_end(dp_outs)
val_outs.append(out)
# do something with the outputs for all batches
# like calculate validation set accuracy or loss
validation_epoch_end(val_outs)
Note
`training_step_end`
is not available yet but coming in the next release.
Add validation loop¶
Thus, if we wanted to add a validation loop you would add this to your LightningModule
class LitModel(pl.LightningModule):
def validation_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
return {'val_loss': F.cross_entropy(y_hat, y)}
def validation_epoch_end(self, outputs):
val_loss_mean = torch.stack([x['val_loss'] for x in outputs]).mean()
return {'val_loss': val_loss_mean}
def val_dataloader(self):
# can also return a list of val dataloaders
return DataLoader(...)
Add test loop¶
class LitModel(pl.LightningModule):
def test_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
return {'test_loss': F.cross_entropy(y_hat, y)}
def test_epoch_end(self, outputs):
test_loss_mean = torch.stack([x['test_loss'] for x in outputs]).mean()
return {'test_loss': test_loss_mean}
def test_dataloader(self):
# can also return a list of test dataloaders
return DataLoader(...)
However, the test loop won’t ever be called automatically to make sure you don’t run your test data by accident. Instead you have to explicitly call:
# call after training
trainer = Trainer()
trainer.fit(model)
trainer.test()
# or call with pretrained model
model = MyLightningModule.load_from_checkpoint(PATH)
trainer = Trainer()
trainer.test(model)
Training_step_end method¶
When using dataParallel or distributedDataParallel2, the training_step will be operating on a portion of the batch. This is normally ok but in special cases like calculating NCE loss using negative samples, we might want to perform a softmax across all samples in the batch.
For these types of situations, each loop has an additional `__step_end`
method
which allows you to operate on the pieces of the batch
training_outs = []
for train_batch in train_data:
# dp, ddp2 splits the batch
sub_batches = split_batches_for_dp(batch)
# run training_step on each piece of the batch
batch_parts_outputs = [training_step(sub_batch) for sub_batch in sub_batches]
# do softmax with all pieces
out = training_step_end(batch_parts_outputs)
training_outs.append(out)
# do something with the outputs for all batches
# like calculate validation set accuracy or loss
training_epoch_end(val_outs)
Remove cuda calls¶
In a LightningModule, all calls to `.cuda()`
and `.to(device)`
should be removed. Lightning will do these
automatically. This will allow your code to work on CPUs, TPUs and GPUs.
When you init a new tensor in your code, just use type_as
def training_step(self, batch, batch_idx):
x, y = batch
# put the z on the appropriate gpu or tpu core
z = sample_noise()
z = z.type_as(x)
Data preparation¶
Data preparation in PyTorch follows 5 steps:
Download
Clean and (maybe) save to disk
Load inside dataset
Apply transforms (rotate, tokenize, etc…)
Wrap inside a dataloader
When working in distributed settings, steps 1 and 2 have to be done
from a single GPU, otherwise you will overwrite these files from
every GPU. The lightningModule has the `prepare_data`
method to
allow for this
def prepare_data(self):
# download
mnist_train = MNIST(os.getcwd(), train=True, download=True,
transform=transforms.ToTensor())
mnist_test = MNIST(os.getcwd(), train=False, download=True,
transform=transforms.ToTensor())
# train/val split
mnist_train, mnist_val = random_split(mnist_train, [55000, 5000])
# assign to use in dataloaders
self.train_dataset = mnist_train
self.val_dataset = mnist_val
self.test_dataset = mnist_test
def train_dataloader(self):
return DataLoader(self.train_dataset, batch_size=64)
def val_dataloader(self):
return DataLoader(self.mnist_val, batch_size=64)
def test_dataloader(self):
return DataLoader(self.mnist_test, batch_size=64)
Note
prepare_data
is called once.
Note
Do anything with data that needs to happen ONLY once here, like download, tokenize, etc…
Lifecycle¶
The methods in the LightningModule are called in this order:
`__init__`
`prepare_data`
`configure_optimizers`
`train_dataloader`
If you define a validation loop then
`val_dataloader`
And if you define a test loop:
`test_dataloader`
Note
test_dataloader
is only called with .test()
In every epoch, the loop methods are called in this frequency:
`validation_step`
called every batch`validation_epoch_end`
called every epoch
LightningModule Class¶
-
class
pytorch_lightning.core.
LightningModule
(*args, **kwargs)[source]¶ Bases:
abc.ABC
,pytorch_lightning.core.grads.GradInformation
,pytorch_lightning.core.saving.ModelIO
,pytorch_lightning.core.hooks.ModelHooks
-
configure_apex
(amp, model, optimizers, amp_level)[source]¶ Override to init AMP your own way. Must return a model and list of optimizers.
- Parameters
amp (
object
) – pointer to amp library object.model (
LightningModule
) – pointer to currentLightningModule
.optimizers (
List
[Optimizer
]) – list of optimizers passed inconfigure_optimizers()
.amp_level (
str
) – AMP mode chosen (‘O1’, ‘O2’, etc…)
- Return type
Tuple
[LightningModule
,List
[Optimizer
]]- Returns
Apex wrapped model and optimizers
Examples
# Default implementation used by Trainer. def configure_apex(self, amp, model, optimizers, amp_level): model, optimizers = amp.initialize( model, optimizers, opt_level=amp_level, ) return model, optimizers
-
configure_ddp
(model, device_ids)[source]¶ Override to init DDP in your own way or with your own wrapper. The only requirements are that:
On a validation batch the call goes to
model.validation_step
.On a training batch the call goes to
model.training_step
.On a testing batch, the call goes to
model.test_step
.+
- Parameters
model (
LightningModule
) – theLightningModule
currently being optimized.
- Return type
- Returns
DDP wrapped model
Examples
# default implementation used in Trainer def configure_ddp(self, model, device_ids): # Lightning DDP simply routes to test_step, val_step, etc... model = LightningDistributedDataParallel( model, device_ids=device_ids, find_unused_parameters=True ) return model
-
configure_optimizers
()[source]¶ Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you’d need one. But in the case of GANs or similar you might have multiple.
- Return type
Union
[Optimizer
,Sequence
[Optimizer
],Dict
,Sequence
[Dict
],Tuple
[List
,List
],None
]- Returns
Any of these 6 options.
Single optimizer.
List or Tuple - List of optimizers.
Two lists - The first list has multiple optimizers, the second a list of LR schedulers.
Dictionary, with an ‘optimizer’ key and (optionally) a ‘lr_scheduler’ key.
Tuple of dictionaries as described, with an optional ‘frequency’ key.
None - Fit will run without any optimizer.
Note
The ‘frequency’ value is an int corresponding to the number of sequential batches optimized with the specific optimizer. It should be given to none or to all of the optimizers. There is a difference between passing multiple optimizers in a list, and passing multiple optimizers in dictionaries with a frequency of 1: In the former case, all optimizers will operate on the given batch in each optimization step. In the latter, only one optimizer will operate on the given batch at every step.
Examples
# most cases def configure_optimizers(self): opt = Adam(self.parameters(), lr=1e-3) return opt # multiple optimizer case (e.g.: GAN) def configure_optimizers(self): generator_opt = Adam(self.model_gen.parameters(), lr=0.01) disriminator_opt = Adam(self.model_disc.parameters(), lr=0.02) return generator_opt, disriminator_opt # example with learning rate schedulers def configure_optimizers(self): generator_opt = Adam(self.model_gen.parameters(), lr=0.01) disriminator_opt = Adam(self.model_disc.parameters(), lr=0.02) discriminator_sched = CosineAnnealing(discriminator_opt, T_max=10) return [generator_opt, disriminator_opt], [discriminator_sched] # example with step-based learning rate schedulers def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_disc.parameters(), lr=0.02) gen_sched = {'scheduler': ExponentialLR(gen_opt, 0.99), 'interval': 'step'} # called after each training step dis_sched = CosineAnnealing(discriminator_opt, T_max=10) # called every epoch return [gen_opt, dis_opt], [gen_sched, dis_sched] # example with optimizer frequencies # see training procedure in `Improved Training of Wasserstein GANs`, Algorithm 1 # https://arxiv.org/abs/1704.00028 def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_disc.parameters(), lr=0.02) n_critic = 5 return ( {'optimizer': dis_opt, 'frequency': n_critic}, {'optimizer': gen_opt, 'frequency': 1} )
Note
Some things to know:
Lightning calls
.backward()
and.step()
on each optimizer and learning rate scheduler as needed.If you use 16-bit precision (
precision=16
), Lightning will automatically handle the optimizers for you.If you use multiple optimizers,
training_step()
will have an additionaloptimizer_idx
parameter.If you use LBFGS Lightning handles the closure function automatically for you.
If you use multiple optimizers, gradients will be calculated only for the parameters of current optimizer at each training step.
If you need to control how often those optimizers step or override the default
.step()
schedule, override theoptimizer_step()
hook.If you only want to call a learning rate scheduler every
x
step or epoch, or want to monitor a custom metric, you can specify these in a dictionary:{ 'scheduler': lr_scheduler, 'interval': 'step' # or 'epoch' 'monitor': 'val_f1', 'frequency': x }
-
abstract
forward
(*args, **kwargs)[source]¶ Same as
torch.nn.Module.forward()
, however in Lightning you want this to define the operations you want to use for prediction (i.e.: on a server or as a feature extractor).Normally you’d call
self()
from yourtraining_step()
method. This makes it easy to write a complex system for training with the outputs you’d want in a prediction setting.- Parameters
*args – Whatever you decide to pass into the forward method.
**kwargs – Keyword arguments are also possible.
- Returns
Predicted output
Examples
# example if we were using this model as a feature extractor def forward(self, x): feature_maps = self.convnet(x) return feature_maps def training_step(self, batch, batch_idx): x, y = batch feature_maps = self(x) logits = self.classifier(feature_maps) # ... return loss # splitting it this way allows model to be used a feature extractor model = MyModelAbove() inputs = server.get_request() results = model(inputs) server.write_results(results) # ------------- # This is in stark contrast to torch.nn.Module where normally you would have this: def forward(self, batch): x, y = batch feature_maps = self.convnet(x) logits = self.classifier(feature_maps) return logits
-
freeze
()[source]¶ Freeze all params for inference.
Example
model = MyLightningModule(...) model.freeze()
- Return type
None
-
init_ddp_connection
(proc_rank, world_size)[source]¶ Override to define your custom way of setting up a distributed environment.
Lightning’s implementation uses
env://
init by default and sets the first node as root.- Parameters
Examples
def init_ddp_connection(self): # use slurm job id for the port number # guarantees unique ports across jobs from same grid search try: # use the last 4 numbers in the job id as the id default_port = os.environ['SLURM_JOB_ID'] default_port = default_port[-4:] # all ports should be in the 10k+ range default_port = int(default_port) + 15000 except Exception as e: default_port = 12910 # if user gave a port number, use that one instead try: default_port = os.environ['MASTER_PORT'] except Exception: os.environ['MASTER_PORT'] = str(default_port) # figure out the root node addr try: root_node = os.environ['SLURM_NODELIST'].split(' ')[0] except Exception: root_node = '127.0.0.2' root_node = self.trainer.resolve_root_node_address(root_node) os.environ['MASTER_ADDR'] = root_node dist.init_process_group( 'nccl', rank=self.proc_rank, world_size=self.world_size )
- Return type
None
-
classmethod
load_from_checkpoint
(checkpoint_path, map_location=None, tags_csv=None, *args, **kwargs)[source]¶ Primary way of loading a model from a checkpoint. When Lightning saves a checkpoint it stores the hyperparameters in the checkpoint if you initialized your
LightningModule
with an argument calledhparams
which is aNamespace
(output ofparse_args()
when parsing command line arguments).Example
from argparse import Namespace hparams = Namespace(**{'learning_rate': 0.1}) model = MyModel(hparams) class MyModel(LightningModule): def __init__(self, hparams): self.learning_rate = hparams.learning_rate
- Parameters
checkpoint_path (
str
) – Path to checkpoint.model_args – Any keyword args needed to init the model.
map_location (
Union
[Dict
[str
,str
],str
,device
,int
,Callable
,None
]) – If your checkpoint saved a GPU model and you now load on CPUs or a different number of GPUs, use this to map to the new setup. The behaviour is the same as intorch.load()
.Optional path to a .csv file with two columns (key, value) as in this example:
key,value drop_prob,0.2 batch_size,32
You most likely won’t need this since Lightning will always save the hyperparameters to the checkpoint. However, if your checkpoint weights don’t have the hyperparameters saved, use this method to pass in a .csv file with the hparams you’d like to use. These will be converted into a
Namespace
and passed into yourLightningModule
for use.
- Return type
- Returns
LightningModule
with loaded weights and hyperparameters (if available).
Example
# load weights without mapping ... MyLightningModule.load_from_checkpoint('path/to/checkpoint.ckpt') # or load weights mapping all weights from GPU 1 to GPU 0 ... map_location = {'cuda:1':'cuda:0'} MyLightningModule.load_from_checkpoint( 'path/to/checkpoint.ckpt', map_location=map_location ) # or load weights and hyperparameters from separate files. MyLightningModule.load_from_checkpoint( 'path/to/checkpoint.ckpt', tags_csv='/path/to/hparams_file.csv' ) # or load passing whatever args the model takes to load MyLightningModule.load_from_checkpoint( 'path/to/checkpoint.ckpt', learning_rate=0.1, layers=2, pretrained_model=some_model ) # predict pretrained_model.eval() pretrained_model.freeze() y_hat = pretrained_model(x)
-
classmethod
load_from_metrics
(weights_path, tags_csv, map_location=None)[source]¶ Warning
Deprecated in version 0.7.0. You should use
load_from_checkpoint()
instead. Will be removed in v0.9.0.
-
on_load_checkpoint
(checkpoint)[source]¶ Called by Lightning to restore your model. If you saved something with
on_save_checkpoint()
this is your chance to restore this.Example
def on_load_checkpoint(self, checkpoint): # 99% of the time you don't need to implement this method self.something_cool_i_want_to_save = checkpoint['something_cool_i_want_to_save']
Note
Lightning auto-restores global step, epoch, and train state including amp scaling. There is no need for you to restore anything regarding training.
- Return type
None
-
on_save_checkpoint
(checkpoint)[source]¶ Called by Lightning when saving a checkpoint to give you a chance to store anything else you might want to save.
Example
def on_save_checkpoint(self, checkpoint): # 99% of use cases you don't need to implement this method checkpoint['something_cool_i_want_to_save'] = my_cool_pickable_object
Note
Lightning saves all aspects of training (epoch, global step, etc…) including amp scaling. There is no need for you to store anything about training.
- Return type
None
-
optimizer_step
(epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None)[source]¶ Override this method to adjust the default way the
Trainer
calls each optimizer. By default, Lightning callsstep()
andzero_grad()
as shown in the example once per optimizer.- Parameters
Examples
# DEFAULT def optimizer_step(self, current_epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None): optimizer.step() optimizer.zero_grad() # Alternating schedule for optimizer steps (i.e.: GANs) def optimizer_step(self, current_epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None): # update generator opt every 2 steps if optimizer_idx == 0: if batch_idx % 2 == 0 : optimizer.step() optimizer.zero_grad() # update discriminator opt every 4 steps if optimizer_idx == 1: if batch_idx % 4 == 0 : optimizer.step() optimizer.zero_grad() # ... # add as many optimizers as you want
Here’s another example showing how to use this for more advanced things such as learning rate warm-up:
# learning rate warm-up def optimizer_step(self, current_epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None): # warm up lr if self.trainer.global_step < 500: lr_scale = min(1., float(self.trainer.global_step + 1) / 500.) for pg in optimizer.param_groups: pg['lr'] = lr_scale * self.hparams.learning_rate # update params optimizer.step() optimizer.zero_grad()
- Return type
None
-
prepare_data
()[source]¶ Use this to download and prepare data. In distributed (GPU, TPU), this will only be called once. This is called before requesting the dataloaders:
model.prepare_data() model.train_dataloader() model.val_dataloader() model.test_dataloader()
Examples
def prepare_data(self): download_imagenet() clean_imagenet() cache_imagenet()
- Return type
None
-
print
(*args, **kwargs)[source]¶ Prints only from process 0. Use this in any distributed mode to log only once.
- Parameters
*args – The thing to print. Will be passed to Python’s built-in print function.
**kwargs – Will be passed to Python’s built-in print function.
Example
def forward(self, x): self.print(x, 'in forward')
- Return type
None
-
tbptt_split_batch
(batch, split_size)[source]¶ When using truncated backpropagation through time, each batch must be split along the time dimension. Lightning handles this by default, but for custom behavior override this function.
- Parameters
- Return type
- Returns
List of batch splits. Each split will be passed to
training_step()
to enable truncated back propagation through time. The default implementation splits root level Tensors and Sequences at dim=1 (i.e. time dim). It assumes that each time dim is the same length.
Examples
def tbptt_split_batch(self, batch, split_size): splits = [] for t in range(0, time_dims[0], split_size): batch_split = [] for i, x in enumerate(batch): if isinstance(x, torch.Tensor): split_x = x[:, t:t + split_size] elif isinstance(x, collections.Sequence): split_x = [None] * len(x) for batch_idx in range(len(x)): split_x[batch_idx] = x[batch_idx][t:t + split_size] batch_split.append(split_x) splits.append(batch_split) return splits
Note
Called in the training loop after
on_batch_start()
iftruncated_bptt_steps
> 0. Each returned batch split is passed separately totraining_step()
.
-
test_dataloader
()[source]¶ Implement one or multiple PyTorch DataLoaders for testing.
The dataloader you return will not be called every epoch unless you set
reload_dataloaders_every_epoch
toTrue
.It’s recommended that all data downloads and preparation happen in
prepare_data()
.Note
Lightning adds the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself.
- Return type
- Returns
Single or multiple PyTorch DataLoaders.
Example
def test_dataloader(self): transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) dataset = MNIST(root='/path/to/mnist/', train=False, transform=transform, download=True) loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=self.hparams.batch_size, shuffle=True ) return loader
Note
If you don’t need a test dataset and a
test_step()
, you don’t need to implement this method.
-
test_end
(outputs)[source]¶ Warning
Deprecated in v0.7.0. Use
test_epoch_end()
instead. Will be removed in 1.0.0.
-
test_epoch_end
(outputs)[source]¶ Called at the end of a test epoch with the output of all test steps.
# the pseudocode for these calls test_outs = [] for test_batch in test_data: out = test_step(test_batch) test_outs.append(out) test_epoch_end(test_outs)
- Parameters
outputs (
Union
[List
[Dict
[str
,Tensor
]],List
[List
[Dict
[str
,Tensor
]]]]) – List of outputs you defined intest_step_end()
, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader- Returns
Dict has the following optional keys:
progress_bar -> Dict for progress bar display. Must have only tensors.
log -> Dict of metrics to add to logger. Must have only tensors (no images, etc).
- Return type
Dict or OrderedDict
Note
If you didn’t define a
test_step()
, this won’t be called.The outputs here are strictly for logging or progress bar.
If you don’t need to display anything, don’t return anything.
If you want to manually set current step, specify it with the ‘step’ key in the ‘log’ Dict
Examples
With a single dataloader:
def test_epoch_end(self, outputs): test_acc_mean = 0 for output in outputs: test_acc_mean += output['test_acc'] test_acc_mean /= len(outputs) tqdm_dict = {'test_acc': test_acc_mean.item()} # show test_loss and test_acc in progress bar but only log test_loss results = { 'progress_bar': tqdm_dict, 'log': {'test_acc': test_acc_mean.item()} } return results
With multiple dataloaders, outputs will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each test step for that dataloader.
def test_epoch_end(self, outputs): test_acc_mean = 0 i = 0 for dataloader_outputs in outputs: for output in dataloader_outputs: test_acc_mean += output['test_acc'] i += 1 test_acc_mean /= i tqdm_dict = {'test_acc': test_acc_mean.item()} # show test_loss and test_acc in progress bar but only log test_loss results = { 'progress_bar': tqdm_dict, 'log': {'test_acc': test_acc_mean.item(), 'step': self.current_epoch} } return results
-
test_step
(*args, **kwargs)[source]¶ Operates on a single batch of data from the test set. In this step you’d normally generate examples or calculate anything of interest such as accuracy.
# the pseudocode for these calls test_outs = [] for test_batch in test_data: out = test_step(test_batch) test_outs.append(out) test_epoch_end(test_outs)
- Parameters
- Return type
- Returns
Dict or OrderedDict - passed to the
test_epoch_end()
method. If you definedtest_step_end()
it will go to that first.
# if you have one test dataloader: def test_step(self, batch, batch_idx) # if you have multiple test dataloaders: def test_step(self, batch, batch_idx, dataloader_idx)
Examples
# CASE 1: A single test dataset def test_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # all optional... # return whatever you need for the collation function test_epoch_end output = OrderedDict({ 'val_loss': loss_val, 'val_acc': torch.tensor(val_acc), # everything must be a tensor }) # return an optional dict return output
If you pass in multiple validation datasets,
test_step()
will have an additional argument.# CASE 2: multiple test datasets def test_step(self, batch, batch_idx, dataset_idx): # dataset_idx tells you which dataset this is.
Note
If you don’t need to validate you don’t need to implement this method.
Note
When the
test_step()
is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of the test epoch, the model goes back to training mode and gradients are enabled.
-
test_step_end
(*args, **kwargs)[source]¶ Use this when testing with dp or ddp2 because
test_step()
will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss.Note
If you later switch to ddp or some other mode, this will still be called so that you don’t have to change your code.
# pseudocode sub_batches = split_batches_for_dp(batch) batch_parts_outputs = [test_step(sub_batch) for sub_batch in sub_batches] test_step_end(batch_parts_outputs)
- Parameters
batch_parts_outputs – What you return in
test_step()
for each batch part.- Return type
- Returns
Dict or OrderedDict - passed to the
test_epoch_end()
.
Examples
# WITHOUT test_step_end # if used in DP or DDP2, this batch is 1/num_gpus large def test_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self(x) loss = self.softmax(out) loss = nce_loss(loss) return {'loss': loss} # -------------- # with test_step_end to do softmax over the full batch def test_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self(x) return {'out': out} def test_step_end(self, outputs): # this out is now the full size of the batch out = outputs['out'] # this softmax now uses the full batch size loss = nce_loss(loss) return {'loss': loss}
See also
See the Multi-GPU training guide for more details.
-
tng_dataloader
()[source]¶ Warning
Deprecated in v0.5.0. Use
train_dataloader()
instead. Will be removed in 1.0.0.
-
train_dataloader
()[source]¶ Implement a PyTorch DataLoader for training.
- Return type
- Returns
Single PyTorch
DataLoader
.
The dataloader you return will not be called every epoch unless you set
reload_dataloaders_every_epoch
toTrue
.It’s recommended that all data downloads and preparation happen in
prepare_data()
.Note
Lightning adds the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself.
Example
def train_dataloader(self): transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) dataset = MNIST(root='/path/to/mnist/', train=True, transform=transform, download=True) loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=self.hparams.batch_size, shuffle=True ) return loader
-
training_end
(*args, **kwargs)[source]¶ Warning
Deprecated in v0.7.0. Use
training_step_end()
instead.
-
training_epoch_end
(outputs)[source]¶ Called at the end of the training epoch with the outputs of all training steps.
# the pseudocode for these calls train_outs = [] for train_batch in train_data: out = training_step(train_batch) train_outs.append(out) training_epoch_end(train_outs)
- Parameters
outputs (
Union
[List
[Dict
[str
,Tensor
]],List
[List
[Dict
[str
,Tensor
]]]]) – List of outputs you defined intraining_step()
, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader.- Return type
- Returns
Dict or OrderedDict. May contain the following optional keys:
log (metrics to be added to the logger; only tensors)
any metric used in a callback (e.g. early stopping).
Note
If this method is not overridden, this won’t be called.
The outputs here are strictly for logging or progress bar.
If you don’t need to display anything, don’t return anything.
If you want to manually set current step, you can specify the ‘step’ key in the ‘log’ dict.
Examples
With a single dataloader:
def training_epoch_end(self, outputs): train_acc_mean = 0 for output in outputs: train_acc_mean += output['train_acc'] train_acc_mean /= len(outputs) # log training accuracy at the end of an epoch results = { 'log': {'train_acc': train_acc_mean.item()} } return results
With multiple dataloaders,
outputs
will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each training step for that dataloader.def training_epoch_end(self, outputs): train_acc_mean = 0 i = 0 for dataloader_outputs in outputs: for output in dataloader_outputs: train_acc_mean += output['train_acc'] i += 1 train_acc_mean /= i # log training accuracy at the end of an epoch results = { 'log': {'train_acc': train_acc_mean.item(), 'step': self.current_epoch} } return results
-
training_step
(*args, **kwargs)[source]¶ Here you compute and return the training loss and some additional metrics for e.g. the progress bar or logger.
- Parameters
batch (
Tensor
| (Tensor
, …) | [Tensor
, …]) – The output of yourDataLoader
. A tensor, tuple or list.batch_idx (int) – Integer displaying index of this batch
optimizer_idx (int) – When using multiple optimizers, this argument will also be present.
hiddens (
Tensor
) – Passed in iftruncated_bptt_steps
> 0.
- Return type
- Returns
Dict with loss key and optional log or progress bar keys. When implementing
training_step()
, return whatever you need in that step:loss -> tensor scalar REQUIRED
progress_bar -> Dict for progress bar display. Must have only tensors
log -> Dict of metrics to add to logger. Must have only tensors (no images, etc)
In this step you’d normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something model specific.
Examples
def training_step(self, batch, batch_idx): x, y, z = batch # implement your own out = self(x) loss = self.loss(out, x) logger_logs = {'training_loss': loss} # optional (MUST ALL BE TENSORS) # if using TestTubeLogger or TensorBoardLogger you can nest scalars logger_logs = {'losses': logger_logs} # optional (MUST ALL BE TENSORS) output = { 'loss': loss, # required 'progress_bar': {'training_loss': loss}, # optional (MUST ALL BE TENSORS) 'log': logger_logs } # return a dict return output
If you define multiple optimizers, this step will be called with an additional
optimizer_idx
parameter.# Multiple optimizers (e.g.: GANs) def training_step(self, batch, batch_idx, optimizer_idx): if optimizer_idx == 0: # do training_step with encoder if optimizer_idx == 1: # do training_step with decoder
If you add truncated back propagation through time you will also get an additional argument with the hidden states of the previous step.
# Truncated back-propagation through time def training_step(self, batch, batch_idx, hiddens): # hiddens are the hidden states from the previous truncated backprop step ... out, hiddens = self.lstm(data, hiddens) ... return { "loss": ..., "hiddens": hiddens # remember to detach() this }
Notes
The loss value shown in the progress bar is smoothed (averaged) over the last values, so it differs from the actual loss returned in train/validation step.
-
training_step_end
(*args, **kwargs)[source]¶ Use this when training with dp or ddp2 because
training_step()
will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss.Note
If you later switch to ddp or some other mode, this will still be called so that you don’t have to change your code
# pseudocode sub_batches = split_batches_for_dp(batch) batch_parts_outputs = [training_step(sub_batch) for sub_batch in sub_batches] training_step_end(batch_parts_outputs)
- Parameters
batch_parts_outputs – What you return in training_step for each batch part.
- Return type
- Returns
Dict with loss key and optional log or progress bar keys.
loss -> tensor scalar REQUIRED
progress_bar -> Dict for progress bar display. Must have only tensors
log -> Dict of metrics to add to logger. Must have only tensors (no images, etc)
Examples
# WITHOUT training_step_end # if used in DP or DDP2, this batch is 1/num_gpus large def training_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self(x) loss = self.softmax(out) loss = nce_loss(loss) return {'loss': loss} # -------------- # with training_step_end to do softmax over the full batch def training_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self(x) return {'out': out} def training_step_end(self, outputs): # this out is now the full size of the batch out = outputs['out'] # this softmax now uses the full batch size loss = nce_loss(loss) return {'loss': loss}
See also
See the Multi-GPU training guide for more details.
-
unfreeze
()[source]¶ Unfreeze all parameters for training.
model = MyLightningModule(...) model.unfreeze()
- Return type
None
-
val_dataloader
()[source]¶ Implement one or multiple PyTorch DataLoaders for validation.
The dataloader you return will not be called every epoch unless you set
reload_dataloaders_every_epoch
toTrue
.It’s recommended that all data downloads and preparation happen in
prepare_data()
.Note
Lightning adds the correct sampler for distributed and arbitrary hardware There is no need to set it yourself.
- Return type
- Returns
Single or multiple PyTorch DataLoaders.
Examples
def val_dataloader(self): transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) dataset = MNIST(root='/path/to/mnist/', train=False, transform=transform, download=True) loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=self.hparams.batch_size, shuffle=True ) return loader # can also return multiple dataloaders def val_dataloader(self): return [loader_a, loader_b, ..., loader_n]
Note
If you don’t need a validation dataset and a
validation_step()
, you don’t need to implement this method.Note
In the case where you return multiple validation dataloaders, the
validation_step()
will have an argumentdataset_idx
which matches the order here.
-
validation_end
(outputs)[source]¶ Warning
Deprecated in v0.7.0. Use
validation_epoch_end()
instead. Will be removed in 1.0.0.
-
validation_epoch_end
(outputs)[source]¶ Called at the end of the validation epoch with the outputs of all validation steps.
# the pseudocode for these calls val_outs = [] for val_batch in val_data: out = validation_step(train_batch) val_outs.append(out) validation_epoch_end(val_outs)
- Parameters
outputs (
Union
[List
[Dict
[str
,Tensor
]],List
[List
[Dict
[str
,Tensor
]]]]) – List of outputs you defined invalidation_step()
, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader.- Return type
- Returns
Dict or OrderedDict. May have the following optional keys:
progress_bar (dict for progress bar display; only tensors)
log (dict of metrics to add to logger; only tensors).
Note
If you didn’t define a
validation_step()
, this won’t be called.The outputs here are strictly for logging or progress bar.
If you don’t need to display anything, don’t return anything.
If you want to manually set current step, you can specify the ‘step’ key in the ‘log’ dict.
Examples
With a single dataloader:
def validation_epoch_end(self, outputs): val_acc_mean = 0 for output in outputs: val_acc_mean += output['val_acc'] val_acc_mean /= len(outputs) tqdm_dict = {'val_acc': val_acc_mean.item()} # show val_acc in progress bar but only log val_loss results = { 'progress_bar': tqdm_dict, 'log': {'val_acc': val_acc_mean.item()} } return results
With multiple dataloaders, outputs will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each validation step for that dataloader.
def validation_epoch_end(self, outputs): val_acc_mean = 0 i = 0 for dataloader_outputs in outputs: for output in dataloader_outputs: val_acc_mean += output['val_acc'] i += 1 val_acc_mean /= i tqdm_dict = {'val_acc': val_acc_mean.item()} # show val_loss and val_acc in progress bar but only log val_loss results = { 'progress_bar': tqdm_dict, 'log': {'val_acc': val_acc_mean.item(), 'step': self.current_epoch} } return results
-
validation_step
(*args, **kwargs)[source]¶ Operates on a single batch of data from the validation set. In this step you’d might generate examples or calculate anything of interest like accuracy.
# the pseudocode for these calls val_outs = [] for val_batch in val_data: out = validation_step(train_batch) val_outs.append(out) validation_epoch_end(val_outs)
- Parameters
- Return type
- Returns
Dict or OrderedDict - passed to
validation_epoch_end()
. If you definedvalidation_step_end()
it will go to that first.
# pseudocode of order out = validation_step() if defined('validation_step_end'): out = validation_step_end(out) out = validation_epoch_end(out)
# if you have one val dataloader: def validation_step(self, batch, batch_idx) # if you have multiple val dataloaders: def validation_step(self, batch, batch_idx, dataloader_idx)
Examples
# CASE 1: A single validation dataset def validation_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # all optional... # return whatever you need for the collation function validation_epoch_end output = OrderedDict({ 'val_loss': loss_val, 'val_acc': torch.tensor(val_acc), # everything must be a tensor }) # return an optional dict return output
If you pass in multiple val datasets, validation_step will have an additional argument.
# CASE 2: multiple validation datasets def validation_step(self, batch, batch_idx, dataset_idx): # dataset_idx tells you which dataset this is.
Note
If you don’t need to validate you don’t need to implement this method.
Note
When the
validation_step()
is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of validation, the model goes back to training mode and gradients are enabled.
-
validation_step_end
(*args, **kwargs)[source]¶ Use this when validating with dp or ddp2 because
validation_step()
will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss.Note
If you later switch to ddp or some other mode, this will still be called so that you don’t have to change your code.
# pseudocode sub_batches = split_batches_for_dp(batch) batch_parts_outputs = [validation_step(sub_batch) for sub_batch in sub_batches] validation_step_end(batch_parts_outputs)
- Parameters
batch_parts_outputs – What you return in
validation_step()
for each batch part.- Return type
- Returns
Dict or OrderedDict - passed to the
validation_epoch_end()
method.
Examples
# WITHOUT validation_step_end # if used in DP or DDP2, this batch is 1/num_gpus large def validation_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self(x) loss = self.softmax(out) loss = nce_loss(loss) return {'loss': loss} # -------------- # with validation_step_end to do softmax over the full batch def validation_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self(x) return {'out': out} def validation_epoch_end(self, outputs): # this out is now the full size of the batch out = outputs['out'] # this softmax now uses the full batch size loss = nce_loss(loss) return {'loss': loss}
See also
See the Multi-GPU training guide for more details.
-
Submodules¶
pytorch_lightning.core.decorators module¶
pytorch_lightning.core.grads module¶
Module to describe gradients
pytorch_lightning.core.hooks module¶
Model Hooks¶
- There are cases when you might want to do something different at different parts of the training/validation loop.
To enable a hook, simply override the method in your LightningModule and the trainer will call it at the correct time.
Contributing If there’s a hook you’d like to add, simply:
Fork PyTorchLightning.
Add the hook
pytorch_lightning.base_module.hooks.py
.Add the correct place in the
pytorch_lightning.models.trainer
where it should be called.
-
class
pytorch_lightning.core.hooks.
ModelHooks
(*args, **kwargs)[source]¶ Bases:
torch.nn.Module
-
backward
(trainer, loss, optimizer, optimizer_idx)[source]¶ Override backward with your own implementation if you need to
- Parameters
Called to perform backward step. Feel free to override as needed.
The loss passed in has already been scaled for accumulated gradients if requested.
def backward(self, use_amp, loss, optimizer): if use_amp: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward()
- Return type
None
-
on_after_backward
()[source]¶ Called in the training loop after loss.backward() and before optimizers do anything.
This is the ideal place to inspect or log gradient information
def on_after_backward(self): # example to inspect gradient information in tensorboard if self.trainer.global_step % 25 == 0: # don't make the tf file huge params = self.state_dict() for k, v in params.items(): grads = v name = k self.logger.experiment.add_histogram(tag=name, values=grads, global_step=self.trainer.global_step)
- Return type
None
-
on_batch_start
(batch)[source]¶ Called in the training loop before anything happens for that batch.
If you return -1 here, you will skip training for the rest of the current epoch.
- Parameters
batch (
Any
) –- Return type
None
-
on_before_zero_grad
(optimizer)[source]¶ Called after optimizer.step() and before optimizer.zero_grad()
Called in the training loop after taking an optimizer step and before zeroing grads. Good place to inspect weight information with weights updated.
for optimizer in optimizers:
optimizer.step() model.on_before_zero_grad(optimizer) # < ---- called here optimizer.zero_grad
- Parameters
optimizer (
Optimizer
) – The optimizer for which grads should be zeroed.- Return type
None
-
on_epoch_start
()[source]¶ Called in the training loop at the very beginning of the epoch.
- Return type
None
-
on_post_performance_check
()[source]¶ Called at the very end of the validation loop.
- Return type
None
-
on_pre_performance_check
()[source]¶ Called at the very beginning of the validation loop.
- Return type
None
-
on_sanity_check_start
()[source]¶ Called before starting evaluate .. warning:: will be deprecated. :return:
-
pytorch_lightning.core.lightning module¶
-
class
pytorch_lightning.core.lightning.
LightningModule
(*args, **kwargs)[source]¶ Bases:
abc.ABC
,pytorch_lightning.core.grads.GradInformation
,pytorch_lightning.core.saving.ModelIO
,pytorch_lightning.core.hooks.ModelHooks
-
configure_apex
(amp, model, optimizers, amp_level)[source]¶ Override to init AMP your own way. Must return a model and list of optimizers.
- Parameters
amp (
object
) – pointer to amp library object.model (
LightningModule
) – pointer to currentLightningModule
.optimizers (
List
[Optimizer
]) – list of optimizers passed inconfigure_optimizers()
.amp_level (
str
) – AMP mode chosen (‘O1’, ‘O2’, etc…)
- Return type
Tuple
[LightningModule
,List
[Optimizer
]]- Returns
Apex wrapped model and optimizers
Examples
# Default implementation used by Trainer. def configure_apex(self, amp, model, optimizers, amp_level): model, optimizers = amp.initialize( model, optimizers, opt_level=amp_level, ) return model, optimizers
-
configure_ddp
(model, device_ids)[source]¶ Override to init DDP in your own way or with your own wrapper. The only requirements are that:
On a validation batch the call goes to
model.validation_step
.On a training batch the call goes to
model.training_step
.On a testing batch, the call goes to
model.test_step
.+
- Parameters
model (
LightningModule
) – theLightningModule
currently being optimized.
- Return type
- Returns
DDP wrapped model
Examples
# default implementation used in Trainer def configure_ddp(self, model, device_ids): # Lightning DDP simply routes to test_step, val_step, etc... model = LightningDistributedDataParallel( model, device_ids=device_ids, find_unused_parameters=True ) return model
-
configure_optimizers
()[source]¶ Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you’d need one. But in the case of GANs or similar you might have multiple.
- Return type
Union
[Optimizer
,Sequence
[Optimizer
],Dict
,Sequence
[Dict
],Tuple
[List
,List
],None
]- Returns
Any of these 6 options.
Single optimizer.
List or Tuple - List of optimizers.
Two lists - The first list has multiple optimizers, the second a list of LR schedulers.
Dictionary, with an ‘optimizer’ key and (optionally) a ‘lr_scheduler’ key.
Tuple of dictionaries as described, with an optional ‘frequency’ key.
None - Fit will run without any optimizer.
Note
The ‘frequency’ value is an int corresponding to the number of sequential batches optimized with the specific optimizer. It should be given to none or to all of the optimizers. There is a difference between passing multiple optimizers in a list, and passing multiple optimizers in dictionaries with a frequency of 1: In the former case, all optimizers will operate on the given batch in each optimization step. In the latter, only one optimizer will operate on the given batch at every step.
Examples
# most cases def configure_optimizers(self): opt = Adam(self.parameters(), lr=1e-3) return opt # multiple optimizer case (e.g.: GAN) def configure_optimizers(self): generator_opt = Adam(self.model_gen.parameters(), lr=0.01) disriminator_opt = Adam(self.model_disc.parameters(), lr=0.02) return generator_opt, disriminator_opt # example with learning rate schedulers def configure_optimizers(self): generator_opt = Adam(self.model_gen.parameters(), lr=0.01) disriminator_opt = Adam(self.model_disc.parameters(), lr=0.02) discriminator_sched = CosineAnnealing(discriminator_opt, T_max=10) return [generator_opt, disriminator_opt], [discriminator_sched] # example with step-based learning rate schedulers def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_disc.parameters(), lr=0.02) gen_sched = {'scheduler': ExponentialLR(gen_opt, 0.99), 'interval': 'step'} # called after each training step dis_sched = CosineAnnealing(discriminator_opt, T_max=10) # called every epoch return [gen_opt, dis_opt], [gen_sched, dis_sched] # example with optimizer frequencies # see training procedure in `Improved Training of Wasserstein GANs`, Algorithm 1 # https://arxiv.org/abs/1704.00028 def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_disc.parameters(), lr=0.02) n_critic = 5 return ( {'optimizer': dis_opt, 'frequency': n_critic}, {'optimizer': gen_opt, 'frequency': 1} )
Note
Some things to know:
Lightning calls
.backward()
and.step()
on each optimizer and learning rate scheduler as needed.If you use 16-bit precision (
precision=16
), Lightning will automatically handle the optimizers for you.If you use multiple optimizers,
training_step()
will have an additionaloptimizer_idx
parameter.If you use LBFGS Lightning handles the closure function automatically for you.
If you use multiple optimizers, gradients will be calculated only for the parameters of current optimizer at each training step.
If you need to control how often those optimizers step or override the default
.step()
schedule, override theoptimizer_step()
hook.If you only want to call a learning rate scheduler every
x
step or epoch, or want to monitor a custom metric, you can specify these in a dictionary:{ 'scheduler': lr_scheduler, 'interval': 'step' # or 'epoch' 'monitor': 'val_f1', 'frequency': x }
-
abstract
forward
(*args, **kwargs)[source]¶ Same as
torch.nn.Module.forward()
, however in Lightning you want this to define the operations you want to use for prediction (i.e.: on a server or as a feature extractor).Normally you’d call
self()
from yourtraining_step()
method. This makes it easy to write a complex system for training with the outputs you’d want in a prediction setting.- Parameters
*args – Whatever you decide to pass into the forward method.
**kwargs – Keyword arguments are also possible.
- Returns
Predicted output
Examples
# example if we were using this model as a feature extractor def forward(self, x): feature_maps = self.convnet(x) return feature_maps def training_step(self, batch, batch_idx): x, y = batch feature_maps = self(x) logits = self.classifier(feature_maps) # ... return loss # splitting it this way allows model to be used a feature extractor model = MyModelAbove() inputs = server.get_request() results = model(inputs) server.write_results(results) # ------------- # This is in stark contrast to torch.nn.Module where normally you would have this: def forward(self, batch): x, y = batch feature_maps = self.convnet(x) logits = self.classifier(feature_maps) return logits
-
freeze
()[source]¶ Freeze all params for inference.
Example
model = MyLightningModule(...) model.freeze()
- Return type
None
-
init_ddp_connection
(proc_rank, world_size)[source]¶ Override to define your custom way of setting up a distributed environment.
Lightning’s implementation uses
env://
init by default and sets the first node as root.- Parameters
Examples
def init_ddp_connection(self): # use slurm job id for the port number # guarantees unique ports across jobs from same grid search try: # use the last 4 numbers in the job id as the id default_port = os.environ['SLURM_JOB_ID'] default_port = default_port[-4:] # all ports should be in the 10k+ range default_port = int(default_port) + 15000 except Exception as e: default_port = 12910 # if user gave a port number, use that one instead try: default_port = os.environ['MASTER_PORT'] except Exception: os.environ['MASTER_PORT'] = str(default_port) # figure out the root node addr try: root_node = os.environ['SLURM_NODELIST'].split(' ')[0] except Exception: root_node = '127.0.0.2' root_node = self.trainer.resolve_root_node_address(root_node) os.environ['MASTER_ADDR'] = root_node dist.init_process_group( 'nccl', rank=self.proc_rank, world_size=self.world_size )
- Return type
None
-
classmethod
load_from_checkpoint
(checkpoint_path, map_location=None, tags_csv=None, *args, **kwargs)[source]¶ Primary way of loading a model from a checkpoint. When Lightning saves a checkpoint it stores the hyperparameters in the checkpoint if you initialized your
LightningModule
with an argument calledhparams
which is aNamespace
(output ofparse_args()
when parsing command line arguments).Example
from argparse import Namespace hparams = Namespace(**{'learning_rate': 0.1}) model = MyModel(hparams) class MyModel(LightningModule): def __init__(self, hparams): self.learning_rate = hparams.learning_rate
- Parameters
checkpoint_path (
str
) – Path to checkpoint.model_args – Any keyword args needed to init the model.
map_location (
Union
[Dict
[str
,str
],str
,device
,int
,Callable
,None
]) – If your checkpoint saved a GPU model and you now load on CPUs or a different number of GPUs, use this to map to the new setup. The behaviour is the same as intorch.load()
.Optional path to a .csv file with two columns (key, value) as in this example:
key,value drop_prob,0.2 batch_size,32
You most likely won’t need this since Lightning will always save the hyperparameters to the checkpoint. However, if your checkpoint weights don’t have the hyperparameters saved, use this method to pass in a .csv file with the hparams you’d like to use. These will be converted into a
Namespace
and passed into yourLightningModule
for use.
- Return type
- Returns
LightningModule
with loaded weights and hyperparameters (if available).
Example
# load weights without mapping ... MyLightningModule.load_from_checkpoint('path/to/checkpoint.ckpt') # or load weights mapping all weights from GPU 1 to GPU 0 ... map_location = {'cuda:1':'cuda:0'} MyLightningModule.load_from_checkpoint( 'path/to/checkpoint.ckpt', map_location=map_location ) # or load weights and hyperparameters from separate files. MyLightningModule.load_from_checkpoint( 'path/to/checkpoint.ckpt', tags_csv='/path/to/hparams_file.csv' ) # or load passing whatever args the model takes to load MyLightningModule.load_from_checkpoint( 'path/to/checkpoint.ckpt', learning_rate=0.1, layers=2, pretrained_model=some_model ) # predict pretrained_model.eval() pretrained_model.freeze() y_hat = pretrained_model(x)
-
classmethod
load_from_metrics
(weights_path, tags_csv, map_location=None)[source]¶ Warning
Deprecated in version 0.7.0. You should use
load_from_checkpoint()
instead. Will be removed in v0.9.0.
-
on_load_checkpoint
(checkpoint)[source]¶ Called by Lightning to restore your model. If you saved something with
on_save_checkpoint()
this is your chance to restore this.Example
def on_load_checkpoint(self, checkpoint): # 99% of the time you don't need to implement this method self.something_cool_i_want_to_save = checkpoint['something_cool_i_want_to_save']
Note
Lightning auto-restores global step, epoch, and train state including amp scaling. There is no need for you to restore anything regarding training.
- Return type
None
-
on_save_checkpoint
(checkpoint)[source]¶ Called by Lightning when saving a checkpoint to give you a chance to store anything else you might want to save.
Example
def on_save_checkpoint(self, checkpoint): # 99% of use cases you don't need to implement this method checkpoint['something_cool_i_want_to_save'] = my_cool_pickable_object
Note
Lightning saves all aspects of training (epoch, global step, etc…) including amp scaling. There is no need for you to store anything about training.
- Return type
None
-
optimizer_step
(epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None)[source]¶ Override this method to adjust the default way the
Trainer
calls each optimizer. By default, Lightning callsstep()
andzero_grad()
as shown in the example once per optimizer.- Parameters
Examples
# DEFAULT def optimizer_step(self, current_epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None): optimizer.step() optimizer.zero_grad() # Alternating schedule for optimizer steps (i.e.: GANs) def optimizer_step(self, current_epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None): # update generator opt every 2 steps if optimizer_idx == 0: if batch_idx % 2 == 0 : optimizer.step() optimizer.zero_grad() # update discriminator opt every 4 steps if optimizer_idx == 1: if batch_idx % 4 == 0 : optimizer.step() optimizer.zero_grad() # ... # add as many optimizers as you want
Here’s another example showing how to use this for more advanced things such as learning rate warm-up:
# learning rate warm-up def optimizer_step(self, current_epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None): # warm up lr if self.trainer.global_step < 500: lr_scale = min(1., float(self.trainer.global_step + 1) / 500.) for pg in optimizer.param_groups: pg['lr'] = lr_scale * self.hparams.learning_rate # update params optimizer.step() optimizer.zero_grad()
- Return type
None
-
prepare_data
()[source]¶ Use this to download and prepare data. In distributed (GPU, TPU), this will only be called once. This is called before requesting the dataloaders:
model.prepare_data() model.train_dataloader() model.val_dataloader() model.test_dataloader()
Examples
def prepare_data(self): download_imagenet() clean_imagenet() cache_imagenet()
- Return type
None
-
print
(*args, **kwargs)[source]¶ Prints only from process 0. Use this in any distributed mode to log only once.
- Parameters
*args – The thing to print. Will be passed to Python’s built-in print function.
**kwargs – Will be passed to Python’s built-in print function.
Example
def forward(self, x): self.print(x, 'in forward')
- Return type
None
-
tbptt_split_batch
(batch, split_size)[source]¶ When using truncated backpropagation through time, each batch must be split along the time dimension. Lightning handles this by default, but for custom behavior override this function.
- Parameters
- Return type
- Returns
List of batch splits. Each split will be passed to
training_step()
to enable truncated back propagation through time. The default implementation splits root level Tensors and Sequences at dim=1 (i.e. time dim). It assumes that each time dim is the same length.
Examples
def tbptt_split_batch(self, batch, split_size): splits = [] for t in range(0, time_dims[0], split_size): batch_split = [] for i, x in enumerate(batch): if isinstance(x, torch.Tensor): split_x = x[:, t:t + split_size] elif isinstance(x, collections.Sequence): split_x = [None] * len(x) for batch_idx in range(len(x)): split_x[batch_idx] = x[batch_idx][t:t + split_size] batch_split.append(split_x) splits.append(batch_split) return splits
Note
Called in the training loop after
on_batch_start()
iftruncated_bptt_steps
> 0. Each returned batch split is passed separately totraining_step()
.
-
test_dataloader
()[source]¶ Implement one or multiple PyTorch DataLoaders for testing.
The dataloader you return will not be called every epoch unless you set
reload_dataloaders_every_epoch
toTrue
.It’s recommended that all data downloads and preparation happen in
prepare_data()
.Note
Lightning adds the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself.
- Return type
- Returns
Single or multiple PyTorch DataLoaders.
Example
def test_dataloader(self): transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) dataset = MNIST(root='/path/to/mnist/', train=False, transform=transform, download=True) loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=self.hparams.batch_size, shuffle=True ) return loader
Note
If you don’t need a test dataset and a
test_step()
, you don’t need to implement this method.
-
test_end
(outputs)[source]¶ Warning
Deprecated in v0.7.0. Use
test_epoch_end()
instead. Will be removed in 1.0.0.
-
test_epoch_end
(outputs)[source]¶ Called at the end of a test epoch with the output of all test steps.
# the pseudocode for these calls test_outs = [] for test_batch in test_data: out = test_step(test_batch) test_outs.append(out) test_epoch_end(test_outs)
- Parameters
outputs (
Union
[List
[Dict
[str
,Tensor
]],List
[List
[Dict
[str
,Tensor
]]]]) – List of outputs you defined intest_step_end()
, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader- Returns
Dict has the following optional keys:
progress_bar -> Dict for progress bar display. Must have only tensors.
log -> Dict of metrics to add to logger. Must have only tensors (no images, etc).
- Return type
Dict or OrderedDict
Note
If you didn’t define a
test_step()
, this won’t be called.The outputs here are strictly for logging or progress bar.
If you don’t need to display anything, don’t return anything.
If you want to manually set current step, specify it with the ‘step’ key in the ‘log’ Dict
Examples
With a single dataloader:
def test_epoch_end(self, outputs): test_acc_mean = 0 for output in outputs: test_acc_mean += output['test_acc'] test_acc_mean /= len(outputs) tqdm_dict = {'test_acc': test_acc_mean.item()} # show test_loss and test_acc in progress bar but only log test_loss results = { 'progress_bar': tqdm_dict, 'log': {'test_acc': test_acc_mean.item()} } return results
With multiple dataloaders, outputs will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each test step for that dataloader.
def test_epoch_end(self, outputs): test_acc_mean = 0 i = 0 for dataloader_outputs in outputs: for output in dataloader_outputs: test_acc_mean += output['test_acc'] i += 1 test_acc_mean /= i tqdm_dict = {'test_acc': test_acc_mean.item()} # show test_loss and test_acc in progress bar but only log test_loss results = { 'progress_bar': tqdm_dict, 'log': {'test_acc': test_acc_mean.item(), 'step': self.current_epoch} } return results
-
test_step
(*args, **kwargs)[source]¶ Operates on a single batch of data from the test set. In this step you’d normally generate examples or calculate anything of interest such as accuracy.
# the pseudocode for these calls test_outs = [] for test_batch in test_data: out = test_step(test_batch) test_outs.append(out) test_epoch_end(test_outs)
- Parameters
- Return type
- Returns
Dict or OrderedDict - passed to the
test_epoch_end()
method. If you definedtest_step_end()
it will go to that first.
# if you have one test dataloader: def test_step(self, batch, batch_idx) # if you have multiple test dataloaders: def test_step(self, batch, batch_idx, dataloader_idx)
Examples
# CASE 1: A single test dataset def test_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # all optional... # return whatever you need for the collation function test_epoch_end output = OrderedDict({ 'val_loss': loss_val, 'val_acc': torch.tensor(val_acc), # everything must be a tensor }) # return an optional dict return output
If you pass in multiple validation datasets,
test_step()
will have an additional argument.# CASE 2: multiple test datasets def test_step(self, batch, batch_idx, dataset_idx): # dataset_idx tells you which dataset this is.
Note
If you don’t need to validate you don’t need to implement this method.
Note
When the
test_step()
is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of the test epoch, the model goes back to training mode and gradients are enabled.
-
test_step_end
(*args, **kwargs)[source]¶ Use this when testing with dp or ddp2 because
test_step()
will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss.Note
If you later switch to ddp or some other mode, this will still be called so that you don’t have to change your code.
# pseudocode sub_batches = split_batches_for_dp(batch) batch_parts_outputs = [test_step(sub_batch) for sub_batch in sub_batches] test_step_end(batch_parts_outputs)
- Parameters
batch_parts_outputs – What you return in
test_step()
for each batch part.- Return type
- Returns
Dict or OrderedDict - passed to the
test_epoch_end()
.
Examples
# WITHOUT test_step_end # if used in DP or DDP2, this batch is 1/num_gpus large def test_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self(x) loss = self.softmax(out) loss = nce_loss(loss) return {'loss': loss} # -------------- # with test_step_end to do softmax over the full batch def test_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self(x) return {'out': out} def test_step_end(self, outputs): # this out is now the full size of the batch out = outputs['out'] # this softmax now uses the full batch size loss = nce_loss(loss) return {'loss': loss}
See also
See the Multi-GPU training guide for more details.
-
tng_dataloader
()[source]¶ Warning
Deprecated in v0.5.0. Use
train_dataloader()
instead. Will be removed in 1.0.0.
-
train_dataloader
()[source]¶ Implement a PyTorch DataLoader for training.
- Return type
- Returns
Single PyTorch
DataLoader
.
The dataloader you return will not be called every epoch unless you set
reload_dataloaders_every_epoch
toTrue
.It’s recommended that all data downloads and preparation happen in
prepare_data()
.Note
Lightning adds the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself.
Example
def train_dataloader(self): transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) dataset = MNIST(root='/path/to/mnist/', train=True, transform=transform, download=True) loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=self.hparams.batch_size, shuffle=True ) return loader
-
training_end
(*args, **kwargs)[source]¶ Warning
Deprecated in v0.7.0. Use
training_step_end()
instead.
-
training_epoch_end
(outputs)[source]¶ Called at the end of the training epoch with the outputs of all training steps.
# the pseudocode for these calls train_outs = [] for train_batch in train_data: out = training_step(train_batch) train_outs.append(out) training_epoch_end(train_outs)
- Parameters
outputs (
Union
[List
[Dict
[str
,Tensor
]],List
[List
[Dict
[str
,Tensor
]]]]) – List of outputs you defined intraining_step()
, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader.- Return type
- Returns
Dict or OrderedDict. May contain the following optional keys:
log (metrics to be added to the logger; only tensors)
any metric used in a callback (e.g. early stopping).
Note
If this method is not overridden, this won’t be called.
The outputs here are strictly for logging or progress bar.
If you don’t need to display anything, don’t return anything.
If you want to manually set current step, you can specify the ‘step’ key in the ‘log’ dict.
Examples
With a single dataloader:
def training_epoch_end(self, outputs): train_acc_mean = 0 for output in outputs: train_acc_mean += output['train_acc'] train_acc_mean /= len(outputs) # log training accuracy at the end of an epoch results = { 'log': {'train_acc': train_acc_mean.item()} } return results
With multiple dataloaders,
outputs
will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each training step for that dataloader.def training_epoch_end(self, outputs): train_acc_mean = 0 i = 0 for dataloader_outputs in outputs: for output in dataloader_outputs: train_acc_mean += output['train_acc'] i += 1 train_acc_mean /= i # log training accuracy at the end of an epoch results = { 'log': {'train_acc': train_acc_mean.item(), 'step': self.current_epoch} } return results
-
training_step
(*args, **kwargs)[source]¶ Here you compute and return the training loss and some additional metrics for e.g. the progress bar or logger.
- Parameters
batch (
Tensor
| (Tensor
, …) | [Tensor
, …]) – The output of yourDataLoader
. A tensor, tuple or list.batch_idx (int) – Integer displaying index of this batch
optimizer_idx (int) – When using multiple optimizers, this argument will also be present.
hiddens (
Tensor
) – Passed in iftruncated_bptt_steps
> 0.
- Return type
- Returns
Dict with loss key and optional log or progress bar keys. When implementing
training_step()
, return whatever you need in that step:loss -> tensor scalar REQUIRED
progress_bar -> Dict for progress bar display. Must have only tensors
log -> Dict of metrics to add to logger. Must have only tensors (no images, etc)
In this step you’d normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something model specific.
Examples
def training_step(self, batch, batch_idx): x, y, z = batch # implement your own out = self(x) loss = self.loss(out, x) logger_logs = {'training_loss': loss} # optional (MUST ALL BE TENSORS) # if using TestTubeLogger or TensorBoardLogger you can nest scalars logger_logs = {'losses': logger_logs} # optional (MUST ALL BE TENSORS) output = { 'loss': loss, # required 'progress_bar': {'training_loss': loss}, # optional (MUST ALL BE TENSORS) 'log': logger_logs } # return a dict return output
If you define multiple optimizers, this step will be called with an additional
optimizer_idx
parameter.# Multiple optimizers (e.g.: GANs) def training_step(self, batch, batch_idx, optimizer_idx): if optimizer_idx == 0: # do training_step with encoder if optimizer_idx == 1: # do training_step with decoder
If you add truncated back propagation through time you will also get an additional argument with the hidden states of the previous step.
# Truncated back-propagation through time def training_step(self, batch, batch_idx, hiddens): # hiddens are the hidden states from the previous truncated backprop step ... out, hiddens = self.lstm(data, hiddens) ... return { "loss": ..., "hiddens": hiddens # remember to detach() this }
Notes
The loss value shown in the progress bar is smoothed (averaged) over the last values, so it differs from the actual loss returned in train/validation step.
-
training_step_end
(*args, **kwargs)[source]¶ Use this when training with dp or ddp2 because
training_step()
will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss.Note
If you later switch to ddp or some other mode, this will still be called so that you don’t have to change your code
# pseudocode sub_batches = split_batches_for_dp(batch) batch_parts_outputs = [training_step(sub_batch) for sub_batch in sub_batches] training_step_end(batch_parts_outputs)
- Parameters
batch_parts_outputs – What you return in training_step for each batch part.
- Return type
- Returns
Dict with loss key and optional log or progress bar keys.
loss -> tensor scalar REQUIRED
progress_bar -> Dict for progress bar display. Must have only tensors
log -> Dict of metrics to add to logger. Must have only tensors (no images, etc)
Examples
# WITHOUT training_step_end # if used in DP or DDP2, this batch is 1/num_gpus large def training_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self(x) loss = self.softmax(out) loss = nce_loss(loss) return {'loss': loss} # -------------- # with training_step_end to do softmax over the full batch def training_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self(x) return {'out': out} def training_step_end(self, outputs): # this out is now the full size of the batch out = outputs['out'] # this softmax now uses the full batch size loss = nce_loss(loss) return {'loss': loss}
See also
See the Multi-GPU training guide for more details.
-
unfreeze
()[source]¶ Unfreeze all parameters for training.
model = MyLightningModule(...) model.unfreeze()
- Return type
None
-
val_dataloader
()[source]¶ Implement one or multiple PyTorch DataLoaders for validation.
The dataloader you return will not be called every epoch unless you set
reload_dataloaders_every_epoch
toTrue
.It’s recommended that all data downloads and preparation happen in
prepare_data()
.Note
Lightning adds the correct sampler for distributed and arbitrary hardware There is no need to set it yourself.
- Return type
- Returns
Single or multiple PyTorch DataLoaders.
Examples
def val_dataloader(self): transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) dataset = MNIST(root='/path/to/mnist/', train=False, transform=transform, download=True) loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=self.hparams.batch_size, shuffle=True ) return loader # can also return multiple dataloaders def val_dataloader(self): return [loader_a, loader_b, ..., loader_n]
Note
If you don’t need a validation dataset and a
validation_step()
, you don’t need to implement this method.Note
In the case where you return multiple validation dataloaders, the
validation_step()
will have an argumentdataset_idx
which matches the order here.
-
validation_end
(outputs)[source]¶ Warning
Deprecated in v0.7.0. Use
validation_epoch_end()
instead. Will be removed in 1.0.0.
-
validation_epoch_end
(outputs)[source]¶ Called at the end of the validation epoch with the outputs of all validation steps.
# the pseudocode for these calls val_outs = [] for val_batch in val_data: out = validation_step(train_batch) val_outs.append(out) validation_epoch_end(val_outs)
- Parameters
outputs (
Union
[List
[Dict
[str
,Tensor
]],List
[List
[Dict
[str
,Tensor
]]]]) – List of outputs you defined invalidation_step()
, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader.- Return type
- Returns
Dict or OrderedDict. May have the following optional keys:
progress_bar (dict for progress bar display; only tensors)
log (dict of metrics to add to logger; only tensors).
Note
If you didn’t define a
validation_step()
, this won’t be called.The outputs here are strictly for logging or progress bar.
If you don’t need to display anything, don’t return anything.
If you want to manually set current step, you can specify the ‘step’ key in the ‘log’ dict.
Examples
With a single dataloader:
def validation_epoch_end(self, outputs): val_acc_mean = 0 for output in outputs: val_acc_mean += output['val_acc'] val_acc_mean /= len(outputs) tqdm_dict = {'val_acc': val_acc_mean.item()} # show val_acc in progress bar but only log val_loss results = { 'progress_bar': tqdm_dict, 'log': {'val_acc': val_acc_mean.item()} } return results
With multiple dataloaders, outputs will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each validation step for that dataloader.
def validation_epoch_end(self, outputs): val_acc_mean = 0 i = 0 for dataloader_outputs in outputs: for output in dataloader_outputs: val_acc_mean += output['val_acc'] i += 1 val_acc_mean /= i tqdm_dict = {'val_acc': val_acc_mean.item()} # show val_loss and val_acc in progress bar but only log val_loss results = { 'progress_bar': tqdm_dict, 'log': {'val_acc': val_acc_mean.item(), 'step': self.current_epoch} } return results
-
validation_step
(*args, **kwargs)[source]¶ Operates on a single batch of data from the validation set. In this step you’d might generate examples or calculate anything of interest like accuracy.
# the pseudocode for these calls val_outs = [] for val_batch in val_data: out = validation_step(train_batch) val_outs.append(out) validation_epoch_end(val_outs)
- Parameters
- Return type
- Returns
Dict or OrderedDict - passed to
validation_epoch_end()
. If you definedvalidation_step_end()
it will go to that first.
# pseudocode of order out = validation_step() if defined('validation_step_end'): out = validation_step_end(out) out = validation_epoch_end(out)
# if you have one val dataloader: def validation_step(self, batch, batch_idx) # if you have multiple val dataloaders: def validation_step(self, batch, batch_idx, dataloader_idx)
Examples
# CASE 1: A single validation dataset def validation_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # all optional... # return whatever you need for the collation function validation_epoch_end output = OrderedDict({ 'val_loss': loss_val, 'val_acc': torch.tensor(val_acc), # everything must be a tensor }) # return an optional dict return output
If you pass in multiple val datasets, validation_step will have an additional argument.
# CASE 2: multiple validation datasets def validation_step(self, batch, batch_idx, dataset_idx): # dataset_idx tells you which dataset this is.
Note
If you don’t need to validate you don’t need to implement this method.
Note
When the
validation_step()
is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of validation, the model goes back to training mode and gradients are enabled.
-
validation_step_end
(*args, **kwargs)[source]¶ Use this when validating with dp or ddp2 because
validation_step()
will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss.Note
If you later switch to ddp or some other mode, this will still be called so that you don’t have to change your code.
# pseudocode sub_batches = split_batches_for_dp(batch) batch_parts_outputs = [validation_step(sub_batch) for sub_batch in sub_batches] validation_step_end(batch_parts_outputs)
- Parameters
batch_parts_outputs – What you return in
validation_step()
for each batch part.- Return type
- Returns
Dict or OrderedDict - passed to the
validation_epoch_end()
method.
Examples
# WITHOUT validation_step_end # if used in DP or DDP2, this batch is 1/num_gpus large def validation_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self(x) loss = self.softmax(out) loss = nce_loss(loss) return {'loss': loss} # -------------- # with validation_step_end to do softmax over the full batch def validation_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self(x) return {'out': out} def validation_epoch_end(self, outputs): # this out is now the full size of the batch out = outputs['out'] # this softmax now uses the full batch size loss = nce_loss(loss) return {'loss': loss}
See also
See the Multi-GPU training guide for more details.
-
pytorch_lightning.core.memory module¶
Generates a summary of a model’s layers and dimensionality
-
class
pytorch_lightning.core.memory.
ModelSummary
(model, mode='full')[source]¶ Bases:
object
Generates summaries of model layers and dimensions.
-
get_variable_sizes
()[source]¶ Run sample input through each layer to get output sizes
- Return type
None
-
-
pytorch_lightning.core.memory.
_format_summary_table
(*cols)[source]¶ Takes in a number of arrays, each specifying a column in the summary table, and combines them all into one big string defining the summary table that are nicely formatted.
- Return type
-
pytorch_lightning.core.memory.
get_human_readable_count
(number)[source]¶ Abbreviates an integer number with K, M, B, T for thousands, millions, billions and trillions, respectively.
Examples
123 -> 123 1234 -> 1 K (one thousand) 2e6 -> 2 M (two million) 3e9 -> 3 B (three billion) 4e12 -> 4 T (four trillion) 5e15 -> 5,000 T
pytorch_lightning.core.model_saving module¶
Warning
model_saving module has been renamed to saving since v0.6.0. The deprecated module name will be removed in v0.8.0.
pytorch_lightning.core.root_module module¶
Warning
root_module module has been renamed to lightning since v0.6.0. The deprecated module name will be removed in v0.8.0.
pytorch_lightning.core.saving module¶
-
class
pytorch_lightning.core.saving.
ModelIO
[source]¶ Bases:
object
-
on_hpc_load
(checkpoint)[source]¶ Hook to do whatever you need right before Slurm manager loads the model
- Return type
None
-
on_hpc_save
(checkpoint)[source]¶ Hook to do whatever you need right before Slurm manager saves the model
- Return type
None
-
on_load_checkpoint
(checkpoint)[source]¶ Do something with the checkpoint Gives model a chance to load something before state_dict is restored :type _sphinx_paramlinks_pytorch_lightning.core.saving.ModelIO.on_load_checkpoint.checkpoint:
Dict
[str
,Any
] :param _sphinx_paramlinks_pytorch_lightning.core.saving.ModelIO.on_load_checkpoint.checkpoint: :rtype:None
:return:
-
- Return type
pytorch_lightning.callbacks package¶
-
class
pytorch_lightning.callbacks.
Callback
[source]¶ Bases:
abc.ABC
Abstract base class used to build new callbacks.
-
on_init_end
(trainer)[source]¶ Called when the trainer initialization ends, model has not yet been set.
-
-
class
pytorch_lightning.callbacks.
EarlyStopping
(monitor='val_loss', min_delta=0.0, patience=0, verbose=False, mode='auto', strict=True)[source]¶ Bases:
pytorch_lightning.callbacks.base.Callback
- Parameters
monitor (
str
) – quantity to be monitored. Default:'val_loss'
.min_delta (
float
) – minimum change in the monitored quantity to qualify as an improvement, i.e. an absolute change of less than min_delta, will count as no improvement. Default:0
.patience (
int
) – number of epochs with no improvement after which training will be stopped. Default:0
.verbose (
bool
) – verbosity mode. Default:False
.mode (
str
) – one of {auto, min, max}. In min mode, training will stop when the quantity monitored has stopped decreasing; in max mode it will stop when the quantity monitored has stopped increasing; in auto mode, the direction is automatically inferred from the name of the monitored quantity. Default:'auto'
.strict (
bool
) – whether to crash the training if monitor is not found in the metrics. Default:True
.
Example:
>>> from pytorch_lightning import Trainer >>> from pytorch_lightning.callbacks import EarlyStopping >>> early_stopping = EarlyStopping('val_loss') >>> trainer = Trainer(early_stop_callback=early_stopping)
-
class
pytorch_lightning.callbacks.
ModelCheckpoint
(filepath, monitor='val_loss', verbose=False, save_top_k=1, save_weights_only=False, mode='auto', period=1, prefix='')[source]¶ Bases:
pytorch_lightning.callbacks.base.Callback
Save the model after every epoch.
- Parameters
filepath (
str
) –path to save the model file. Can contain named formatting options to be auto-filled.
Example:
# custom path # saves a file like: my/path/epoch_0.ckpt >>> checkpoint_callback = ModelCheckpoint('my/path/') # save any arbitrary metrics like `val_loss`, etc. in name # saves a file like: my/path/epoch=2-val_loss=0.2_other_metric=0.3.ckpt >>> checkpoint_callback = ModelCheckpoint( ... filepath='my/path/{epoch}-{val_loss:.2f}-{other_metric:.2f}' ... )
monitor (
str
) – quantity to monitor.verbose (
bool
) – verbosity mode. Default:False
.save_top_k (
int
) – if save_top_k == k, the best k models according to the quantity monitored will be saved. ifsave_top_k == 0
, no models are saved. ifsave_top_k == -1
, all models are saved. Please note that the monitors are checked every period epochs. ifsave_top_k >= 2
and the callback is called multiple times inside an epoch, the name of the saved file will be appended with a version count starting with v0.mode (
str
) – one of {auto, min, max}. Ifsave_top_k != 0
, the decision to overwrite the current save file is made based on either the maximization or the minimization of the monitored quantity. For val_acc, this should be max, for val_loss this should be min, etc. In auto mode, the direction is automatically inferred from the name of the monitored quantity.save_weights_only (
bool
) – ifTrue
, then only the model’s weights will be saved (model.save_weights(filepath)
), else the full model is saved (model.save(filepath)
).period (
int
) – Interval (number of epochs) between checkpoints.
Example:
>>> from pytorch_lightning import Trainer >>> from pytorch_lightning.callbacks import ModelCheckpoint # saves checkpoints to 'my/path/' whenever 'val_loss' has a new min >>> checkpoint_callback = ModelCheckpoint(filepath='my/path/') >>> trainer = Trainer(checkpoint_callback=checkpoint_callback) # save epoch and val_loss in name # saves a file like: my/path/sample-mnist_epoch=02_val_loss=0.32.ckpt >>> checkpoint_callback = ModelCheckpoint( ... filepath='my/path/sample-mnist_{epoch:02d}-{val_loss:.2f}' ... )
-
format_checkpoint_name
(epoch, metrics, ver=None)[source]¶ Generate a filename according to the defined template.
Example:
>>> tmpdir = os.path.dirname(__file__) >>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{epoch}')) >>> os.path.basename(ckpt.format_checkpoint_name(0, {})) 'epoch=0.ckpt' >>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{epoch:03d}')) >>> os.path.basename(ckpt.format_checkpoint_name(5, {})) 'epoch=005.ckpt' >>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{epoch}-{val_loss:.2f}')) >>> os.path.basename(ckpt.format_checkpoint_name(2, dict(val_loss=0.123456))) 'epoch=2-val_loss=0.12.ckpt' >>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{missing:d}')) >>> os.path.basename(ckpt.format_checkpoint_name(0, {})) 'missing=0.ckpt'
-
class
pytorch_lightning.callbacks.
GradientAccumulationScheduler
(scheduling)[source]¶ Bases:
pytorch_lightning.callbacks.base.Callback
Change gradient accumulation factor according to scheduling.
- Parameters
scheduling (
dict
) –scheduling in format {epoch: accumulation_factor}
Warning
Epochs indexing starts from “1” until v0.6.x, but will start from “0” in v0.8.0.
Example:
>>> from pytorch_lightning import Trainer >>> from pytorch_lightning.callbacks import GradientAccumulationScheduler # at epoch 5 start accumulating every 2 batches >>> accumulator = GradientAccumulationScheduler(scheduling={5: 2}) >>> trainer = Trainer(callbacks=[accumulator]) # alternatively, pass the scheduling dict directly to the Trainer >>> trainer = Trainer(accumulate_grad_batches={5: 2})
Submodules¶
pytorch_lightning.callbacks.base module¶
Callback Base¶
Abstract base class used to build new callbacks.
-
class
pytorch_lightning.callbacks.base.
Callback
[source]¶ Bases:
abc.ABC
Abstract base class used to build new callbacks.
-
on_init_end
(trainer)[source]¶ Called when the trainer initialization ends, model has not yet been set.
-
pytorch_lightning.callbacks.early_stopping module¶
Early Stopping¶
Stop training when a monitored quantity has stopped improving.
-
class
pytorch_lightning.callbacks.early_stopping.
EarlyStopping
(monitor='val_loss', min_delta=0.0, patience=0, verbose=False, mode='auto', strict=True)[source]¶ Bases:
pytorch_lightning.callbacks.base.Callback
- Parameters
monitor (
str
) – quantity to be monitored. Default:'val_loss'
.min_delta (
float
) – minimum change in the monitored quantity to qualify as an improvement, i.e. an absolute change of less than min_delta, will count as no improvement. Default:0
.patience (
int
) – number of epochs with no improvement after which training will be stopped. Default:0
.verbose (
bool
) – verbosity mode. Default:False
.mode (
str
) – one of {auto, min, max}. In min mode, training will stop when the quantity monitored has stopped decreasing; in max mode it will stop when the quantity monitored has stopped increasing; in auto mode, the direction is automatically inferred from the name of the monitored quantity. Default:'auto'
.strict (
bool
) – whether to crash the training if monitor is not found in the metrics. Default:True
.
Example:
>>> from pytorch_lightning import Trainer >>> from pytorch_lightning.callbacks import EarlyStopping >>> early_stopping = EarlyStopping('val_loss') >>> trainer = Trainer(early_stop_callback=early_stopping)
pytorch_lightning.callbacks.gradient_accumulation_scheduler module¶
Gradient Accumulator¶
Change gradient accumulation factor according to scheduling.
-
class
pytorch_lightning.callbacks.gradient_accumulation_scheduler.
GradientAccumulationScheduler
(scheduling)[source]¶ Bases:
pytorch_lightning.callbacks.base.Callback
Change gradient accumulation factor according to scheduling.
- Parameters
scheduling (
dict
) –scheduling in format {epoch: accumulation_factor}
Warning
Epochs indexing starts from “1” until v0.6.x, but will start from “0” in v0.8.0.
Example:
>>> from pytorch_lightning import Trainer >>> from pytorch_lightning.callbacks import GradientAccumulationScheduler # at epoch 5 start accumulating every 2 batches >>> accumulator = GradientAccumulationScheduler(scheduling={5: 2}) >>> trainer = Trainer(callbacks=[accumulator]) # alternatively, pass the scheduling dict directly to the Trainer >>> trainer = Trainer(accumulate_grad_batches={5: 2})
pytorch_lightning.callbacks.model_checkpoint module¶
Model Checkpointing¶
Automatically save model checkpoints during training.
-
class
pytorch_lightning.callbacks.model_checkpoint.
ModelCheckpoint
(filepath, monitor='val_loss', verbose=False, save_top_k=1, save_weights_only=False, mode='auto', period=1, prefix='')[source]¶ Bases:
pytorch_lightning.callbacks.base.Callback
Save the model after every epoch.
- Parameters
filepath (
str
) –path to save the model file. Can contain named formatting options to be auto-filled.
Example:
# custom path # saves a file like: my/path/epoch_0.ckpt >>> checkpoint_callback = ModelCheckpoint('my/path/') # save any arbitrary metrics like `val_loss`, etc. in name # saves a file like: my/path/epoch=2-val_loss=0.2_other_metric=0.3.ckpt >>> checkpoint_callback = ModelCheckpoint( ... filepath='my/path/{epoch}-{val_loss:.2f}-{other_metric:.2f}' ... )
monitor (
str
) – quantity to monitor.verbose (
bool
) – verbosity mode. Default:False
.save_top_k (
int
) – if save_top_k == k, the best k models according to the quantity monitored will be saved. ifsave_top_k == 0
, no models are saved. ifsave_top_k == -1
, all models are saved. Please note that the monitors are checked every period epochs. ifsave_top_k >= 2
and the callback is called multiple times inside an epoch, the name of the saved file will be appended with a version count starting with v0.mode (
str
) – one of {auto, min, max}. Ifsave_top_k != 0
, the decision to overwrite the current save file is made based on either the maximization or the minimization of the monitored quantity. For val_acc, this should be max, for val_loss this should be min, etc. In auto mode, the direction is automatically inferred from the name of the monitored quantity.save_weights_only (
bool
) – ifTrue
, then only the model’s weights will be saved (model.save_weights(filepath)
), else the full model is saved (model.save(filepath)
).period (
int
) – Interval (number of epochs) between checkpoints.
Example:
>>> from pytorch_lightning import Trainer >>> from pytorch_lightning.callbacks import ModelCheckpoint # saves checkpoints to 'my/path/' whenever 'val_loss' has a new min >>> checkpoint_callback = ModelCheckpoint(filepath='my/path/') >>> trainer = Trainer(checkpoint_callback=checkpoint_callback) # save epoch and val_loss in name # saves a file like: my/path/sample-mnist_epoch=02_val_loss=0.32.ckpt >>> checkpoint_callback = ModelCheckpoint( ... filepath='my/path/sample-mnist_{epoch:02d}-{val_loss:.2f}' ... )
-
format_checkpoint_name
(epoch, metrics, ver=None)[source]¶ Generate a filename according to the defined template.
Example:
>>> tmpdir = os.path.dirname(__file__) >>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{epoch}')) >>> os.path.basename(ckpt.format_checkpoint_name(0, {})) 'epoch=0.ckpt' >>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{epoch:03d}')) >>> os.path.basename(ckpt.format_checkpoint_name(5, {})) 'epoch=005.ckpt' >>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{epoch}-{val_loss:.2f}')) >>> os.path.basename(ckpt.format_checkpoint_name(2, dict(val_loss=0.123456))) 'epoch=2-val_loss=0.12.ckpt' >>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{missing:d}')) >>> os.path.basename(ckpt.format_checkpoint_name(0, {})) 'missing=0.ckpt'
pytorch_lightning.loggers package¶
Lightning supports most popular logging frameworks (Tensorboard, comet, weights and biases, etc…).
To use a logger, simply pass it into the trainer. To use multiple loggers, simply pass in a list
or tuple
of loggers.
from pytorch_lightning import loggers
# lightning uses tensorboard by default
tb_logger = loggers.TensorBoardLogger()
trainer = Trainer(logger=tb_logger)
# or choose from any of the others such as MLFlow, Comet, Neptune, Wandb
comet_logger = loggers.CometLogger()
trainer = Trainer(logger=comet_logger)
# or pass a list
tb_logger = loggers.TensorBoardLogger()
comet_logger = loggers.CometLogger()
trainer = Trainer(logger=[tb_logger, comet_logger])
Note
All loggers log by default to os.getcwd()
. To change the path without creating a logger set
Trainer(default_save_path='/your/path/to/save/checkpoints')
Custom logger¶
You can implement your own logger by writing a class that inherits from
LightningLoggerBase
. Use the rank_zero_only
decorator to make sure that
only the first process in DDP training logs data.
from pytorch_lightning.loggers import LightningLoggerBase, rank_zero_only
class MyLogger(LightningLoggerBase):
@rank_zero_only
def log_hyperparams(self, params):
# params is an argparse.Namespace
# your code to record hyperparameters goes here
pass
@rank_zero_only
def log_metrics(self, metrics, step):
# metrics is a dictionary of metric names and values
# your code to record metrics goes here
pass
def save(self):
# Optional. Any code necessary to save logger data goes here
pass
@rank_zero_only
def finalize(self, status):
# Optional. Any code that needs to be run after training
# finishes goes here
If you write a logger that may be useful to others, please send a pull request to add it to Lighting!
Using loggers¶
Call the logger anywhere except __init__
in your LightningModule by doing:
def train_step(...):
# example
self.logger.experiment.whatever_method_summary_writer_supports(...)
def any_lightning_module_function_or_hook(...):
self.logger.experiment.add_histogram(...)
Read more in the Experiment Logging use case.
Supported Loggers¶
-
class
pytorch_lightning.loggers.
TensorBoardLogger
(save_dir, name='default', version=None, **kwargs)[source]¶ Bases:
pytorch_lightning.loggers.base.LightningLoggerBase
Log to local file system in TensorBoard format
Implemented using
torch.utils.tensorboard.SummaryWriter
. Logs are saved toos.path.join(save_dir, name, version)
Example
logger = TensorBoardLogger("tb_logs", name="my_model") trainer = Trainer(logger=logger) trainer.train(model)
- Parameters
save_dir (
str
) – Save directoryname (
Optional
[str
]) – Experiment name. Defaults to “default”. If it is the empty string then no per-experiment subdirectory is used.version (
Union
[int
,str
,None
]) – Experiment version. If version is not specified the logger inspects the save directory for existing versions, then automatically assigns the next available version. If it is a string then it is used as the run-specific subdirectory name, otherwise version_${version} is used.**kwargs – Other arguments are passed directly to the
SummaryWriter
constructor.agg_key_funcs – Dictionary which maps a metric name to a function, which will aggregate the metric values for the same steps.
agg_default_func – Default function to aggregate metric values. If some metric name is not presented in the agg_key_funcs dictionary, then the agg_default_func will be used for aggregation.
Notes
agg_key_funcs and agg_default_func are used only when one logs metrics with LightningLoggerBase.agg_and_log_metrics method.
-
finalize
(status)[source]¶ Do any processing that is necessary to finalize an experiment.
- Parameters
status (
str
) – Status that the experiment finished with (e.g. success, failed, aborted)- Return type
None
-
log_metrics
(metrics, step=None)[source]¶ Records metrics. This method logs metrics as as soon as it received them. If you want to aggregate metrics for one specific step, use the agg_and_log_metrics method.
-
property
experiment
[source]¶ Actual tensorboard object. To use tensorboard features do the following.
Example:
self.logger.experiment.some_tensorboard_function()
- Return type
SummaryWriter
-
property
log_dir
[source]¶ The directory for this run’s tensorboard checkpoint. By default, it is named ‘version_${self.version}’ but it can be overridden by passing a string value for the constructor’s version parameter instead of None or an int
- Return type
-
class
pytorch_lightning.loggers.
CometLogger
(api_key=None, save_dir=None, workspace=None, project_name=None, rest_api_key=None, experiment_name=None, experiment_key=None, **kwargs)[source]¶ Bases:
pytorch_lightning.loggers.base.LightningLoggerBase
Log using comet.ml.
Requires either an API Key (online mode) or a local directory path (offline mode)
# ONLINE MODE from pytorch_lightning.loggers import CometLogger # arguments made to CometLogger are passed on to the comet_ml.Experiment class comet_logger = CometLogger( api_key=os.environ["COMET_API_KEY"], workspace=os.environ["COMET_WORKSPACE"], # Optional project_name="default_project", # Optional rest_api_key=os.environ["COMET_REST_API_KEY"], # Optional experiment_name="default" # Optional ) trainer = Trainer(logger=comet_logger)
# OFFLINE MODE from pytorch_lightning.loggers import CometLogger # arguments made to CometLogger are passed on to the comet_ml.Experiment class comet_logger = CometLogger( save_dir=".", workspace=os.environ["COMET_WORKSPACE"], # Optional project_name="default_project", # Optional rest_api_key=os.environ["COMET_REST_API_KEY"], # Optional experiment_name="default" # Optional ) trainer = Trainer(logger=comet_logger)
- Parameters
api_key (str) – Required in online mode. API key, found on Comet.ml
save_dir (str) – Required in offline mode. The path for the directory to save local comet logs
workspace (str) – Optional. Name of workspace for this user
project_name (str) – Optional. Send your experiment to a specific project.
will be sent to Uncategorized Experiments. (Otherwise) –
ml will create a new project. (If) –
rest_api_key (str) – Optional. Rest API key found in Comet.ml settings. This is used to determine version number
experiment_name (str) – Optional. String representing the name for this particular experiment on Comet.ml.
experiment_key (str) – Optional. If set, restores from existing experiment.
-
finalize
(status)[source]¶ When calling self.experiment.end(), that experiment won’t log any more data to Comet. That’s why, if you need to log any more data you need to create an ExistingCometExperiment. For example, to log data when testing your model after training, because when training is finalized CometLogger.finalize is called.
This happens automatically in the CometLogger.experiment property, when self._experiment is set to None i.e. self.reset_experiment().
- Return type
None
-
log_metrics
(metrics, step=None)[source]¶ Records metrics. This method logs metrics as as soon as it received them. If you want to aggregate metrics for one specific step, use the agg_and_log_metrics method.
-
class
pytorch_lightning.loggers.
MLFlowLogger
(experiment_name, tracking_uri=None, tags=None)[source]¶ Bases:
pytorch_lightning.loggers.base.LightningLoggerBase
Logs using MLFlow
- Parameters
-
finalize
(status='FINISHED')[source]¶ Do any processing that is necessary to finalize an experiment.
- Parameters
status (
str
) – Status that the experiment finished with (e.g. success, failed, aborted)- Return type
None
-
log_metrics
(metrics, step=None)[source]¶ Records metrics. This method logs metrics as as soon as it received them. If you want to aggregate metrics for one specific step, use the agg_and_log_metrics method.
-
class
pytorch_lightning.loggers.
NeptuneLogger
(api_key=None, project_name=None, close_after_fit=True, offline_mode=False, experiment_name=None, upload_source_files=None, params=None, properties=None, tags=None, **kwargs)[source]¶ Bases:
pytorch_lightning.loggers.base.LightningLoggerBase
Neptune logger can be used in the online mode or offline (silent) mode. To log experiment data in online mode, NeptuneLogger requries an API key:
Initialize a neptune.ai logger.
Note
Requires either an API Key (online mode) or a local directory path (offline mode)
# ONLINE MODE from pytorch_lightning.loggers import NeptuneLogger # arguments made to NeptuneLogger are passed on to the neptune.experiments.Experiment class # We are using an api_key for the anonymous user "neptuner" but you can use your own. neptune_logger = NeptuneLogger( api_key="ANONYMOUS" project_name="shared/pytorch-lightning-integration", experiment_name="default", # Optional, params={"max_epochs": 10}, # Optional, tags=["pytorch-lightning","mlp"] # Optional, ) trainer = Trainer(max_epochs=10, logger=neptune_logger)
# OFFLINE MODE from pytorch_lightning.loggers import NeptuneLogger # arguments made to NeptuneLogger are passed on to the neptune.experiments.Experiment class neptune_logger = NeptuneLogger( project_name="USER_NAME/PROJECT_NAME", experiment_name="default", # Optional, params={"max_epochs": 10}, # Optional, tags=["pytorch-lightning","mlp"] # Optional, ) trainer = Trainer(max_epochs=10, logger=neptune_logger)
Use the logger anywhere in you LightningModule as follows:
def train_step(...): # example self.logger.experiment.log_metric("acc_train", acc_train) # log metrics self.logger.experiment.log_image("worse_predictions", prediction_image) # log images self.logger.experiment.log_artifact("model_checkpoint.pt", prediction_image) # log model checkpoint self.logger.experiment.whatever_neptune_supports(...) def any_lightning_module_function_or_hook(...): self.logger.experiment.log_metric("acc_train", acc_train) # log metrics self.logger.experiment.log_image("worse_predictions", prediction_image) # log images self.logger.experiment.log_artifact("model_checkpoint.pt", prediction_image) # log model checkpoint self.logger.experiment.whatever_neptune_supports(...)
If you want to log objects after the training is finished use close_after_train=False:
neptune_logger = NeptuneLogger( ... close_after_fit=False, ...) trainer = Trainer(logger=neptune_logger) trainer.fit() # Log test metrics trainer.test(model) # Log additional metrics from sklearn.metrics import accuracy_score accuracy = accuracy_score(y_true, y_pred) neptune_logger.experiment.log_metric('test_accuracy', accuracy) # Log charts from scikitplot.metrics import plot_confusion_matrix import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(16, 12)) plot_confusion_matrix(y_true, y_pred, ax=ax) neptune_logger.experiment.log_image('confusion_matrix', fig) # Save checkpoints folder neptune_logger.experiment.log_artifact('my/checkpoints') # When you are done, stop the experiment neptune_logger.experiment.stop()
You can go and see an example experiment here: https://ui.neptune.ai/o/shared/org/pytorch-lightning-integration/e/PYTOR-66/charts
- Parameters
api_key (
Optional
[str
]) – Required in online mode. Neputne API token, found on https://neptune.ai Read how to get your API key https://docs.neptune.ai/python-api/tutorials/get-started.html#copy-api-token. It is recommended to keep it in the NEPTUNE_API_TOKEN environment variable and then you can leave api_key=Noneproject_name (
Optional
[str
]) – Required in online mode. Qualified name of a project in a form of “namespace/project_name” for example “tom/minst-classification”. If None, the value of NEPTUNE_PROJECT environment variable will be taken. You need to create the project in https://neptune.ai first.offline_mode (
bool
) – Optional default False. If offline_mode=True no logs will be send to neptune. Usually used for debug purposes.close_after_fit (
Optional
[bool
]) – Optional default True. If close_after_fit=False the experiment will not be closed after training and additional metrics, images or artifacts can be logged. Also, remember to close the experiment explicitly by running neptune_logger.experiment.stop().experiment_name (
Optional
[str
]) – Optional. Editable name of the experiment. Name is displayed in the experiment’s Details (Metadata section) and in experiments view as a column.upload_source_files (
Optional
[List
[str
]]) – Optional. List of source files to be uploaded. Must be list of str or single str. Uploaded sources are displayed in the experiment’s Source code tab. If None is passed, Python file from which experiment was created will be uploaded. Pass empty list ([]) to upload no files. Unix style pathname pattern expansion is supported. For example, you can pass ‘*.py’ to upload all python source files from the current directory. For recursion lookup use ‘**/*.py’ (for Python 3.5 and later). For more information see glob library.params (
Optional
[Dict
[str
,Any
]]) – Optional. Parameters of the experiment. After experiment creation params are read-only. Parameters are displayed in the experiment’s Parameters section and each key-value pair can be viewed in experiments view as a column.properties (
Optional
[Dict
[str
,Any
]]) – Optional default is {}. Properties of the experiment. They are editable after experiment is created. Properties are displayed in the experiment’s Details and each key-value pair can be viewed in experiments view as a column.tags (
Optional
[List
[str
]]) – Optional default []. Must be list of str. Tags of the experiment. They are editable after experiment is created (see: append_tag() and remove_tag()). Tags are displayed in the experiment’s Details and can be viewed in experiments view as a column.
appends tags to neptune experiment
-
finalize
(status)[source]¶ Do any processing that is necessary to finalize an experiment.
- Parameters
status (
str
) – Status that the experiment finished with (e.g. success, failed, aborted)- Return type
None
-
log_artifact
(artifact, destination=None)[source]¶ Save an artifact (file) in Neptune experiment storage.
-
log_image
(log_name, image, step=None)[source]¶ Log image data in Neptune experiment
- Parameters
log_name (
str
) – The name of log, i.e. bboxes, visualisations, sample_images.image (str|PIL.Image|matplotlib.figure.Figure) – The value of the log (data-point). Can be one of the following types: PIL image, matplotlib.figure.Figure, path to image file (str)
step (
Optional
[int
]) – Step number at which the metrics should be recorded, must be strictly increasing
- Return type
None
-
log_metric
(metric_name, metric_value, step=None)[source]¶ Log metrics (numeric values) in Neptune experiments
-
class
pytorch_lightning.loggers.
TestTubeLogger
(save_dir, name='default', description=None, debug=False, version=None, create_git_tag=False)[source]¶ Bases:
pytorch_lightning.loggers.base.LightningLoggerBase
Log to local file system in TensorBoard format but using a nicer folder structure. (see full docs).
Example
logger = TestTubeLogger("tt_logs", name="my_exp_name") trainer = Trainer(logger=logger) trainer.train(model)
Use the logger anywhere in you LightningModule as follows:
def train_step(...): # example self.logger.experiment.whatever_method_summary_writer_supports(...) def any_lightning_module_function_or_hook(...): self.logger.experiment.add_histogram(...)
- Parameters
save_dir (str) – Save directory
name (str) – Experiment name. Defaults to “default”.
description (str) – A short snippet about this experiment
debug (bool) – If True, it doesn’t log anything
version (int) – Experiment version. If version is not specified the logger inspects the save
for existing versions, then automatically assigns the next available version. (directory) –
create_git_tag (bool) – If True creates a git tag to save the code used in this experiment
-
finalize
(status)[source]¶ Do any processing that is necessary to finalize an experiment.
- Parameters
status (
str
) – Status that the experiment finished with (e.g. success, failed, aborted)- Return type
None
-
log_metrics
(metrics, step=None)[source]¶ Records metrics. This method logs metrics as as soon as it received them. If you want to aggregate metrics for one specific step, use the agg_and_log_metrics method.
-
property
experiment
[source]¶ Actual test-tube object. To use test-tube features do the following.
Example:
self.logger.experiment.some_test_tube_function()
- Return type
Experiment
-
class
pytorch_lightning.loggers.
WandbLogger
(name=None, save_dir=None, offline=False, id=None, anonymous=False, version=None, project=None, tags=None, log_model=False, experiment=None, entity=None)[source]¶ Bases:
pytorch_lightning.loggers.base.LightningLoggerBase
Logger for W&B.
- Parameters
name (str) – display name for the run.
save_dir (str) – path where data is saved.
offline (bool) – run offline (data can be streamed later to wandb servers).
or version (id) – sets the version, mainly used to resume a previous run.
anonymous (bool) – enables or explicitly disables anonymous logging.
project (str) – the name of the project to which this run will belong.
tags (list of str) – tags associated with this run.
log_model (bool) – save checkpoints in wandb dir to upload on W&B servers.
Example
from pytorch_lightning.loggers import WandbLogger from pytorch_lightning import Trainer wandb_logger = WandbLogger() trainer = Trainer(logger=wandb_logger)
- Parameters
agg_key_funcs – Dictionary which maps a metric name to a function, which will aggregate the metric values for the same steps.
agg_default_func – Default function to aggregate metric values. If some metric name is not presented in the agg_key_funcs dictionary, then the agg_default_func will be used for aggregation.
Notes
agg_key_funcs and agg_default_func are used only when one logs metrics with LightningLoggerBase.agg_and_log_metrics method.
-
log_metrics
(metrics, step=None)[source]¶ Records metrics. This method logs metrics as as soon as it received them. If you want to aggregate metrics for one specific step, use the agg_and_log_metrics method.
-
class
pytorch_lightning.loggers.
TrainsLogger
(project_name=None, task_name=None, task_type='training', reuse_last_task_id=True, output_uri=None, auto_connect_arg_parser=True, auto_connect_frameworks=True, auto_resource_monitoring=True)[source]¶ Bases:
pytorch_lightning.loggers.base.LightningLoggerBase
Logs using TRAINS
- Parameters
project_name (
Optional
[str
]) – The name of the experiment’s project. Defaults to None.task_name (
Optional
[str
]) – The name of the experiment. Defaults to None.task_type (
str
) – The name of the experiment. Defaults to ‘training’.reuse_last_task_id (
bool
) – Start with the previously used task id. Defaults to True.output_uri (
Optional
[str
]) – Default location for output models. Defaults to None.auto_connect_arg_parser (
bool
) – Automatically grab the ArgParser and connect it with the task. Defaults to True.auto_connect_frameworks (
bool
) – If True, automatically patch to trains backend. Defaults to True.auto_resource_monitoring (
bool
) – If true, machine vitals will be sent along side the task scalars. Defaults to True.
Examples
>>> logger = TrainsLogger("lightning_log", "my-lightning-test", output_uri=".") TRAINS Task: ... TRAINS results page: ... >>> logger.log_metrics({"val_loss": 1.23}, step=0) >>> logger.log_text("sample test") sample test >>> import numpy as np >>> logger.log_artifact("confusion matrix", np.ones((2, 3))) >>> logger.log_image("passed", "Image 1", np.random.randint(0, 255, (200, 150, 3), dtype=np.uint8))
- Parameters
agg_key_funcs – Dictionary which maps a metric name to a function, which will aggregate the metric values for the same steps.
agg_default_func – Default function to aggregate metric values. If some metric name is not presented in the agg_key_funcs dictionary, then the agg_default_func will be used for aggregation.
Notes
agg_key_funcs and agg_default_func are used only when one logs metrics with LightningLoggerBase.agg_and_log_metrics method.
-
classmethod
bypass_mode
()[source]¶ bypass_mode returns the bypass mode state. Notice GITHUB_ACTIONS env will automatically set bypass_mode to True unless overridden specifically with set_bypass_mode(False)
- Return type
- Returns
If True, all outside communication is skipped
-
log_artifact
(name, artifact, metadata=None, delete_after_upload=False)[source]¶ Save an artifact (file/object) in TRAINS experiment storage.
- Parameters
name (
str
) – Artifact name. Notice! it will override previous artifact if name already existsartifact (
Union
[str
,Path
,Dict
[str
,Any
],ndarray
,Image
]) –Artifact object to upload. Currently supports:
string / pathlib2.Path are treated as path to artifact file to upload If wildcard or a folder is passed, zip file containing the local files will be created and uploaded
dict will be stored as .json file and uploaded
pandas.DataFrame will be stored as .csv.gz (compressed CSV file) and uploaded
numpy.ndarray will be stored as .npz and uploaded
PIL.Image will be stored to .png file and uploaded
metadata (
Optional
[Dict
[str
,Any
]]) – Simple key/value dictionary to store on the artifact. Defaults to None.delete_after_upload (
bool
) – If True local artifact will be deleted (only applies if artifact_object is a local file). Defaults to False.
- Return type
None
-
log_image
(title, series, image, step=None)[source]¶ Log Debug image in TRAINS experiment
- Parameters
title (
str
) – The title of the debug image, i.e. “failed”, “passed”.series (
str
) – The series name of the debug image, i.e. “Image 0”, “Image 1”.image (
Union
[str
,ndarray
,Image
,Tensor
]) –- Debug image to log. Can be one of the following types:
Torch, Numpy, PIL image, path to image file (str)
- If Numpy or Torch, the image is assume to be the following:
shape: CHW color space: RGB value range: [0., 1.] (float) or [0, 255] (uint8)
step (
Optional
[int
]) – Step number at which the metrics should be recorded. Defaults to None.
- Return type
None
-
log_metric
(title, series, value, step=None)[source]¶ - Log metrics (numeric values) in TRAINS experiments.
This method will be called by the users.
- Parameters
- Return type
None
-
log_metrics
(metrics, step=None)[source]¶ - Log metrics (numeric values) in TRAINS experiments.
This method will be called by Trainer.
- Parameters
- Return type
None
-
log_text
(text)[source]¶ Log console text data in TRAINS experiment
- Parameters
text (
str
) – The value of the log (data-point).- Return type
None
-
classmethod
set_bypass_mode
(bypass)[source]¶ set_bypass_mode will bypass all outside communication, and will drop all logs. Should only be used in “standalone mode”, when there is no access to the trains-server
- Parameters
bypass (
bool
) – If True, all outside communication is skipped- Return type
None
-
classmethod
set_credentials
(api_host=None, web_host=None, files_host=None, key=None, secret=None)[source]¶ Set new default TRAINS-server host and credentials These configurations could be overridden by either OS environment variables or trains.conf configuration file
Notice! credentials needs to be set prior to Logger initialization
- Parameters
api_host (
Optional
[str
]) – Trains API server url, example: host=’http://localhost:8008’web_host (
Optional
[str
]) – Trains WEB server url, example: host=’http://localhost:8080’files_host (
Optional
[str
]) – Trains Files server url, example: host=’http://localhost:8081’key (
Optional
[str
]) – user key/secret pair, example: key=’thisisakey123’secret (
Optional
[str
]) – user key/secret pair, example: secret=’thisisseceret123’
- Return type
None
-
property
experiment
[source]¶ Actual TRAINS object. To use TRAINS features do the following.
Example
self.logger.experiment.some_trains_function()
- Return type
Task
-
property
id
[source]¶ ID is a uuid (string) representing this specific experiment in the entire system.
Submodules¶
pytorch_lightning.loggers.base module¶
-
class
pytorch_lightning.loggers.base.
LightningLoggerBase
(agg_key_funcs=None, agg_default_func=numpy.mean)[source]¶ Bases:
abc.ABC
Base class for experiment loggers.
- Parameters
agg_key_funcs (
Optional
[Mapping
[str
,Callable
[[Sequence
[float
]],float
]]]) – Dictionary which maps a metric name to a function, which will aggregate the metric values for the same steps.agg_default_func (
Callable
[[Sequence
[float
]],float
]) – Default function to aggregate metric values. If some metric name is not presented in the agg_key_funcs dictionary, then the agg_default_func will be used for aggregation.
Notes
agg_key_funcs and agg_default_func are used only when one logs metrics with LightningLoggerBase.agg_and_log_metrics method.
-
_aggregate_metrics
(metrics, step=None)[source]¶ Aggregates metrics.
- Parameters
- Return type
- Returns
sStep and aggregated metrics. The return value could be None. In such case, metrics are added to the aggregation list, but not aggregated yet.
-
static
_flatten_dict
(params, delimiter='/')[source]¶ Flatten hierarchical dict e.g. {‘a’: {‘b’: ‘c’}} -> {‘a/b’: ‘c’}.
- Parameters
- Return type
- Returns
Flatten dict.
Examples
>>> LightningLoggerBase._flatten_dict({'a': {'b': 'c'}}) {'a/b': 'c'} >>> LightningLoggerBase._flatten_dict({'a': {'b': 123}}) {'a/b': 123}
-
static
_sanitize_params
(params)[source]¶ Returns params with non-primitvies converted to strings for logging
>>> params = {"float": 0.3, ... "int": 1, ... "string": "abc", ... "bool": True, ... "list": [1, 2, 3], ... "namespace": Namespace(foo=3), ... "layer": torch.nn.BatchNorm1d} >>> import pprint >>> pprint.pprint(LightningLoggerBase._sanitize_params(params)) {'bool': True, 'float': 0.3, 'int': 1, 'layer': "<class 'torch.nn.modules.batchnorm.BatchNorm1d'>", 'list': '[1, 2, 3]', 'namespace': 'Namespace(foo=3)', 'string': 'abc'}
-
agg_and_log_metrics
(metrics, step=None)[source]¶ Aggregates and records metrics. This method doesn’t log the passed metrics instantaneously, but instead it aggregates them and logs only if metrics are ready to be logged.
-
finalize
(status)[source]¶ Do any processing that is necessary to finalize an experiment.
- Parameters
status (
str
) – Status that the experiment finished with (e.g. success, failed, aborted)- Return type
None
-
abstract
log_hyperparams
(params)[source]¶ Record hyperparameters.
- Parameters
params (
Namespace
) – argparse.Namespace containing the hyperparameters
-
abstract
log_metrics
(metrics, step=None)[source]¶ Records metrics. This method logs metrics as as soon as it received them. If you want to aggregate metrics for one specific step, use the agg_and_log_metrics method.
-
update_agg_funcs
(agg_key_funcs=None, agg_default_func=numpy.mean)[source]¶ Update aggregation methods.
- Parameters
agg_key_funcs (
Optional
[Mapping
[str
,Callable
[[Sequence
[float
]],float
]]]) – Dictionary which maps a metric name to a function, which will aggregate the metric values for the same steps.agg_default_func (
Callable
[[Sequence
[float
]],float
]) – Default function to aggregate metric values. If some metric name is not presented in the agg_key_funcs dictionary, then the agg_default_func will be used for aggregation.
-
abstract property
experiment
[source]¶ Return the experiment object associated with this logger
- Return type
-
class
pytorch_lightning.loggers.base.
LoggerCollection
(logger_iterable)[source]¶ Bases:
pytorch_lightning.loggers.base.LightningLoggerBase
The LoggerCollection class is used to iterate all logging actions over the given logger_iterable.
- Parameters
logger_iterable (
Iterable
[LightningLoggerBase
]) – An iterable collection of loggersagg_key_funcs – Dictionary which maps a metric name to a function, which will aggregate the metric values for the same steps.
agg_default_func – Default function to aggregate metric values. If some metric name is not presented in the agg_key_funcs dictionary, then the agg_default_func will be used for aggregation.
Notes
agg_key_funcs and agg_default_func are used only when one logs metrics with LightningLoggerBase.agg_and_log_metrics method.
-
finalize
(status)[source]¶ Do any processing that is necessary to finalize an experiment.
- Parameters
status (
str
) – Status that the experiment finished with (e.g. success, failed, aborted)- Return type
None
-
log_metrics
(metrics, step=None)[source]¶ Records metrics. This method logs metrics as as soon as it received them. If you want to aggregate metrics for one specific step, use the agg_and_log_metrics method.
-
pytorch_lightning.loggers.base.
merge_dicts
(dicts, agg_key_funcs=None, default_func=numpy.mean)[source]¶ Merge a sequence with dictionaries into one dictionary by aggregating the same keys with some given function.
- Parameters
dicts (
Sequence
[Mapping
]) – Sequence of dictionaries to be merged.agg_key_funcs (
Optional
[Mapping
[str
,Callable
[[Sequence
[float
]],float
]]]) – Mapping from key name to function. This function will aggregate a list of values, obtained from the same key of all dictionaries. If some key has no specified aggregation function, the default one will be used. Default is: None (all keys will be aggregated by the default function).default_func (
Callable
[[Sequence
[float
]],float
]) – Default function to aggregate keys, which are not presented in the agg_key_funcs map.
- Return type
- Returns
Dictionary with merged values.
Examples
>>> import pprint >>> d1 = {'a': 1.7, 'b': 2.0, 'c': 1} >>> d2 = {'a': 1.1, 'b': 2.2, 'v': 1} >>> d3 = {'a': 1.1, 'v': 2.3} >>> dflt_func = min >>> agg_funcs = {'a': np.mean, 'v': max} >>> pprint.pprint(merge_dicts([d1, d2, d3], agg_funcs, dflt_func)) {'a': 1.3, 'b': 2.0, 'c': 1, 'v': 2.3}
pytorch_lightning.loggers.comet module¶
CometLogger¶
-
class
pytorch_lightning.loggers.comet.
CometLogger
(api_key=None, save_dir=None, workspace=None, project_name=None, rest_api_key=None, experiment_name=None, experiment_key=None, **kwargs)[source]¶ Bases:
pytorch_lightning.loggers.base.LightningLoggerBase
Log using comet.ml.
Requires either an API Key (online mode) or a local directory path (offline mode)
# ONLINE MODE from pytorch_lightning.loggers import CometLogger # arguments made to CometLogger are passed on to the comet_ml.Experiment class comet_logger = CometLogger( api_key=os.environ["COMET_API_KEY"], workspace=os.environ["COMET_WORKSPACE"], # Optional project_name="default_project", # Optional rest_api_key=os.environ["COMET_REST_API_KEY"], # Optional experiment_name="default" # Optional ) trainer = Trainer(logger=comet_logger)
# OFFLINE MODE from pytorch_lightning.loggers import CometLogger # arguments made to CometLogger are passed on to the comet_ml.Experiment class comet_logger = CometLogger( save_dir=".", workspace=os.environ["COMET_WORKSPACE"], # Optional project_name="default_project", # Optional rest_api_key=os.environ["COMET_REST_API_KEY"], # Optional experiment_name="default" # Optional ) trainer = Trainer(logger=comet_logger)
- Parameters
api_key (str) – Required in online mode. API key, found on Comet.ml
save_dir (str) – Required in offline mode. The path for the directory to save local comet logs
workspace (str) – Optional. Name of workspace for this user
project_name (str) – Optional. Send your experiment to a specific project.
will be sent to Uncategorized Experiments. (Otherwise) –
ml will create a new project. (If) –
rest_api_key (str) – Optional. Rest API key found in Comet.ml settings. This is used to determine version number
experiment_name (str) – Optional. String representing the name for this particular experiment on Comet.ml.
experiment_key (str) – Optional. If set, restores from existing experiment.
-
finalize
(status)[source]¶ When calling self.experiment.end(), that experiment won’t log any more data to Comet. That’s why, if you need to log any more data you need to create an ExistingCometExperiment. For example, to log data when testing your model after training, because when training is finalized CometLogger.finalize is called.
This happens automatically in the CometLogger.experiment property, when self._experiment is set to None i.e. self.reset_experiment().
- Return type
None
-
log_metrics
(metrics, step=None)[source]¶ Records metrics. This method logs metrics as as soon as it received them. If you want to aggregate metrics for one specific step, use the agg_and_log_metrics method.
pytorch_lightning.loggers.mlflow module¶
Log using mlflow
from pytorch_lightning.loggers import MLFlowLogger
mlf_logger = MLFlowLogger(
experiment_name="default",
tracking_uri="file:/."
)
trainer = Trainer(logger=mlf_logger)
Use the logger anywhere in you LightningModule as follows:
def train_step(...):
# example
self.logger.experiment.whatever_ml_flow_supports(...)
def any_lightning_module_function_or_hook(...):
self.logger.experiment.whatever_ml_flow_supports(...)
-
class
pytorch_lightning.loggers.mlflow.
MLFlowLogger
(experiment_name, tracking_uri=None, tags=None)[source]¶ Bases:
pytorch_lightning.loggers.base.LightningLoggerBase
Logs using MLFlow
- Parameters
-
finalize
(status='FINISHED')[source]¶ Do any processing that is necessary to finalize an experiment.
- Parameters
status (
str
) – Status that the experiment finished with (e.g. success, failed, aborted)- Return type
None
-
log_metrics
(metrics, step=None)[source]¶ Records metrics. This method logs metrics as as soon as it received them. If you want to aggregate metrics for one specific step, use the agg_and_log_metrics method.
pytorch_lightning.loggers.neptune module¶
Log using neptune-logger
NeptuneLogger¶
-
class
pytorch_lightning.loggers.neptune.
NeptuneLogger
(api_key=None, project_name=None, close_after_fit=True, offline_mode=False, experiment_name=None, upload_source_files=None, params=None, properties=None, tags=None, **kwargs)[source]¶ Bases:
pytorch_lightning.loggers.base.LightningLoggerBase
Neptune logger can be used in the online mode or offline (silent) mode. To log experiment data in online mode, NeptuneLogger requries an API key:
Initialize a neptune.ai logger.
Note
Requires either an API Key (online mode) or a local directory path (offline mode)
# ONLINE MODE from pytorch_lightning.loggers import NeptuneLogger # arguments made to NeptuneLogger are passed on to the neptune.experiments.Experiment class # We are using an api_key for the anonymous user "neptuner" but you can use your own. neptune_logger = NeptuneLogger( api_key="ANONYMOUS" project_name="shared/pytorch-lightning-integration", experiment_name="default", # Optional, params={"max_epochs": 10}, # Optional, tags=["pytorch-lightning","mlp"] # Optional, ) trainer = Trainer(max_epochs=10, logger=neptune_logger)
# OFFLINE MODE from pytorch_lightning.loggers import NeptuneLogger # arguments made to NeptuneLogger are passed on to the neptune.experiments.Experiment class neptune_logger = NeptuneLogger( project_name="USER_NAME/PROJECT_NAME", experiment_name="default", # Optional, params={"max_epochs": 10}, # Optional, tags=["pytorch-lightning","mlp"] # Optional, ) trainer = Trainer(max_epochs=10, logger=neptune_logger)
Use the logger anywhere in you LightningModule as follows:
def train_step(...): # example self.logger.experiment.log_metric("acc_train", acc_train) # log metrics self.logger.experiment.log_image("worse_predictions", prediction_image) # log images self.logger.experiment.log_artifact("model_checkpoint.pt", prediction_image) # log model checkpoint self.logger.experiment.whatever_neptune_supports(...) def any_lightning_module_function_or_hook(...): self.logger.experiment.log_metric("acc_train", acc_train) # log metrics self.logger.experiment.log_image("worse_predictions", prediction_image) # log images self.logger.experiment.log_artifact("model_checkpoint.pt", prediction_image) # log model checkpoint self.logger.experiment.whatever_neptune_supports(...)
If you want to log objects after the training is finished use close_after_train=False:
neptune_logger = NeptuneLogger( ... close_after_fit=False, ...) trainer = Trainer(logger=neptune_logger) trainer.fit() # Log test metrics trainer.test(model) # Log additional metrics from sklearn.metrics import accuracy_score accuracy = accuracy_score(y_true, y_pred) neptune_logger.experiment.log_metric('test_accuracy', accuracy) # Log charts from scikitplot.metrics import plot_confusion_matrix import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(16, 12)) plot_confusion_matrix(y_true, y_pred, ax=ax) neptune_logger.experiment.log_image('confusion_matrix', fig) # Save checkpoints folder neptune_logger.experiment.log_artifact('my/checkpoints') # When you are done, stop the experiment neptune_logger.experiment.stop()
You can go and see an example experiment here: https://ui.neptune.ai/o/shared/org/pytorch-lightning-integration/e/PYTOR-66/charts
- Parameters
api_key (
Optional
[str
]) – Required in online mode. Neputne API token, found on https://neptune.ai Read how to get your API key https://docs.neptune.ai/python-api/tutorials/get-started.html#copy-api-token. It is recommended to keep it in the NEPTUNE_API_TOKEN environment variable and then you can leave api_key=Noneproject_name (
Optional
[str
]) – Required in online mode. Qualified name of a project in a form of “namespace/project_name” for example “tom/minst-classification”. If None, the value of NEPTUNE_PROJECT environment variable will be taken. You need to create the project in https://neptune.ai first.offline_mode (
bool
) – Optional default False. If offline_mode=True no logs will be send to neptune. Usually used for debug purposes.close_after_fit (
Optional
[bool
]) – Optional default True. If close_after_fit=False the experiment will not be closed after training and additional metrics, images or artifacts can be logged. Also, remember to close the experiment explicitly by running neptune_logger.experiment.stop().experiment_name (
Optional
[str
]) – Optional. Editable name of the experiment. Name is displayed in the experiment’s Details (Metadata section) and in experiments view as a column.upload_source_files (
Optional
[List
[str
]]) – Optional. List of source files to be uploaded. Must be list of str or single str. Uploaded sources are displayed in the experiment’s Source code tab. If None is passed, Python file from which experiment was created will be uploaded. Pass empty list ([]) to upload no files. Unix style pathname pattern expansion is supported. For example, you can pass ‘*.py’ to upload all python source files from the current directory. For recursion lookup use ‘**/*.py’ (for Python 3.5 and later). For more information see glob library.params (
Optional
[Dict
[str
,Any
]]) – Optional. Parameters of the experiment. After experiment creation params are read-only. Parameters are displayed in the experiment’s Parameters section and each key-value pair can be viewed in experiments view as a column.properties (
Optional
[Dict
[str
,Any
]]) – Optional default is {}. Properties of the experiment. They are editable after experiment is created. Properties are displayed in the experiment’s Details and each key-value pair can be viewed in experiments view as a column.tags (
Optional
[List
[str
]]) – Optional default []. Must be list of str. Tags of the experiment. They are editable after experiment is created (see: append_tag() and remove_tag()). Tags are displayed in the experiment’s Details and can be viewed in experiments view as a column.
appends tags to neptune experiment
-
finalize
(status)[source]¶ Do any processing that is necessary to finalize an experiment.
- Parameters
status (
str
) – Status that the experiment finished with (e.g. success, failed, aborted)- Return type
None
-
log_artifact
(artifact, destination=None)[source]¶ Save an artifact (file) in Neptune experiment storage.
-
log_image
(log_name, image, step=None)[source]¶ Log image data in Neptune experiment
- Parameters
log_name (
str
) – The name of log, i.e. bboxes, visualisations, sample_images.image (str|PIL.Image|matplotlib.figure.Figure) – The value of the log (data-point). Can be one of the following types: PIL image, matplotlib.figure.Figure, path to image file (str)
step (
Optional
[int
]) – Step number at which the metrics should be recorded, must be strictly increasing
- Return type
None
-
log_metric
(metric_name, metric_value, step=None)[source]¶ Log metrics (numeric values) in Neptune experiments
pytorch_lightning.loggers.tensorboard module¶
-
class
pytorch_lightning.loggers.tensorboard.
TensorBoardLogger
(save_dir, name='default', version=None, **kwargs)[source]¶ Bases:
pytorch_lightning.loggers.base.LightningLoggerBase
Log to local file system in TensorBoard format
Implemented using
torch.utils.tensorboard.SummaryWriter
. Logs are saved toos.path.join(save_dir, name, version)
Example
logger = TensorBoardLogger("tb_logs", name="my_model") trainer = Trainer(logger=logger) trainer.train(model)
- Parameters
save_dir (
str
) – Save directoryname (
Optional
[str
]) – Experiment name. Defaults to “default”. If it is the empty string then no per-experiment subdirectory is used.version (
Union
[int
,str
,None
]) – Experiment version. If version is not specified the logger inspects the save directory for existing versions, then automatically assigns the next available version. If it is a string then it is used as the run-specific subdirectory name, otherwise version_${version} is used.**kwargs – Other arguments are passed directly to the
SummaryWriter
constructor.agg_key_funcs – Dictionary which maps a metric name to a function, which will aggregate the metric values for the same steps.
agg_default_func – Default function to aggregate metric values. If some metric name is not presented in the agg_key_funcs dictionary, then the agg_default_func will be used for aggregation.
Notes
agg_key_funcs and agg_default_func are used only when one logs metrics with LightningLoggerBase.agg_and_log_metrics method.
-
finalize
(status)[source]¶ Do any processing that is necessary to finalize an experiment.
- Parameters
status (
str
) – Status that the experiment finished with (e.g. success, failed, aborted)- Return type
None
-
log_metrics
(metrics, step=None)[source]¶ Records metrics. This method logs metrics as as soon as it received them. If you want to aggregate metrics for one specific step, use the agg_and_log_metrics method.
-
property
experiment
[source]¶ Actual tensorboard object. To use tensorboard features do the following.
Example:
self.logger.experiment.some_tensorboard_function()
- Return type
SummaryWriter
-
property
log_dir
[source]¶ The directory for this run’s tensorboard checkpoint. By default, it is named ‘version_${self.version}’ but it can be overridden by passing a string value for the constructor’s version parameter instead of None or an int
- Return type
pytorch_lightning.loggers.test_tube module¶
-
class
pytorch_lightning.loggers.test_tube.
TestTubeLogger
(save_dir, name='default', description=None, debug=False, version=None, create_git_tag=False)[source]¶ Bases:
pytorch_lightning.loggers.base.LightningLoggerBase
Log to local file system in TensorBoard format but using a nicer folder structure. (see full docs).
Example
logger = TestTubeLogger("tt_logs", name="my_exp_name") trainer = Trainer(logger=logger) trainer.train(model)
Use the logger anywhere in you LightningModule as follows:
def train_step(...): # example self.logger.experiment.whatever_method_summary_writer_supports(...) def any_lightning_module_function_or_hook(...): self.logger.experiment.add_histogram(...)
- Parameters
save_dir (str) – Save directory
name (str) – Experiment name. Defaults to “default”.
description (str) – A short snippet about this experiment
debug (bool) – If True, it doesn’t log anything
version (int) – Experiment version. If version is not specified the logger inspects the save
for existing versions, then automatically assigns the next available version. (directory) –
create_git_tag (bool) – If True creates a git tag to save the code used in this experiment
-
finalize
(status)[source]¶ Do any processing that is necessary to finalize an experiment.
- Parameters
status (
str
) – Status that the experiment finished with (e.g. success, failed, aborted)- Return type
None
-
log_metrics
(metrics, step=None)[source]¶ Records metrics. This method logs metrics as as soon as it received them. If you want to aggregate metrics for one specific step, use the agg_and_log_metrics method.
-
property
experiment
[source]¶ Actual test-tube object. To use test-tube features do the following.
Example:
self.logger.experiment.some_test_tube_function()
- Return type
Experiment
pytorch_lightning.loggers.trains module¶
Log using allegro.ai TRAINS
from pytorch_lightning.loggers import TrainsLogger
trains_logger = TrainsLogger(
project_name="pytorch lightning",
task_name="default",
)
trainer = Trainer(logger=trains_logger)
Use the logger anywhere in you LightningModule as follows:
def train_step(...):
# example
self.logger.experiment.whatever_trains_supports(...)
def any_lightning_module_function_or_hook(...):
self.logger.experiment.whatever_trains_supports(...)
-
class
pytorch_lightning.loggers.trains.
TrainsLogger
(project_name=None, task_name=None, task_type='training', reuse_last_task_id=True, output_uri=None, auto_connect_arg_parser=True, auto_connect_frameworks=True, auto_resource_monitoring=True)[source]¶ Bases:
pytorch_lightning.loggers.base.LightningLoggerBase
Logs using TRAINS
- Parameters
project_name (
Optional
[str
]) – The name of the experiment’s project. Defaults to None.task_name (
Optional
[str
]) – The name of the experiment. Defaults to None.task_type (
str
) – The name of the experiment. Defaults to ‘training’.reuse_last_task_id (
bool
) – Start with the previously used task id. Defaults to True.output_uri (
Optional
[str
]) – Default location for output models. Defaults to None.auto_connect_arg_parser (
bool
) – Automatically grab the ArgParser and connect it with the task. Defaults to True.auto_connect_frameworks (
bool
) – If True, automatically patch to trains backend. Defaults to True.auto_resource_monitoring (
bool
) – If true, machine vitals will be sent along side the task scalars. Defaults to True.
Examples
>>> logger = TrainsLogger("lightning_log", "my-lightning-test", output_uri=".") TRAINS Task: ... TRAINS results page: ... >>> logger.log_metrics({"val_loss": 1.23}, step=0) >>> logger.log_text("sample test") sample test >>> import numpy as np >>> logger.log_artifact("confusion matrix", np.ones((2, 3))) >>> logger.log_image("passed", "Image 1", np.random.randint(0, 255, (200, 150, 3), dtype=np.uint8))
- Parameters
agg_key_funcs – Dictionary which maps a metric name to a function, which will aggregate the metric values for the same steps.
agg_default_func – Default function to aggregate metric values. If some metric name is not presented in the agg_key_funcs dictionary, then the agg_default_func will be used for aggregation.
Notes
agg_key_funcs and agg_default_func are used only when one logs metrics with LightningLoggerBase.agg_and_log_metrics method.
-
classmethod
bypass_mode
()[source]¶ bypass_mode returns the bypass mode state. Notice GITHUB_ACTIONS env will automatically set bypass_mode to True unless overridden specifically with set_bypass_mode(False)
- Return type
- Returns
If True, all outside communication is skipped
-
log_artifact
(name, artifact, metadata=None, delete_after_upload=False)[source]¶ Save an artifact (file/object) in TRAINS experiment storage.
- Parameters
name (
str
) – Artifact name. Notice! it will override previous artifact if name already existsartifact (
Union
[str
,Path
,Dict
[str
,Any
],ndarray
,Image
]) –Artifact object to upload. Currently supports:
string / pathlib2.Path are treated as path to artifact file to upload If wildcard or a folder is passed, zip file containing the local files will be created and uploaded
dict will be stored as .json file and uploaded
pandas.DataFrame will be stored as .csv.gz (compressed CSV file) and uploaded
numpy.ndarray will be stored as .npz and uploaded
PIL.Image will be stored to .png file and uploaded
metadata (
Optional
[Dict
[str
,Any
]]) – Simple key/value dictionary to store on the artifact. Defaults to None.delete_after_upload (
bool
) – If True local artifact will be deleted (only applies if artifact_object is a local file). Defaults to False.
- Return type
None
-
log_image
(title, series, image, step=None)[source]¶ Log Debug image in TRAINS experiment
- Parameters
title (
str
) – The title of the debug image, i.e. “failed”, “passed”.series (
str
) – The series name of the debug image, i.e. “Image 0”, “Image 1”.image (
Union
[str
,ndarray
,Image
,Tensor
]) –- Debug image to log. Can be one of the following types:
Torch, Numpy, PIL image, path to image file (str)
- If Numpy or Torch, the image is assume to be the following:
shape: CHW color space: RGB value range: [0., 1.] (float) or [0, 255] (uint8)
step (
Optional
[int
]) – Step number at which the metrics should be recorded. Defaults to None.
- Return type
None
-
log_metric
(title, series, value, step=None)[source]¶ - Log metrics (numeric values) in TRAINS experiments.
This method will be called by the users.
- Parameters
- Return type
None
-
log_metrics
(metrics, step=None)[source]¶ - Log metrics (numeric values) in TRAINS experiments.
This method will be called by Trainer.
- Parameters
- Return type
None
-
log_text
(text)[source]¶ Log console text data in TRAINS experiment
- Parameters
text (
str
) – The value of the log (data-point).- Return type
None
-
classmethod
set_bypass_mode
(bypass)[source]¶ set_bypass_mode will bypass all outside communication, and will drop all logs. Should only be used in “standalone mode”, when there is no access to the trains-server
- Parameters
bypass (
bool
) – If True, all outside communication is skipped- Return type
None
-
classmethod
set_credentials
(api_host=None, web_host=None, files_host=None, key=None, secret=None)[source]¶ Set new default TRAINS-server host and credentials These configurations could be overridden by either OS environment variables or trains.conf configuration file
Notice! credentials needs to be set prior to Logger initialization
- Parameters
api_host (
Optional
[str
]) – Trains API server url, example: host=’http://localhost:8008’web_host (
Optional
[str
]) – Trains WEB server url, example: host=’http://localhost:8080’files_host (
Optional
[str
]) – Trains Files server url, example: host=’http://localhost:8081’key (
Optional
[str
]) – user key/secret pair, example: key=’thisisakey123’secret (
Optional
[str
]) – user key/secret pair, example: secret=’thisisseceret123’
- Return type
None
-
property
experiment
[source]¶ Actual TRAINS object. To use TRAINS features do the following.
Example
self.logger.experiment.some_trains_function()
- Return type
Task
-
property
id
[source]¶ ID is a uuid (string) representing this specific experiment in the entire system.
pytorch_lightning.loggers.wandb module¶
WandbLogger¶
-
class
pytorch_lightning.loggers.wandb.
WandbLogger
(name=None, save_dir=None, offline=False, id=None, anonymous=False, version=None, project=None, tags=None, log_model=False, experiment=None, entity=None)[source]¶ Bases:
pytorch_lightning.loggers.base.LightningLoggerBase
Logger for W&B.
- Parameters
name (str) – display name for the run.
save_dir (str) – path where data is saved.
offline (bool) – run offline (data can be streamed later to wandb servers).
or version (id) – sets the version, mainly used to resume a previous run.
anonymous (bool) – enables or explicitly disables anonymous logging.
project (str) – the name of the project to which this run will belong.
tags (list of str) – tags associated with this run.
log_model (bool) – save checkpoints in wandb dir to upload on W&B servers.
Example
from pytorch_lightning.loggers import WandbLogger from pytorch_lightning import Trainer wandb_logger = WandbLogger() trainer = Trainer(logger=wandb_logger)
- Parameters
agg_key_funcs – Dictionary which maps a metric name to a function, which will aggregate the metric values for the same steps.
agg_default_func – Default function to aggregate metric values. If some metric name is not presented in the agg_key_funcs dictionary, then the agg_default_func will be used for aggregation.
Notes
agg_key_funcs and agg_default_func are used only when one logs metrics with LightningLoggerBase.agg_and_log_metrics method.
-
log_metrics
(metrics, step=None)[source]¶ Records metrics. This method logs metrics as as soon as it received them. If you want to aggregate metrics for one specific step, use the agg_and_log_metrics method.
pytorch_lightning.overrides package¶
Submodules¶
pytorch_lightning.overrides.data_parallel module¶
-
class
pytorch_lightning.overrides.data_parallel.
LightningDataParallel
(*args, **kwargs)[source]¶ Bases:
torch.nn.DataParallel
Override the forward call in lightning so it goes to training and validation step respectively
-
class
pytorch_lightning.overrides.data_parallel.
LightningDistributedDataParallel
(*args, **kwargs)[source]¶ Bases:
torch.nn.parallel.DistributedDataParallel
Override the forward call in lightning so it goes to training and validation step respectively
-
pytorch_lightning.overrides.data_parallel.
_find_tensors
(obj)[source]¶ Recursively find all tensors contained in the specified object.
-
pytorch_lightning.overrides.data_parallel.
auto_squeeze_dim_zeros
(output)[source]¶ In DP or DDP2 we need to unsqueeze dim 0 :param _sphinx_paramlinks_pytorch_lightning.overrides.data_parallel.auto_squeeze_dim_zeros.output: :return:
-
pytorch_lightning.overrides.data_parallel.
parallel_apply
(modules, inputs, kwargs_tup=None, devices=None)[source]¶ Applies each module in
modules
in parallel on arguments contained ininputs
(positional) andkwargs_tup
(keyword) on each ofdevices
.- Parameters
modules (Module) – modules to be parallelized
inputs (tensor) – inputs to the modules
devices (list of int or torch.device) – CUDA devices
modules
,inputs
,kwargs_tup
(if given), anddevices
(if given) should all have same length. Moreover, each element ofinputs
can either be a single object as the only argument to a module, or a collection of positional arguments.
pytorch_lightning.overrides.override_data_parallel module¶
Warning
override_data_parallel module has been renamed to data_parallel since v0.6.0. The deprecated module name will be removed in v0.8.0.
pytorch_lightning.profiler package¶
Profiling your training run can help you understand if there are any bottlenecks in your code.
Built-in checks¶
PyTorch Lightning supports profiling standard actions in the training loop out of the box, including:
on_epoch_start
on_epoch_end
on_batch_start
tbptt_split_batch
model_forward
model_backward
on_after_backward
optimizer_step
on_batch_end
training_step_end
on_training_end
Enable simple profiling¶
If you only wish to profile the standard actions, you can set profiler=True when constructing your Trainer object.
trainer = Trainer(..., profiler=True)
The profiler’s results will be printed at the completion of a training fit().
Profiler Report
Action | Mean duration (s) | Total time (s)
-----------------------------------------------------------------
on_epoch_start | 5.993e-06 | 5.993e-06
get_train_batch | 0.0087412 | 16.398
on_batch_start | 5.0865e-06 | 0.0095372
model_forward | 0.0017818 | 3.3408
model_backward | 0.0018283 | 3.4282
on_after_backward | 4.2862e-06 | 0.0080366
optimizer_step | 0.0011072 | 2.0759
on_batch_end | 4.5202e-06 | 0.0084753
on_epoch_end | 3.919e-06 | 3.919e-06
on_train_end | 5.449e-06 | 5.449e-06
Advanced Profiling¶
If you want more information on the functions called during each event, you can use the AdvancedProfiler. This option uses Python’s cProfiler to provide a report of time spent on each function called within your code.
profiler = AdvancedProfiler()
trainer = Trainer(..., profiler=profiler)
The profiler’s results will be printed at the completion of a training fit(). This profiler report can be quite long, so you can also specify an output_filename to save the report instead of logging it to the output in your terminal. The output below shows the profiling for the action get_train_batch.
Profiler Report
Profile stats for: get_train_batch
4869394 function calls (4863767 primitive calls) in 18.893 seconds
Ordered by: cumulative time
List reduced from 76 to 10 due to restriction <10>
ncalls tottime percall cumtime percall filename:lineno(function)
3752/1876 0.011 0.000 18.887 0.010 {built-in method builtins.next}
1876 0.008 0.000 18.877 0.010 dataloader.py:344(__next__)
1876 0.074 0.000 18.869 0.010 dataloader.py:383(_next_data)
1875 0.012 0.000 18.721 0.010 fetch.py:42(fetch)
1875 0.084 0.000 18.290 0.010 fetch.py:44(<listcomp>)
60000 1.759 0.000 18.206 0.000 mnist.py:80(__getitem__)
60000 0.267 0.000 13.022 0.000 transforms.py:68(__call__)
60000 0.182 0.000 7.020 0.000 transforms.py:93(__call__)
60000 1.651 0.000 6.839 0.000 functional.py:42(to_tensor)
60000 0.260 0.000 5.734 0.000 transforms.py:167(__call__)
You can also reference this profiler in your LightningModule to profile specific actions of interest. If you don’t want to always have the profiler turned on, you can optionally pass a PassThroughProfiler which will allow you to skip profiling without having to make any code changes. Each profiler has a method profile() which returns a context handler. Simply pass in the name of your action that you want to track and the profiler will record performance for code executed within this context.
from pytorch_lightning.profiler import Profiler, PassThroughProfiler
class MyModel(LightningModule):
def __init__(self, hparams, profiler=None):
self.hparams = hparams
self.profiler = profiler or PassThroughProfiler()
def custom_processing_step(self, data):
with profiler.profile('my_custom_action'):
# custom processing step
return data
profiler = Profiler()
model = MyModel(hparams, profiler)
trainer = Trainer(profiler=profiler, max_epochs=1)
-
class
pytorch_lightning.profiler.
BaseProfiler
(output_streams=None)[source]¶ Bases:
abc.ABC
If you wish to write a custom profiler, you should inhereit from this class.
- Params:
stream_out: callable
-
describe
()[source]¶ Logs a profile report after the conclusion of the training run.
- Return type
None
-
profile
(action_name)[source]¶ Yields a context manager to encapsulate the scope of a profiled action.
Example:
with self.profile('load training data'): # load training data code
The profiler will start once you’ve entered the context and will automatically stop once you exit the code block.
- Return type
None
-
class
pytorch_lightning.profiler.
SimpleProfiler
(output_filename=None)[source]¶ Bases:
pytorch_lightning.profiler.profilers.BaseProfiler
This profiler simply records the duration of actions (in seconds) and reports the mean duration of each action and the total time spent over the entire training run.
- Params:
- output_filename (str): optionally save profile results to file instead of printing
to std out when training is finished.
-
class
pytorch_lightning.profiler.
AdvancedProfiler
(output_filename=None, line_count_restriction=1.0)[source]¶ Bases:
pytorch_lightning.profiler.profilers.BaseProfiler
This profiler uses Python’s cProfiler to record more detailed information about time spent in each function call recorded during a given action. The output is quite verbose and you should only use this if you want very detailed reports.
- Parameters
output_filename (
Optional
[str
]) – optionally save profile results to file instead of printing to std out when training is finished.line_count_restriction (
float
) – this can be used to limit the number of functions reported for each action. either an integer (to select a count of lines), or a decimal fraction between 0.0 and 1.0 inclusive (to select a percentage of lines)
-
class
pytorch_lightning.profiler.
PassThroughProfiler
[source]¶ Bases:
pytorch_lightning.profiler.profilers.BaseProfiler
This class should be used when you don’t want the (small) overhead of profiling. The Trainer uses this class by default.
Params: stream_out: callable
Submodules¶
pytorch_lightning.profiler.profilers module¶
-
class
pytorch_lightning.profiler.profilers.
AdvancedProfiler
(output_filename=None, line_count_restriction=1.0)[source]¶ Bases:
pytorch_lightning.profiler.profilers.BaseProfiler
This profiler uses Python’s cProfiler to record more detailed information about time spent in each function call recorded during a given action. The output is quite verbose and you should only use this if you want very detailed reports.
- Parameters
output_filename (
Optional
[str
]) – optionally save profile results to file instead of printing to std out when training is finished.line_count_restriction (
float
) – this can be used to limit the number of functions reported for each action. either an integer (to select a count of lines), or a decimal fraction between 0.0 and 1.0 inclusive (to select a percentage of lines)
-
class
pytorch_lightning.profiler.profilers.
BaseProfiler
(output_streams=None)[source]¶ Bases:
abc.ABC
If you wish to write a custom profiler, you should inhereit from this class.
- Params:
stream_out: callable
-
describe
()[source]¶ Logs a profile report after the conclusion of the training run.
- Return type
None
-
profile
(action_name)[source]¶ Yields a context manager to encapsulate the scope of a profiled action.
Example:
with self.profile('load training data'): # load training data code
The profiler will start once you’ve entered the context and will automatically stop once you exit the code block.
- Return type
None
-
class
pytorch_lightning.profiler.profilers.
PassThroughProfiler
[source]¶ Bases:
pytorch_lightning.profiler.profilers.BaseProfiler
This class should be used when you don’t want the (small) overhead of profiling. The Trainer uses this class by default.
Params: stream_out: callable
-
class
pytorch_lightning.profiler.profilers.
SimpleProfiler
(output_filename=None)[source]¶ Bases:
pytorch_lightning.profiler.profilers.BaseProfiler
This profiler simply records the duration of actions (in seconds) and reports the mean duration of each action and the total time spent over the entire training run.
- Params:
- output_filename (str): optionally save profile results to file instead of printing
to std out when training is finished.
pytorch_lightning.trainer package¶
Once you’ve organized your PyTorch code into a LightningModule, the Trainer automates everything else.

This abstraction achieves the following:
You maintain control over all aspects via PyTorch code without an added abstraction.
The trainer uses best practices embedded by contributors and users from top AI labs such as Facebook AI Research, NYU, MIT, Stanford, etc…
The trainer allows overriding any key part that you don’t want automated.
Basic use¶
This is the basic use of the trainer:
from pytorch_lightning import Trainer
model = MyLightningModule()
trainer = Trainer()
trainer.fit(model)
Best Practices¶
For cluster computing, it’s recommended you structure your main.py file this way
from argparse import ArgumentParser
def main(hparams):
model = LightningModule()
trainer = Trainer(gpus=hparams.gpus)
trainer.fit(model)
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--gpus', default=None)
args = parser.parse_args()
main(args)
So you can run it like so:distributed_backend
python main.py --gpus 2
Note
If you want to stop a training run early, you can press “Ctrl + C” on your keyboard. The trainer will catch the KeyboardInterrupt and attempt a graceful shutdown, including running callbacks such as on_train_end. The trainer object will also set an attribute interrupted to True in such cases. If you have a callback which shuts down compute resources, for example, you can conditionally run the shutdown logic for only uninterrupted runs.
Testing¶
Once you’re done training, feel free to run the test set! (Only right before publishing your paper or pushing to production)
trainer.test()
Deployment / prediction¶
You just trained a LightningModule which is also just a torch.nn.Module. Use it to do whatever!
# load model
pretrained_model = LightningModule.load_from_checkpoint(PATH)
pretrained_model.freeze()
# use it for finetuning
def forward(self, x):
features = pretrained_model(x)
classes = classifier(features)
# or for prediction
out = pretrained_model(x)
api_write({'response': out}
Trainer flags¶
accumulate_grad_batches¶
Accumulates grads every k batches or as set up in the dict.
# default used by the Trainer (no accumulation)
trainer = Trainer(accumulate_grad_batches=1)
Example:
# accumulate every 4 batches (effective batch size is batch*4)
trainer = Trainer(accumulate_grad_batches=4)
# no accumulation for epochs 1-4. accumulate 3 for epochs 5-10. accumulate 20 after that
trainer = Trainer(accumulate_grad_batches={5: 3, 10: 20})
amp_level¶
The optimization level to use (O1, O2, etc…) for 16-bit GPU precision (using NVIDIA apex under the hood).
Check NVIDIA apex docs for level
Example:
# default used by the Trainer
trainer = Trainer(amp_level='O1')
benchmark¶
If true enables cudnn.benchmark. This flag is likely to increase the speed of your system if your input sizes don’t change. However, if it does, then it will likely make your system slower.
The speedup comes from allowing the cudnn auto-tuner to find the best algorithm for the hardware [see discussion here].
Example:
# default used by the Trainer
trainer = Trainer(benchmark=False)
callbacks¶
Add a list of user defined callbacks. These callbacks DO NOT replace the explicit callbacks (loggers, EarlyStopping or ModelCheckpoint).
Note
Only user defined callbacks (ie: Not EarlyStopping or ModelCheckpoint)
# a list of callbacks
callbacks = [PrintCallback()]
trainer = Trainer(callbacks=callbacks)
Example:
from pytorch_lightning.callbacks import Callback
class PrintCallback(Callback):
def on_train_start(self):
print("Training is started!")
def on_train_end(self):
print(f"Training is done. The logs are: {self.trainer.logs}")
check_val_every_n_epoch¶
Check val every n train epochs.
Example:
# default used by the Trainer
trainer = Trainer(check_val_every_n_epoch=1)
# run val loop every 10 training epochs
trainer = Trainer(check_val_every_n_epoch=10)
checkpoint_callback¶
Callback for checkpointing.
trainer = Trainer(checkpoint_callback=checkpoint_callback)
Example:
from pytorch_lightning.callbacks import ModelCheckpoint
# default used by the Trainer
checkpoint_callback = ModelCheckpoint(
filepath=os.getcwd(),
save_top_k=True,
verbose=True,
monitor='val_loss',
mode='min',
prefix=''
)
default_save_path¶
Default path for logs and weights when no logger
or pytorch_lightning.callbacks.ModelCheckpoint
callback passed.
On certain clusters you might want to separate where logs and checkpoints
are stored. If you don’t then use this method for convenience.
Example:
# default used by the Trainer
trainer = Trainer(default_save_path=os.getcwd())
distributed_backend¶
The distributed backend to use.
(
`dp`
) is DataParallel (split batch among GPUs of same machine)(
`ddp`
) is DistributedDataParallel (each gpu on each node trains, and syncs grads)- (
`ddp2`
) dp on node, ddp across nodes. Useful for things like increasing the number of negative samples
- (
# default used by the Trainer
trainer = Trainer(distributed_backend=None)
Example:
# dp = DataParallel
trainer = Trainer(gpus=2, distributed_backend='dp')
# ddp = DistributedDataParallel
trainer = Trainer(gpus=2, num_nodes=2, distributed_backend='ddp')
# ddp2 = DistributedDataParallel + dp
trainer = Trainer(gpus=2, num_nodes=2, distributed_backend='ddp2')
Note
this option does not apply to TPU. TPUs use `ddp`
by default (over each core)
early_stop_callback¶
Callback for early stopping.
early_stop_callback (pytorch_lightning.callbacks.EarlyStopping
)
True
: A default callback monitoring'val_loss'
is created.Will raise an error if
'val_loss'
is not found.
False
: Early stopping will be disabled.None
: The default callback monitoring'val_loss'
is created.Default:
None
.
trainer = Trainer(early_stop_callback=early_stop_callback)
Example:
from pytorch_lightning.callbacks import EarlyStopping
# default used by the Trainer
early_stop_callback = EarlyStopping(
monitor='val_loss',
patience=3,
strict=False,
verbose=False,
mode='min'
)
Note
If 'val_loss'
is not found will work as if early stopping is disabled.
fast_dev_run¶
Runs 1 batch of train, test and val to find any bugs (ie: a sort of unit test).
Under the hood the pseudocode looks like this:
# loading
__init__()
prepare_data
# test training step
training_batch = next(train_dataloader)
training_step(training_batch)
# test val step
val_batch = next(val_dataloader)
out = validation_step(val_batch)
validation_epoch_end([out])
Example:
# default used by the Trainer
trainer = Trainer(fast_dev_run=False)
# runs 1 train, val, test batch and program ends
trainer = Trainer(fast_dev_run=True)
gpus¶
Number of GPUs to train on
or Which GPUs to train on
can handle strings
Example:
# default used by the Trainer (ie: train on CPU)
trainer = Trainer(gpus=None)
# int: train on 2 gpus
trainer = Trainer(gpus=2)
# list: train on GPUs 1, 4 (by bus ordering)
trainer = Trainer(gpus=[1, 4])
trainer = Trainer(gpus='1, 4') # equivalent
# -1: train on all gpus
trainer = Trainer(gpus=-1)
trainer = Trainer(gpus='-1') # equivalent
# combine with num_nodes to train on multiple GPUs across nodes
# uses 8 gpus in total
trainer = Trainer(gpus=2, num_nodes=4)
Note
See the multi-gpu computing guide
gradient_clip_val¶
Gradient clipping value
0 means don’t clip.
Example:
# default used by the Trainer
trainer = Trainer(gradient_clip_val=0.0)
gradient_clip:
Warning
Deprecated since version 0.5.0.
Use gradient_clip_val instead. Will remove 0.8.0.
log_gpu_memory¶
Options:
None
‘min_max’
‘all’
Example:
# default used by the Trainer
trainer = Trainer(log_gpu_memory=None)
# log all the GPUs (on master node only)
trainer = Trainer(log_gpu_memory='all')
# log only the min and max memory on the master node
trainer = Trainer(log_gpu_memory='min_max')
Note
Might slow performance because it uses the output of nvidia-smi.
log_save_interval¶
Writes logs to disk this often.
Example:
# default used by the Trainer
trainer = Trainer(log_save_interval=100)
logger¶
Logger (or iterable collection of loggers) for experiment tracking.
Trainer(logger=logger)
Example:
from pytorch_lightning.loggers import TensorBoardLogger
# default logger used by trainer
logger = TensorBoardLogger(
save_dir=os.getcwd(),
version=self.slurm_job_id,
name='lightning_logs'
)
max_epochs¶
Stop training once this number of epochs is reached
Example:
# default used by the Trainer
trainer = Trainer(max_epochs=1000)
max_nb_epochs:
Warning
Deprecated since version 0.5.0.
Use max_epochs instead. Will remove 0.8.0.
min_epochs¶
Force training for at least these many epochs
Example:
# default used by the Trainer
trainer = Trainer(min_epochs=1)
min_nb_epochs:
Warning
deprecated:: 0.5.0 Use min_epochs instead. Will remove 0.8.0.
max_steps¶
Stop training after this number of steps Training will stop if max_steps or max_epochs have reached (earliest).
# Default (disabled)
trainer = Trainer(max_steps=None)
Example:
# Stop after 100 steps
trainer = Trainer(max_steps=100)
min_steps¶
Force training for at least these number of steps. Trainer will train model for at least min_steps or min_epochs (latest).
# Default (disabled)
trainer = Trainer(min_steps=None)
Example:
# Run at least for 100 steps (disable min_epochs)
trainer = Trainer(min_steps=100, min_epochs=0)
num_nodes¶
Number of GPU nodes for distributed training.
Example:
# default used by the Trainer
trainer = Trainer(num_nodes=1)
# to train on 8 nodes
trainer = Trainer(num_nodes=8)
nb_gpu_nodes:
Warning
Deprecated since version 0.5.0.
Use num_nodes instead. Will remove 0.8.0.
num_sanity_val_steps¶
Sanity check runs n batches of val before starting the training routine. This catches any bugs in your validation without having to wait for the first validation check. The Trainer uses 5 steps by default. Turn it off or modify it here.
Example:
# default used by the Trainer
trainer = Trainer(num_sanity_val_steps=5)
# turn it off
trainer = Trainer(num_sanity_val_steps=0)
nb_sanity_val_steps:
Warning
Deprecated since version 0.5.0.
Use num_sanity_val_steps instead. Will remove 0.8.0.
num_tpu_cores¶
How many TPU cores to train on (1 or 8).
A single TPU v2 or v3 has 8 cores. A TPU pod has up to 2048 cores. A slice of a POD means you get as many cores as you request.
Your effective batch size is batch_size * total tpu cores.
Note
No need to add a DistributedDataSampler, Lightning automatically does it for you.
This parameter can be either 1 or 8.
Example:
# your_trainer_file.py
# default used by the Trainer (ie: train on CPU)
trainer = Trainer(num_tpu_cores=None)
# int: train on a single core
trainer = Trainer(num_tpu_cores=1)
# int: train on all cores few cores
trainer = Trainer(num_tpu_cores=8)
# for 8+ cores must submit via xla script with
# a max of 8 cores specified. The XLA script
# will duplicate script onto each TPU in the POD
trainer = Trainer(num_tpu_cores=8)
# -1: train on all available TPUs
trainer = Trainer(num_tpu_cores=-1)
To train on more than 8 cores (ie: a POD), submit this script using the xla_dist script.
Example:
python -m torch_xla.distributed.xla_dist
--tpu=$TPU_POD_NAME
--conda-env=torch-xla-nightly
--env=XLA_USE_BF16=1
-- python your_trainer_file.py
overfit_pct¶
Uses this much data of all datasets (training, validation, test). Useful for quickly debugging or trying to overfit on purpose.
Example:
# default used by the Trainer
trainer = Trainer(overfit_pct=0.0)
# use only 1% of the train, test, val datasets
trainer = Trainer(overfit_pct=0.01)
# equivalent:
trainer = Trainer(
train_percent_check=0.01,
val_percent_check=0.01,
test_percent_check=0.01
)
precision¶
Full precision (32), half precision (16). Can be used on CPU, GPU or TPUs.
If used on TPU will use torch.bfloat16 but tensor printing will still show torch.float32.
Example:
# default used by the Trainer
trainer = Trainer(precision=32)
# 16-bit precision
trainer = Trainer(precision=16)
# one day
trainer = Trainer(precision=8|4|2)
print_nan_grads¶
Warning
Deprecated since version 0.7.2..
Has no effect. When detected, NaN grads will be printed automatically. Will remove 0.9.0.
process_position¶
Orders the tqdm bar. Useful when running multiple trainers on the same node.
Example:
# default used by the Trainer
trainer = Trainer(process_position=0)
profiler¶
To profile individual steps during training and assist in identifying bottlenecks.
See the profiler documentation. for more details.
Example:
from pytorch_lightning.profiler import Profiler, AdvancedProfiler
# default used by the Trainer
trainer = Trainer(profiler=None)
# to profile standard training events
trainer = Trainer(profiler=True)
# equivalent to profiler=True
profiler = Profiler()
trainer = Trainer(profiler=profiler)
# advanced profiler for function-level stats
profiler = AdvancedProfiler()
trainer = Trainer(profiler=profiler)
progress_bar_refresh_rate¶
How often to refresh progress bar (in steps). In notebooks, faster refresh rates (lower number) is known to crash them because of their screen refresh rates, so raise it to 50 or more.
Example:
# default used by the Trainer
trainer = Trainer(progress_bar_refresh_rate=1)
# disable progress bar
trainer = Trainer(progress_bar_refresh_rate=0)
reload_dataloaders_every_epoch¶
Set to True to reload dataloaders every epoch.
# if False (default)
train_loader = model.train_dataloader()
for epoch in epochs:
for batch in train_loader:
...
# if True
for epoch in epochs:
train_loader = model.train_dataloader()
for batch in train_loader:
resume_from_checkpoint¶
To resume training from a specific checkpoint pass in the path here.
Example:
# default used by the Trainer
trainer = Trainer(resume_from_checkpoint=None)
# resume from a specific checkpoint
trainer = Trainer(resume_from_checkpoint='some/path/to/my_checkpoint.ckpt')
row_log_interval¶
How often to add logging rows (does not write to disk)
Example:
# default used by the Trainer
trainer = Trainer(row_log_interval=10)
add_row_log_interval:
Warning
Deprecated since version 0.5.0.
Use row_log_interval instead. Will remove 0.8.0.
use_amp:
Warning
Deprecated since version 0.7.0.
Use precision instead. Will remove 0.9.0.
show_progress_bar¶
Warning
Deprecated since version 0.7.2.
Set progress_bar_refresh_rate to 0 instead. Will remove 0.9.0.
test_percent_check¶
How much of test dataset to check.
Example:
# default used by the Trainer
trainer = Trainer(test_percent_check=1.0)
# run through only 25% of the test set each epoch
trainer = Trainer(test_percent_check=0.25)
val_check_interval¶
How often within one training epoch to check the validation set. Can specify as float or int.
use (float) to check within a training epoch
use (int) to check every n steps (batches)
# default used by the Trainer
trainer = Trainer(val_check_interval=1.0)
Example:
# check validation set 4 times during a training epoch
trainer = Trainer(val_check_interval=0.25)
# check validation set every 1000 training batches
# use this when using iterableDataset and your dataset has no length
# (ie: production cases with streaming data)
trainer = Trainer(val_check_interval=1000)
track_grad_norm¶
no tracking (-1)
Otherwise tracks that norm (2 for 2-norm)
# default used by the Trainer
trainer = Trainer(track_grad_norm=-1)
Example:
# track the 2-norm
trainer = Trainer(track_grad_norm=2)
train_percent_check¶
How much of training dataset to check. Useful when debugging or testing something that happens at the end of an epoch.
Example:
# default used by the Trainer
trainer = Trainer(train_percent_check=1.0)
# run through only 25% of the training set each epoch
trainer = Trainer(train_percent_check=0.25)
truncated_bptt_steps¶
Truncated back prop breaks performs backprop every k steps of a much longer sequence.
If this is enabled, your batches will automatically get truncated and the trainer will apply Truncated Backprop to it.
Example:
# default used by the Trainer (ie: disabled)
trainer = Trainer(truncated_bptt_steps=None)
# backprop every 5 steps in a batch
trainer = Trainer(truncated_bptt_steps=5)
Note
Make sure your batches have a sequence dimension.
Lightning takes care to split your batch along the time-dimension.
# we use the second as the time dimension
# (batch, time, ...)
sub_batch = batch[0, 0:t, ...]
Using this feature requires updating your LightningModule’s
pytorch_lightning.core.LightningModule.training_step()
to include a hiddens arg
with the hidden
# Truncated back-propagation through time
def training_step(self, batch, batch_idx, hiddens):
# hiddens are the hiddens from the previous truncated backprop step
out, hiddens = self.lstm(data, hiddens)
return {
"loss": ...,
"hiddens": hiddens # remember to detach() this
}
To modify how the batch is split,
override pytorch_lightning.core.LightningModule.tbptt_split_batch()
:
class LitMNIST(pl.LightningModule):
def tbptt_split_batch(self, batch, split_size):
# do your own splitting on the batch
return splits
val_percent_check¶
How much of validation dataset to check. Useful when debugging or testing something that happens at the end of an epoch.
Example:
# default used by the Trainer
trainer = Trainer(val_percent_check=1.0)
# run through only 25% of the validation set each epoch
trainer = Trainer(val_percent_check=0.25)
weights_save_path¶
Directory of where to save weights if specified.
# default used by the Trainer
trainer = Trainer(weights_save_path=os.getcwd())
Example:
# save to your custom path
trainer = Trainer(weights_save_path='my/path')
# if checkpoint callback used, then overrides the weights path
# **NOTE: this saves weights to some/path NOT my/path
checkpoint_callback = ModelCheckpoint(filepath='some/path')
trainer = Trainer(
checkpoint_callback=checkpoint_callback,
weights_save_path='my/path'
)
weights_summary¶
Prints a summary of the weights when training begins. Options: ‘full’, ‘top’, None.
Example:
# default used by the Trainer (ie: print all weights)
trainer = Trainer(weights_summary='full')
# print only the top level modules
trainer = Trainer(weights_summary='top')
# don't print a summary
trainer = Trainer(weights_summary=None)
Trainer class¶
-
class
pytorch_lightning.trainer.
Trainer
(logger=True, checkpoint_callback=True, early_stop_callback=False, callbacks=[], default_save_path=None, gradient_clip_val=0, process_position=0, num_nodes=1, gpus=None, num_tpu_cores=None, log_gpu_memory=None, progress_bar_refresh_rate=1, overfit_pct=0.0, track_grad_norm=-1, check_val_every_n_epoch=1, fast_dev_run=False, accumulate_grad_batches=1, max_epochs=1000, min_epochs=1, max_steps=None, min_steps=None, train_percent_check=1.0, val_percent_check=1.0, test_percent_check=1.0, val_check_interval=1.0, log_save_interval=100, row_log_interval=10, add_row_log_interval=None, distributed_backend=None, precision=32, print_nan_grads=False, weights_summary='full', weights_save_path=None, amp_level='O1', num_sanity_val_steps=5, truncated_bptt_steps=None, resume_from_checkpoint=None, profiler=None, benchmark=False, reload_dataloaders_every_epoch=False, gradient_clip=None, nb_gpu_nodes=None, max_nb_epochs=None, min_nb_epochs=None, use_amp=None, show_progress_bar=None, nb_sanity_val_steps=None, **kwargs)[source]¶ Bases:
pytorch_lightning.trainer.training_io.TrainerIOMixin
,pytorch_lightning.trainer.optimizers.TrainerOptimizersMixin
,pytorch_lightning.trainer.auto_mix_precision.TrainerAMPMixin
,pytorch_lightning.trainer.distrib_parts.TrainerDPMixin
,pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin
,pytorch_lightning.trainer.logging.TrainerLoggingMixin
,pytorch_lightning.trainer.model_hooks.TrainerModelHooksMixin
,pytorch_lightning.trainer.training_tricks.TrainerTrainingTricksMixin
,pytorch_lightning.trainer.data_loading.TrainerDataLoadingMixin
,pytorch_lightning.trainer.evaluation_loop.TrainerEvaluationLoopMixin
,pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin
,pytorch_lightning.trainer.callback_config.TrainerCallbackConfigMixin
,pytorch_lightning.trainer.callback_hook.TrainerCallbackHookMixin
,pytorch_lightning.trainer.deprecated_api.TrainerDeprecatedAPITillVer0_8
,pytorch_lightning.trainer.deprecated_api.TrainerDeprecatedAPITillVer0_9
Customize every aspect of training via flags
- Parameters
logger (
Union
[LightningLoggerBase
,Iterable
[LightningLoggerBase
],bool
]) – Logger (or iterable collection of loggers) for experiment tracking.checkpoint_callback (
Union
[ModelCheckpoint
,bool
]) – Callback for checkpointing.early_stop_callback (
pytorch_lightning.callbacks.EarlyStopping
) –default_save_path (
Optional
[str
]) – Default path for logs and weights when no logger/ckpt_callback passedgradient_clip_val (
float
) – 0 means don’t clip.gradient_clip –
Warning
Deprecated since version 0.7.0.
Use gradient_clip_val instead. Will remove 0.9.0.
process_position (
int
) – orders the tqdm bar when running multiple models on same machine.num_nodes (
int
) – number of GPU nodes for distributed training.nb_gpu_nodes –
Warning
Deprecated since version 0.7.0.
Use num_nodes instead. Will remove 0.9.0.
gpus (
Union
[List
[int
],str
,int
,None
]) – Which GPUs to train on.num_tpu_cores (
Optional
[int
]) – How many TPU cores to train on (1 or 8).log_gpu_memory (
Optional
[str
]) – None, ‘min_max’, ‘all’. Might slow performanceshow_progress_bar –
Warning
Deprecated since version 0.7.2.
Set progress_bar_refresh_rate to postive integer to enable. Will remove 0.9.0.
progress_bar_refresh_rate (
int
) – How often to refresh progress bar (in steps). Value0
disables progress bar.overfit_pct (
float
) – How much of training-, validation-, and test dataset to check.track_grad_norm (
int
) – -1 no tracking. Otherwise tracks that normcheck_val_every_n_epoch (
int
) – Check val every n train epochs.fast_dev_run (
bool
) – runs 1 batch of train, test and val to find any bugs (ie: a sort of unit test).accumulate_grad_batches (
Union
[int
,Dict
[int
,int
],List
[list
]]) – Accumulates grads every k batches or as set up in the dict.max_epochs (
int
) – Stop training once this number of epochs is reached.max_nb_epochs –
Warning
Deprecated since version 0.7.0.
Use max_epochs instead. Will remove 0.9.0.
min_epochs (
int
) – Force training for at least these many epochsmin_nb_epochs –
Warning
Deprecated since version 0.7.0.
Use min_epochs instead. Will remove 0.9.0.
max_steps (
Optional
[int
]) – Stop training after this number of steps. Disabled by default (None).min_steps (
Optional
[int
]) – Force training for at least these number of steps. Disabled by default (None).train_percent_check (
float
) – How much of training dataset to check.val_percent_check (
float
) – How much of validation dataset to check.test_percent_check (
float
) – How much of test dataset to check.val_check_interval (
float
) – How often within one training epoch to check the validation setlog_save_interval (
int
) – Writes logs to disk this oftenrow_log_interval (
int
) – How often to add logging rows (does not write to disk)add_row_log_interval –
Warning
Deprecated since version 0.7.0.
Use row_log_interval instead. Will remove 0.9.0.
distributed_backend (
Optional
[str
]) – The distributed backend to use.use_amp –
Warning
Deprecated since version 0.7.0.
Use precision instead. Will remove 0.9.0.
precision (
int
) – Full precision (32), half precision (16).print_nan_grads (
bool
) –Warning
Deprecated since version 0.7.2.
Has no effect. When detected, NaN grads will be printed automatically. Will remove 0.9.0.
weights_summary (
Optional
[str
]) – Prints a summary of the weights when training begins.weights_save_path (
Optional
[str
]) – Where to save weights if specified.amp_level (
str
) – The optimization level to use (O1, O2, etc…).num_sanity_val_steps (
int
) – Sanity check runs n batches of val before starting the training routine.nb_sanity_val_steps –
Warning
Deprecated since version 0.7.0.
Use num_sanity_val_steps instead. Will remove 0.8.0.
truncated_bptt_steps (
Optional
[int
]) – Truncated back prop breaks performs backprop every k steps ofresume_from_checkpoint (
Optional
[str
]) – To resume training from a specific checkpoint pass in the path here.profiler (
Optional
[BaseProfiler
]) – To profile individual steps during training and assist inreload_dataloaders_every_epoch (
bool
) – Set to True to reload dataloaders every epochbenchmark (
bool
) – If true enables cudnn.benchmark.
-
_Trainer__set_random_port
()[source]¶ When running DDP NOT managed by SLURM, the ports might collide :return:
-
classmethod
add_argparse_args
(parent_parser)[source]¶ Extends existing argparse by default Trainer attributes.
- Parameters
parent_parser (
ArgumentParser
) – The custom cli arguments parser, which will be extended by the Trainer default arguments.
Only arguments of the allowed types (str, float, int, bool) will extend the parent_parser.
- Return type
-
check_model_configuration
(model)[source]¶ Checks that the model is configured correctly before training is started.
- Parameters
model (
LightningModule
) – The model to test.
-
fit
(model, train_dataloader=None, val_dataloaders=None, test_dataloaders=None)[source]¶ Runs the full optimization routine.
- Parameters
model (
LightningModule
) – Model to fit.train_dataloader (
Optional
[DataLoader
]) – A Pytorch DataLoader with training samples. If the model has a predefined train_dataloader method this will be skipped.val_dataloaders (
Optional
[DataLoader
]) – Either a single Pytorch Dataloader or a list of them, specifying validation samples. If the model has a predefined val_dataloaders method this will be skippedtest_dataloaders (
Optional
[DataLoader
]) – Either a single Pytorch Dataloader or a list of them, specifying validation samples. If the model has a predefined test_dataloaders method this will be skipped
Example:
# Option 1, # Define the train_dataloader(), test_dataloader() and val_dataloader() fxs # in the lightningModule # RECOMMENDED FOR MOST RESEARCH AND APPLICATIONS TO MAINTAIN READABILITY trainer = Trainer() model = LightningModule() trainer.fit(model) # Option 2 # in production cases we might want to pass different datasets to the same model # Recommended for PRODUCTION SYSTEMS train, val, test = DataLoader(...), DataLoader(...), DataLoader(...) trainer = Trainer() model = LightningModule() trainer.fit(model, train_dataloader=train, val_dataloader=val, test_dataloader=test) # Option 1 & 2 can be mixed, for example the training set can be # defined as part of the model, and validation/test can then be # feed to .fit()
-
classmethod
get_deprecated_arg_names
()[source]¶ Returns a list with deprecated Trainer arguments.
- Return type
-
classmethod
get_init_arguments_and_types
()[source]¶ Scans the Trainer signature and returns argument names, types and default values.
- Returns
(argument name, set with argument types, argument default value).
- Return type
List with tuples of 3 values
Examples
>>> args = Trainer.get_init_arguments_and_types() >>> import pprint >>> pprint.pprint(sorted(args)) [('accumulate_grad_batches', (<class 'int'>, typing.Dict[int, int], typing.List[list]), 1), ... ('callbacks', (<class 'pytorch_lightning.callbacks.base.Callback'>,), []), ('check_val_every_n_epoch', (<class 'int'>,), 1), ... ('max_epochs', (<class 'int'>,), 1000), ... ('precision', (<class 'int'>,), 32), ('print_nan_grads', (<class 'bool'>,), False), ('process_position', (<class 'int'>,), 0), ('profiler', (<class 'pytorch_lightning.profiler.profilers.BaseProfiler'>, <class 'NoneType'>), None), ...
-
run_pretrain_routine
(model)[source]¶ Sanity check a few things before starting actual training.
- Parameters
model (
LightningModule
) – The model to run sanity test on.
-
test
(model=None)[source]¶ Separates from fit to make sure you never run on your test set until you want to.
- Parameters
model (
Optional
[LightningModule
]) – The model to test.
Example:
# Option 1 # run test after fitting trainer = Trainer() model = LightningModule() trainer.fit() trainer.test() # Option 2 # run test from a loaded model model = LightningModule.load_from_checkpoint('path/to/checkpoint.ckpt') trainer = Trainer() trainer.test(model)
-
DEPRECATED_IN_0_8
= ('gradient_clip', 'nb_gpu_nodes', 'max_nb_epochs', 'min_nb_epochs', 'add_row_log_interval', 'nb_sanity_val_steps')[source]¶
Submodules¶
pytorch_lightning.trainer.auto_mix_precision module¶
pytorch_lightning.trainer.callback_config module¶
-
class
pytorch_lightning.trainer.callback_config.
TrainerCallbackConfigMixin
[source]¶ Bases:
abc.ABC
-
configure_checkpoint_callback
()[source]¶ Weight path set in this priority: Checkpoint_callback’s path (if passed in). User provided weights_saved_path Otherwise use os.getcwd()
-
abstract
save_checkpoint
(*args)[source]¶ Warning: this is just empty shell for code implemented in other class.
-
pytorch_lightning.trainer.callback_hook module¶
pytorch_lightning.trainer.data_loading module¶
-
class
pytorch_lightning.trainer.data_loading.
TrainerDataLoadingMixin
[source]¶ Bases:
abc.ABC
-
_reset_eval_dataloader
(model, mode)[source]¶ Generic method to reset a dataloader for evaluation.
- Parameters
model (
LightningModule
) – The current LightningModulemode (
str
) – Either ‘val’ or ‘test’
- Return type
Tuple
[int
,List
[DataLoader
]]- Returns
Tuple (num_batches, dataloaders)
-
determine_data_use_amount
(train_percent_check, val_percent_check, test_percent_check, overfit_pct)[source]¶ Use less data for debugging purposes
- Return type
None
-
abstract
is_overriden
(*args)[source]¶ Warning: this is just empty shell for code implemented in other class.
-
request_dataloader
(dataloader_fx)[source]¶ Handles downloading data in the GPU or TPU case.
- Parameters
dataloader_fx (
Callable
) – The bound dataloader getter- Return type
- Returns
The dataloader
-
reset_test_dataloader
(model)[source]¶ Resets the validation dataloader and determines the number of batches.
- Parameters
model – The current LightningModule
- Return type
None
-
reset_train_dataloader
(model)[source]¶ Resets the train dataloader and initialises required variables (number of batches, when to validate, etc.).
- Parameters
model (
LightningModule
) – The current LightningModule- Return type
None
-
reset_val_dataloader
(model)[source]¶ Resets the validation dataloader and determines the number of batches.
- Parameters
model (
LightningModule
) – The current LightningModule- Return type
None
-
pytorch_lightning.trainer.deprecated_api module¶
Mirroring deprecated API
pytorch_lightning.trainer.distrib_data_parallel module¶
Lightning supports model training on a cluster managed by SLURM in the following cases:
Training on a single cpu or single GPU.
Train on multiple GPUs on the same node using DataParallel or DistributedDataParallel
Training across multiple GPUs on multiple different nodes via DistributedDataParallel.
Note
A node means a machine with multiple GPUs
Running grid search on a cluster¶
To use lightning to run a hyperparameter search (grid-search or random-search) on a cluster do 4 things:
(1). Define the parameters for the grid search
from test_tube import HyperOptArgumentParser
# subclass of argparse
parser = HyperOptArgumentParser(strategy='random_search')
parser.add_argument('--learning_rate', default=0.002, type=float, help='the learning rate')
# let's enable optimizing over the number of layers in the network
parser.opt_list('--nb_layers', default=2, type=int, tunable=True, options=[2, 4, 8])
hparams = parser.parse_args()
Note
You must set Tunable=True for that argument to be considered in the permutation set. Otherwise test-tube will use the default value. This flag is useful when you don’t want to search over an argument and want to use the default instead.
- (2). Define the cluster options in the
SlurmCluster object (over 5 nodes and 8 gpus)
from test_tube.hpc import SlurmCluster
# hyperparameters is a test-tube hyper params object
# see https://williamfalcon.github.io/test-tube/hyperparameter_optimization/HyperOptArgumentParser/
hyperparams = args.parse()
# init cluster
cluster = SlurmCluster(
hyperparam_optimizer=hyperparams,
log_path='/path/to/log/results/to',
python_cmd='python3'
)
# let the cluster know where to email for a change in job status (ie: complete, fail, etc...)
cluster.notify_job_status(email='some@email.com', on_done=True, on_fail=True)
# set the job options. In this instance, we'll run 20 different models
# each with its own set of hyperparameters giving each one 1 GPU (ie: taking up 20 GPUs)
cluster.per_experiment_nb_gpus = 8
cluster.per_experiment_nb_nodes = 5
# we'll request 10GB of memory per node
cluster.memory_mb_per_node = 10000
# set a walltime of 10 minues
cluster.job_time = '10:00'
(3). Make a main function with your model and trainer. Each job will call this function with a particular hparams configuration.:
from pytorch_lightning import Trainer
def train_fx(trial_hparams, cluster_manager, _):
# hparams has a specific set of hyperparams
my_model = MyLightningModel()
# give the trainer the cluster object
trainer = Trainer()
trainer.fit(my_model)
`
(4). Start the grid/random search:
# run the models on the cluster
cluster.optimize_parallel_cluster_gpu(
train_fx,
nb_trials=20,
job_name='my_grid_search_exp_name',
job_display_name='my_exp')
Note
nb_trials specifies how many of the possible permutations to use. If using grid_search it will use the depth first ordering. If using random_search it will use the first k shuffled options. FYI, random search has been shown to be just as good as any Bayesian optimization method when using a reasonable number of samples (60), see this paper for more information.
Walltime auto-resubmit¶
Lightning automatically resubmits jobs when they reach the walltime. Make sure to set the SIGUSR1 signal in your SLURM script.:
# 90 seconds before training ends
#SBATCH --signal=SIGUSR1@90
When lightning receives the SIGUSR1 signal it will: 1. save a checkpoint with ‘hpc_ckpt’ in the name. 2. resubmit the job using the SLURM_JOB_ID
When the script starts again, Lightning will: 1. search for a ‘hpc_ckpt’ checkpoint. 2. restore the model, optimizers, schedulers, epoch, etc…
-
class
pytorch_lightning.trainer.distrib_data_parallel.
TrainerDDPMixin
[source]¶ Bases:
abc.ABC
-
abstract
copy_trainer_model_properties
(*args)[source]¶ Warning: this is just empty shell for code implemented in other class.
-
ddp_train
(gpu_idx, model)[source]¶ Entry point into a DP thread :param _sphinx_paramlinks_pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin.ddp_train.gpu_idx: :param _sphinx_paramlinks_pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin.ddp_train.model: :param _sphinx_paramlinks_pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin.ddp_train.cluster_obj: :return:
-
abstract
init_optimizers
(*args)[source]¶ Warning: this is just empty shell for code implemented in other class.
-
load_spawn_weights
(original_model)[source]¶ Load the temp weights saved in the process To recover the trained model from the ddp process we load the saved weights :param _sphinx_paramlinks_pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin.load_spawn_weights.model: :return:
-
abstract
run_pretrain_routine
(*args)[source]¶ Warning: this is just empty shell for code implemented in other class.
-
save_spawn_weights
(model)[source]¶ Dump a temporary checkpoint after ddp ends to get weights out of the process :param _sphinx_paramlinks_pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin.save_spawn_weights.model: :return:
-
abstract
pytorch_lightning.trainer.distrib_parts module¶
Lightning makes multi-gpu training and 16 bit training trivial.
Note
None of the flags below require changing anything about your lightningModel definition.
Choosing a backend¶
- Lightning supports two backends. DataParallel and DistributedDataParallel.
Both can be used for single-node multi-GPU training. For multi-node training you must use DistributedDataParallel.
Splits a batch across multiple GPUs on the same node. Cannot be used for multi-node training.
Trains a copy of the model on each GPU and only syncs gradients. If used with DistributedSampler, each GPU trains on a subset of the full dataset.
- Works like DDP, except each node trains a single copy of the model using ALL GPUs on that node.
Very useful when dealing with negative samples, etc…
You can toggle between each mode by setting this flag.
# DEFAULT (when using single GPU or no GPUs)
trainer = Trainer(distributed_backend=None)
# Change to DataParallel (gpus > 1)
trainer = Trainer(distributed_backend='dp')
# change to distributed data parallel (gpus > 1)
trainer = Trainer(distributed_backend='ddp')
# change to distributed data parallel (gpus > 1)
trainer = Trainer(distributed_backend='ddp2')
- If you request multiple nodes, the back-end will auto-switch to ddp.
We recommend you use DistributedDataparallel even for single-node multi-GPU training. It is MUCH faster than DP but may have configuration issues depending on your cluster.
- For a deeper understanding of what lightning is doing, feel free to read this
- Due to an issue with apex and DistributedDataParallel (PyTorch and NVIDIA issue), Lightning does
not allow 16-bit and DP training. We tried to get this to work, but it’s an issue on their end.
Below are the possible configurations we support.
1 GPU |
1+ GPUs |
DP |
DDP |
16-bit |
command |
---|---|---|---|---|---|
Y |
Trainer(gpus=1) |
||||
Y |
Y |
Trainer(gpus=1, use_amp=True) |
|||
Y |
Y |
Trainer(gpus=k, distributed_backend=’dp’) |
|||
Y |
Y |
Trainer(gpus=k, distributed_backend=’ddp’) |
|||
Y |
Y |
Y |
Trainer(gpus=k, distributed_backend=’ddp’, use_amp=True) |
You also have the option of specifying which GPUs to use by passing a list:
# DEFAULT (int) specifies how many GPUs to use.
Trainer(gpus=k)
# Above is equivalent to
Trainer(gpus=list(range(k)))
# You specify which GPUs (don't use if running on cluster)
Trainer(gpus=[0, 1])
# can also be a string
Trainer(gpus='0, 1')
# can also be -1 or '-1', this uses all available GPUs
# this is equivalent to list(range(torch.cuda.available_devices()))
Trainer(gpus=-1)
- CUDA flags make certain GPUs visible to your script.
Lightning sets these for you automatically, there’s NO NEED to do this yourself.
# lightning will set according to what you give the trainer
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
- However, when using a cluster, Lightning will NOT set these flags (and you should not either).
SLURM will set these for you.
- 16 bit precision can cut your memory footprint by half. If using volta architecture GPUs
it can give a dramatic training speed-up as well. First, install apex (if install fails, look here):
$ git clone https://github.com/NVIDIA/apex $ cd apex # ------------------------ # OPTIONAL: on your cluster you might need to load cuda 10 or 9 # depending on how you installed PyTorch # see available modules module avail # load correct cuda before install module load cuda-10.0 # ------------------------ # make sure you've loaded a cuda version > 4.0 and < 7.0 module load gcc-6.1.0 $ pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
then set this use_amp to True.:
# DEFAULT
trainer = Trainer(amp_level='O2', use_amp=False)
- Make sure you’re on a GPU machine. You can set as many GPUs as you want.
In this setting, the model will run on all 8 GPUs at once using DataParallel under the hood.
# to use DataParallel
trainer = Trainer(gpus=8, distributed_backend='dp')
# RECOMMENDED use DistributedDataParallel
trainer = Trainer(gpus=8, distributed_backend='ddp')
The number of GPUs can also be selected with a list of indices or a string containing a comma separated list of GPU ids. The table below lists examples of possible input formats and how they are interpreted by Lightning. Note in particular the difference between gpus=0, gpus=[0] and gpus=”0”.
gpus |
Type |
Parsed |
Meaning |
---|---|---|---|
None |
NoneType |
None |
CPU |
0 |
int |
None |
CPU |
3 |
int |
[0, 1, 2] |
first 3 GPUs |
-1 |
int |
[0, 1, 2, …] |
all available GPUs |
[0] |
list |
[0] |
GPU 0 |
[1, 3] |
list |
[1, 3] |
GPUs 1 and 3 |
“0” |
str |
[0] |
GPU 0 |
“3” |
str |
[3] |
GPU 3 |
“1, 3” |
str |
[1, 3] |
GPUs 1 and 3 |
“-1” |
str |
[0, 1, 2, …] |
all available GPUs |
Multi-node training is easily done by specifying these flags.
# train on 12*8 GPUs
trainer = Trainer(gpus=8, num_nodes=12, distributed_backend='ddp')
- You must configure your job submission script correctly for the trainer to work.
Here is an example script for the above trainer configuration.
#!/bin/bash -l
# SLURM SUBMIT SCRIPT
#SBATCH --nodes=12
#SBATCH --gres=gpu:8
#SBATCH --ntasks-per-node=8
#SBATCH --mem=0
#SBATCH --time=0-02:00:00
# activate conda env
conda activate my_env
# -------------------------
# OPTIONAL
# -------------------------
# debugging flags (optional)
# export NCCL_DEBUG=INFO
# export PYTHONFAULTHANDLER=1
# PyTorch comes with prebuilt NCCL support... but if you have issues with it
# you might need to load the latest version from your modules
# module load NCCL/2.4.7-1-cuda.10.0
# on your cluster you might need these:
# set the network interface
# export NCCL_SOCKET_IFNAME=^docker0,lo
# -------------------------
# random port between 12k and 20k
export MASTER_PORT=$((12000 + RANDOM % 20000))
# run script from above
python my_main_file.py
Note
When running in DDP mode, any errors in your code will show up as an NCCL issue. Set the NCCL_DEBUG=INFO flag to see the ACTUAL error.
Normally now you would need to add a distributed sampler to your dataset, however Lightning automates this for you. But if you still need to set a sampler Lightning will not interfere nor automate it.
Here’s an example of how to add your own sampler (again no need with Lightning).
# ie: this:
dataset = myDataset()
dataloader = Dataloader(dataset)
# becomes:
dataset = myDataset()
dist_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
dataloader = Dataloader(dataset, sampler=dist_sampler)
Instead of manually building SLURM scripts, you can use the SlurmCluster object to do this for you. The SlurmCluster can also run a grid search if you pass in a HyperOptArgumentParser.
Here is an example where you run a grid search of 9 combinations of hyperparams. The full examples are here.
# grid search 3 values of learning rate and 3 values of number of layers for your net
# this generates 9 experiments (lr=1e-3, layers=16), (lr=1e-3, layers=32),
# (lr=1e-3, layers=64), ... (lr=1e-1, layers=64)
parser = HyperOptArgumentParser(strategy='grid_search', add_help=False)
parser.opt_list('--learning_rate', default=0.001, type=float,
options=[1e-3, 1e-2, 1e-1], tunable=True)
parser.opt_list('--layers', default=1, type=float, options=[16, 32, 64], tunable=True)
hyperparams = parser.parse_args()
# Slurm cluster submits 9 jobs, each with a set of hyperparams
cluster = SlurmCluster(
hyperparam_optimizer=hyperparams,
log_path='/some/path/to/save',
)
# OPTIONAL FLAGS WHICH MAY BE CLUSTER DEPENDENT
# which interface your nodes use for communication
cluster.add_command('export NCCL_SOCKET_IFNAME=^docker0,lo')
# see output of the NCCL connection process
# NCCL is how the nodes talk to each other
cluster.add_command('export NCCL_DEBUG=INFO')
# setting a master port here is a good idea.
cluster.add_command('export MASTER_PORT=%r' % PORT)
# ************** DON'T FORGET THIS ***************
# MUST load the latest NCCL version
cluster.load_modules(['NCCL/2.4.7-1-cuda.10.0'])
# configure cluster
cluster.per_experiment_nb_nodes = 12
cluster.per_experiment_nb_gpus = 8
cluster.add_slurm_cmd(cmd='ntasks-per-node', value=8, comment='1 task per gpu')
# submit a script with 9 combinations of hyper params
# (lr=1e-3, layers=16), (lr=1e-3, layers=32), (lr=1e-3, layers=64), ... (lr=1e-1, layers=64)
cluster.optimize_parallel_cluster_gpu(
main,
nb_trials=9, # how many permutations of the grid search to run
job_name='name_for_squeue'
)
The other option is that you generate scripts on your own via a bash command or use another library…
Here lightning distributes parts of your module across available GPUs to optimize for speed and memory.
-
class
pytorch_lightning.trainer.distrib_parts.
TrainerDPMixin
[source]¶ Bases:
abc.ABC
-
abstract
init_optimizers
(*args)[source]¶ Warning: this is just empty shell for code implemented in other class.
-
abstract
run_pretrain_routine
(*args)[source]¶ Warning: this is just empty shell for code implemented in other class.
-
abstract
-
pytorch_lightning.trainer.distrib_parts.
check_gpus_data_type
(gpus)[source]¶ - Parameters
gpus – gpus parameter as passed to the Trainer Function checks that it is one of: None, Int, String or List Throws otherwise
- Returns
return unmodified gpus variable
-
pytorch_lightning.trainer.distrib_parts.
determine_root_gpu_device
(gpus)[source]¶ - Parameters
gpus – non empty list of ints representing which gpus to use
- Returns
designated root GPU device
-
pytorch_lightning.trainer.distrib_parts.
get_all_available_gpus
()[source]¶ - Returns
a list of all available gpus
-
pytorch_lightning.trainer.distrib_parts.
parse_gpu_ids
(gpus)[source]¶ - Parameters
gpus – Int, string or list An int -1 or string ‘-1’ indicate that all available GPUs should be used. A list of ints or a string containing list of comma separated integers indicates specific GPUs to use An int 0 means that no GPUs should be used Any int N > 0 indicates that GPUs [0..N) should be used.
- Returns
List of gpus to be used
If no GPUs are available but the value of gpus variable indicates request for GPUs then a misconfiguration exception is raised.
pytorch_lightning.trainer.evaluation_loop module¶
Validation loop¶
The lightning validation loop handles everything except the actual computations of your model. To decide what will happen in your validation loop, define the validation_step function. Below are all the things lightning automates for you in the validation loop.
Note
Lightning will run 5 steps of validation in the beginning of training as a sanity check so you don’t have to wait until a full epoch to catch possible validation issues.
If you have a small dataset you might want to check validation every n epochs
# DEFAULT
trainer = Trainer(check_val_every_n_epoch=1)
If you don’t want to check 100% of the validation set (for debugging or if it’s huge), set this flag
val_percent_check will be overwritten by overfit_pct if overfit_pct > 0
# DEFAULT
trainer = Trainer(val_percent_check=1.0)
# check 10% only
trainer = Trainer(val_percent_check=0.1)
If you don’t want to check 100% of the test set (for debugging or if it’s huge), set this flag
test_percent_check will be overwritten by overfit_pct if overfit_pct > 0
# DEFAULT
trainer = Trainer(test_percent_check=1.0)
# check 10% only
trainer = Trainer(test_percent_check=0.1)
- For large datasets it’s often desirable to check validation multiple times within a training loop.
Pass in a float to check that often within 1 training epoch. Pass in an int k to check every k training batches. Must use an int if using an IterableDataset.
# DEFAULT
trainer = Trainer(val_check_interval=0.95)
# check every .25 of an epoch
trainer = Trainer(val_check_interval=0.25)
# check every 100 train batches (ie: for IterableDatasets or fixed frequency)
trainer = Trainer(val_check_interval=100)
- Lightning runs a few steps of validation in the beginning of training.
This avoids crashing in the validation loop sometime deep into a lengthy training loop.
# DEFAULT
trainer = Trainer(num_sanity_val_steps=5)
You can use Trainer(num_sanity_val_steps=0) to skip the sanity check.
# Testing loop
- To ensure you don’t accidentally use test data to guide training decisions Lightning
makes running the test set deliberate.
test
You have two options to run the test set. First case is where you test right after a full training routine.
# run full training
trainer.fit(model)
# run test set
trainer.test()
Second case is where you load a model and run the test set
model = MyLightningModule.load_from_metrics(
weights_path='/path/to/pytorch_checkpoint.ckpt',
tags_csv='/path/to/test_tube/experiment/version/meta_tags.csv',
on_gpu=True,
map_location=None
)
# init trainer with whatever options
trainer = Trainer(...)
# test (pass in the model)
trainer.test(model)
- In this second case, the options you pass to trainer will be used when running
the test set (ie: 16-bit, dp, ddp, etc…)
-
class
pytorch_lightning.trainer.evaluation_loop.
TrainerEvaluationLoopMixin
[source]¶ Bases:
abc.ABC
-
_evaluate
(model, dataloaders, max_batches, test_mode=False)[source]¶ Run evaluation code.
- Parameters
model (
LightningModule
) – PT modeldataloaders – list of PT dataloaders
max_batches (
int
) – Scalartest_mode (
bool
) –
-
abstract
add_tqdm_metrics
(*args)[source]¶ Warning: this is just empty shell for code implemented in other class.
-
abstract
copy_trainer_model_properties
(*args)[source]¶ Warning: this is just empty shell for code implemented in other class.
-
abstract
get_model
()[source]¶ Warning: this is just empty shell for code implemented in other class.
-
abstract
is_overriden
(*args)[source]¶ Warning: this is just empty shell for code implemented in other class.
-
abstract
log_metrics
(*args)[source]¶ Warning: this is just empty shell for code implemented in other class.
-
abstract
reset_test_dataloader
(*args)[source]¶ Warning: this is just empty shell for code implemented in other class.
-
abstract
reset_val_dataloader
(*args)[source]¶ Warning: this is just empty shell for code implemented in other class.
-
abstract
transfer_batch_to_gpu
(*args)[source]¶ Warning: this is just empty shell for code implemented in other class.
-
pytorch_lightning.trainer.ignored_warnings module¶
pytorch_lightning.trainer.logging module¶
-
class
pytorch_lightning.trainer.logging.
TrainerLoggingMixin
[source]¶ Bases:
abc.ABC
-
log_metrics
(metrics, grad_norm_dic, step=None)[source]¶ Logs the metric dict passed in. If step parameter is None and step key is presented is metrics, uses metrics[“step”] as a step
-
pytorch_lightning.trainer.model_hooks module¶
pytorch_lightning.trainer.optimizers module¶
pytorch_lightning.trainer.supporters module¶
-
class
pytorch_lightning.trainer.supporters.
TensorRunningAccum
(window_length)[source]¶ Bases:
object
Tracks a running accumulation values (min, max, mean) without graph references.
Examples
>>> accum = TensorRunningAccum(5) >>> accum.last(), accum.mean() (None, None) >>> accum.append(torch.tensor(1.5)) >>> accum.last(), accum.mean() (tensor(1.5000), tensor(1.5000)) >>> accum.append(torch.tensor(2.5)) >>> accum.last(), accum.mean() (tensor(2.5000), tensor(2.)) >>> accum.reset() >>> _= [accum.append(torch.tensor(i)) for i in range(13)] >>> accum.last(), accum.mean(), accum.min(), accum.max() (tensor(12.), tensor(10.), tensor(8.), tensor(12.))
pytorch_lightning.trainer.trainer module¶
-
class
pytorch_lightning.trainer.trainer.
Trainer
(logger=True, checkpoint_callback=True, early_stop_callback=False, callbacks=[], default_save_path=None, gradient_clip_val=0, process_position=0, num_nodes=1, gpus=None, num_tpu_cores=None, log_gpu_memory=None, progress_bar_refresh_rate=1, overfit_pct=0.0, track_grad_norm=-1, check_val_every_n_epoch=1, fast_dev_run=False, accumulate_grad_batches=1, max_epochs=1000, min_epochs=1, max_steps=None, min_steps=None, train_percent_check=1.0, val_percent_check=1.0, test_percent_check=1.0, val_check_interval=1.0, log_save_interval=100, row_log_interval=10, add_row_log_interval=None, distributed_backend=None, precision=32, print_nan_grads=False, weights_summary='full', weights_save_path=None, amp_level='O1', num_sanity_val_steps=5, truncated_bptt_steps=None, resume_from_checkpoint=None, profiler=None, benchmark=False, reload_dataloaders_every_epoch=False, gradient_clip=None, nb_gpu_nodes=None, max_nb_epochs=None, min_nb_epochs=None, use_amp=None, show_progress_bar=None, nb_sanity_val_steps=None, **kwargs)[source]¶ Bases:
pytorch_lightning.trainer.training_io.TrainerIOMixin
,pytorch_lightning.trainer.optimizers.TrainerOptimizersMixin
,pytorch_lightning.trainer.auto_mix_precision.TrainerAMPMixin
,pytorch_lightning.trainer.distrib_parts.TrainerDPMixin
,pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin
,pytorch_lightning.trainer.logging.TrainerLoggingMixin
,pytorch_lightning.trainer.model_hooks.TrainerModelHooksMixin
,pytorch_lightning.trainer.training_tricks.TrainerTrainingTricksMixin
,pytorch_lightning.trainer.data_loading.TrainerDataLoadingMixin
,pytorch_lightning.trainer.evaluation_loop.TrainerEvaluationLoopMixin
,pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin
,pytorch_lightning.trainer.callback_config.TrainerCallbackConfigMixin
,pytorch_lightning.trainer.callback_hook.TrainerCallbackHookMixin
,pytorch_lightning.trainer.deprecated_api.TrainerDeprecatedAPITillVer0_8
,pytorch_lightning.trainer.deprecated_api.TrainerDeprecatedAPITillVer0_9
Customize every aspect of training via flags
- Parameters
logger (
Union
[LightningLoggerBase
,Iterable
[LightningLoggerBase
],bool
]) – Logger (or iterable collection of loggers) for experiment tracking.checkpoint_callback (
Union
[ModelCheckpoint
,bool
]) – Callback for checkpointing.early_stop_callback (
pytorch_lightning.callbacks.EarlyStopping
) –default_save_path (
Optional
[str
]) – Default path for logs and weights when no logger/ckpt_callback passedgradient_clip_val (
float
) – 0 means don’t clip.gradient_clip –
Warning
Deprecated since version 0.7.0.
Use gradient_clip_val instead. Will remove 0.9.0.
process_position (
int
) – orders the tqdm bar when running multiple models on same machine.num_nodes (
int
) – number of GPU nodes for distributed training.nb_gpu_nodes –
Warning
Deprecated since version 0.7.0.
Use num_nodes instead. Will remove 0.9.0.
gpus (
Union
[List
[int
],str
,int
,None
]) – Which GPUs to train on.num_tpu_cores (
Optional
[int
]) – How many TPU cores to train on (1 or 8).log_gpu_memory (
Optional
[str
]) – None, ‘min_max’, ‘all’. Might slow performanceshow_progress_bar –
Warning
Deprecated since version 0.7.2.
Set progress_bar_refresh_rate to postive integer to enable. Will remove 0.9.0.
progress_bar_refresh_rate (
int
) – How often to refresh progress bar (in steps). Value0
disables progress bar.overfit_pct (
float
) – How much of training-, validation-, and test dataset to check.track_grad_norm (
int
) – -1 no tracking. Otherwise tracks that normcheck_val_every_n_epoch (
int
) – Check val every n train epochs.fast_dev_run (
bool
) – runs 1 batch of train, test and val to find any bugs (ie: a sort of unit test).accumulate_grad_batches (
Union
[int
,Dict
[int
,int
],List
[list
]]) – Accumulates grads every k batches or as set up in the dict.max_epochs (
int
) – Stop training once this number of epochs is reached.max_nb_epochs –
Warning
Deprecated since version 0.7.0.
Use max_epochs instead. Will remove 0.9.0.
min_epochs (
int
) – Force training for at least these many epochsmin_nb_epochs –
Warning
Deprecated since version 0.7.0.
Use min_epochs instead. Will remove 0.9.0.
max_steps (
Optional
[int
]) – Stop training after this number of steps. Disabled by default (None).min_steps (
Optional
[int
]) – Force training for at least these number of steps. Disabled by default (None).train_percent_check (
float
) – How much of training dataset to check.val_percent_check (
float
) – How much of validation dataset to check.test_percent_check (
float
) – How much of test dataset to check.val_check_interval (
float
) – How often within one training epoch to check the validation setlog_save_interval (
int
) – Writes logs to disk this oftenrow_log_interval (
int
) – How often to add logging rows (does not write to disk)add_row_log_interval –
Warning
Deprecated since version 0.7.0.
Use row_log_interval instead. Will remove 0.9.0.
distributed_backend (
Optional
[str
]) – The distributed backend to use.use_amp –
Warning
Deprecated since version 0.7.0.
Use precision instead. Will remove 0.9.0.
precision (
int
) – Full precision (32), half precision (16).print_nan_grads (
bool
) –Warning
Deprecated since version 0.7.2.
Has no effect. When detected, NaN grads will be printed automatically. Will remove 0.9.0.
weights_summary (
Optional
[str
]) – Prints a summary of the weights when training begins.weights_save_path (
Optional
[str
]) – Where to save weights if specified.amp_level (
str
) – The optimization level to use (O1, O2, etc…).num_sanity_val_steps (
int
) – Sanity check runs n batches of val before starting the training routine.nb_sanity_val_steps –
Warning
Deprecated since version 0.7.0.
Use num_sanity_val_steps instead. Will remove 0.8.0.
truncated_bptt_steps (
Optional
[int
]) – Truncated back prop breaks performs backprop every k steps ofresume_from_checkpoint (
Optional
[str
]) – To resume training from a specific checkpoint pass in the path here.profiler (
Optional
[BaseProfiler
]) – To profile individual steps during training and assist inreload_dataloaders_every_epoch (
bool
) – Set to True to reload dataloaders every epochbenchmark (
bool
) – If true enables cudnn.benchmark.
-
_Trainer__set_random_port
()[source]¶ When running DDP NOT managed by SLURM, the ports might collide :return:
-
classmethod
add_argparse_args
(parent_parser)[source]¶ Extends existing argparse by default Trainer attributes.
- Parameters
parent_parser (
ArgumentParser
) – The custom cli arguments parser, which will be extended by the Trainer default arguments.
Only arguments of the allowed types (str, float, int, bool) will extend the parent_parser.
- Return type
-
check_model_configuration
(model)[source]¶ Checks that the model is configured correctly before training is started.
- Parameters
model (
LightningModule
) – The model to test.
-
fit
(model, train_dataloader=None, val_dataloaders=None, test_dataloaders=None)[source]¶ Runs the full optimization routine.
- Parameters
model (
LightningModule
) – Model to fit.train_dataloader (
Optional
[DataLoader
]) – A Pytorch DataLoader with training samples. If the model has a predefined train_dataloader method this will be skipped.val_dataloaders (
Optional
[DataLoader
]) – Either a single Pytorch Dataloader or a list of them, specifying validation samples. If the model has a predefined val_dataloaders method this will be skippedtest_dataloaders (
Optional
[DataLoader
]) – Either a single Pytorch Dataloader or a list of them, specifying validation samples. If the model has a predefined test_dataloaders method this will be skipped
Example:
# Option 1, # Define the train_dataloader(), test_dataloader() and val_dataloader() fxs # in the lightningModule # RECOMMENDED FOR MOST RESEARCH AND APPLICATIONS TO MAINTAIN READABILITY trainer = Trainer() model = LightningModule() trainer.fit(model) # Option 2 # in production cases we might want to pass different datasets to the same model # Recommended for PRODUCTION SYSTEMS train, val, test = DataLoader(...), DataLoader(...), DataLoader(...) trainer = Trainer() model = LightningModule() trainer.fit(model, train_dataloader=train, val_dataloader=val, test_dataloader=test) # Option 1 & 2 can be mixed, for example the training set can be # defined as part of the model, and validation/test can then be # feed to .fit()
-
classmethod
get_deprecated_arg_names
()[source]¶ Returns a list with deprecated Trainer arguments.
- Return type
-
classmethod
get_init_arguments_and_types
()[source]¶ Scans the Trainer signature and returns argument names, types and default values.
- Returns
(argument name, set with argument types, argument default value).
- Return type
List with tuples of 3 values
Examples
>>> args = Trainer.get_init_arguments_and_types() >>> import pprint >>> pprint.pprint(sorted(args)) [('accumulate_grad_batches', (<class 'int'>, typing.Dict[int, int], typing.List[list]), 1), ... ('callbacks', (<class 'pytorch_lightning.callbacks.base.Callback'>,), []), ('check_val_every_n_epoch', (<class 'int'>,), 1), ... ('max_epochs', (<class 'int'>,), 1000), ... ('precision', (<class 'int'>,), 32), ('print_nan_grads', (<class 'bool'>,), False), ('process_position', (<class 'int'>,), 0), ('profiler', (<class 'pytorch_lightning.profiler.profilers.BaseProfiler'>, <class 'NoneType'>), None), ...
-
run_pretrain_routine
(model)[source]¶ Sanity check a few things before starting actual training.
- Parameters
model (
LightningModule
) – The model to run sanity test on.
-
test
(model=None)[source]¶ Separates from fit to make sure you never run on your test set until you want to.
- Parameters
model (
Optional
[LightningModule
]) – The model to test.
Example:
# Option 1 # run test after fitting trainer = Trainer() model = LightningModule() trainer.fit() trainer.test() # Option 2 # run test from a loaded model model = LightningModule.load_from_checkpoint('path/to/checkpoint.ckpt') trainer = Trainer() trainer.test(model)
-
DEPRECATED_IN_0_8
= ('gradient_clip', 'nb_gpu_nodes', 'max_nb_epochs', 'min_nb_epochs', 'add_row_log_interval', 'nb_sanity_val_steps')[source]¶
-
class
pytorch_lightning.trainer.trainer.
_PatchDataLoader
(dataloader)[source]¶ Bases:
object
Callable object for patching dataloaders passed into trainer.fit(). Use this class to override model.*_dataloader() and be pickle-compatible.
- Parameters
dataloader (
Union
[List
[DataLoader
],DataLoader
]) – Dataloader object to return when called.
pytorch_lightning.trainer.training_io module¶
Lightning can automate saving and loading checkpoints¶
Checkpointing is enabled by default to the current working directory. To change the checkpoint path pass in:
Trainer(default_save_path='/your/path/to/save/checkpoints')
To modify the behavior of checkpointing pass in your own callback.
from pytorch_lightning.callbacks import ModelCheckpoint
# DEFAULTS used by the Trainer
checkpoint_callback = ModelCheckpoint(
filepath=os.getcwd(),
save_top_k=1,
verbose=True,
monitor='val_loss',
mode='min',
prefix=''
)
trainer = Trainer(checkpoint_callback=checkpoint_callback)
You might want to not only load a model but also continue training it. Use this method to restore the trainer state as well. This will continue from the epoch and global step you last left off. However, the dataloaders will start from the first batch again (if you shuffled it shouldn’t matter).
Lightning will restore the session if you pass a logger with the same version and there’s a saved checkpoint.
from pytorch_lightning import Trainer
trainer = Trainer(
resume_from_checkpoint=PATH
)
# this fit call loads model weights and trainer state
# the trainer continues seamlessly from where you left off
# without having to do anything else.
trainer.fit(model)
The trainer restores:
global_step
current_epoch
All optimizers
All lr_schedulers
Model weights
You can even change the logic of your model as long as the weights and “architecture” of the system isn’t different. If you add a layer, for instance, it might not work.
At a rough level, here’s what happens inside Trainer pytorch_lightning.base_module.model_saving.py
:
self.global_step = checkpoint['global_step']
self.current_epoch = checkpoint['epoch']
# restore the optimizers
optimizer_states = checkpoint['optimizer_states']
for optimizer, opt_state in zip(self.optimizers, optimizer_states):
optimizer.load_state_dict(opt_state)
# restore the lr schedulers
lr_schedulers = checkpoint['lr_schedulers']
for scheduler, lrs_state in zip(self.lr_schedulers, lr_schedulers):
scheduler['scheduler'].load_state_dict(lrs_state)
# uses the model you passed into trainer
model.load_state_dict(checkpoint['state_dict'])
-
class
pytorch_lightning.trainer.training_io.
TrainerIOMixin
[source]¶ Bases:
abc.ABC
-
_atomic_save
(checkpoint, filepath)[source]¶ Saves a checkpoint atomically, avoiding the creation of incomplete checkpoints.
This will create a temporary checkpoint with a suffix of
.part
, then copy it to the final location once saving is finished.- Parameters
checkpoint – The object to save. Built to be used with the
dump_checkpoint
method, but can deal with anything whichtorch.save
accepts.filepath (
str
) – The path to which the checkpoint will be saved. This points to the file that the checkpoint will be stored in.
-
restore
(checkpoint_path, on_gpu)[source]¶ Restore training state from checkpoint. Also restores all training state like: - epoch - callbacks - schedulers - optimizer
-
restore_hpc_weights_if_needed
(model)[source]¶ If there is a set of hpc weights, use as signal to restore model.
-
restore_training_state
(checkpoint)[source]¶ Restore trainer state. Model will get its change to update :param _sphinx_paramlinks_pytorch_lightning.trainer.training_io.TrainerIOMixin.restore_training_state.checkpoint: :return:
-
pytorch_lightning.trainer.training_loop module¶
- The lightning training loop handles everything except the actual computations of your model.
To decide what will happen in your training loop, define the training_step function.
Below are all the things lightning automates for you in the training loop.
Accumulated gradients¶
- Accumulated gradients runs K small batches of size N before doing a backwards pass.
The effect is a large effective batch size of size KxN.
# DEFAULT (ie: no accumulated grads)
trainer = Trainer(accumulate_grad_batches=1)
Force training for min or max epochs¶
It can be useful to force training for a minimum number of epochs or limit to a max number
# DEFAULT
trainer = Trainer(min_epochs=1, max_epochs=1000)
Force disable early stop¶
To disable early stopping pass None to the early_stop_callback
# DEFAULT
trainer = Trainer(early_stop_callback=None)
Gradient Clipping¶
- Gradient clipping may be enabled to avoid exploding gradients.
Specifically, this will clip the gradient norm computed over all model parameters `together.
# DEFAULT (ie: don't clip)
trainer = Trainer(gradient_clip_val=0)
# clip gradients with norm above 0.5
trainer = Trainer(gradient_clip_val=0.5)
Inspect gradient norms¶
Looking at grad norms can help you figure out where training might be going wrong.
# DEFAULT (-1 doesn't track norms)
trainer = Trainer(track_grad_norm=-1)
# track the LP norm (P=2 here)
trainer = Trainer(track_grad_norm=2)
Set how much of the training set to check¶
If you don’t want to check 100% of the training set (for debugging or if it’s huge), set this flag.
train_percent_check will be overwritten by overfit_pct if overfit_pct > 0
# DEFAULT
trainer = Trainer(train_percent_check=1.0)
# check 10% only
trainer = Trainer(train_percent_check=0.1)
Packed sequences as inputs¶
When using PackedSequence, do 2 things: 1. return either a padded tensor in dataset or a list of variable length tensors in the dataloader collate_fn (example above shows the list implementation). 2. Pack the sequence in forward or training and validation steps depending on use case.
# For use in dataloader
def collate_fn(batch):
x = [item[0] for item in batch]
y = [item[1] for item in batch]
return x, y
# In module
def training_step(self, batch, batch_idx):
x = rnn.pack_sequence(batch[0], enforce_sorted=False)
y = rnn.pack_sequence(batch[1], enforce_sorted=False)
Truncated Backpropagation Through Time¶
- There are times when multiple backwards passes are needed for each batch.
For example, it may save memory to use Truncated Backpropagation Through Time when training RNNs.
- When this flag is enabled each batch is split into sequences of size truncated_bptt_steps
and passed to training_step(…) separately. A default splitting function is provided, however, you can override it for more flexibility. See tbptt_split_batch.
# DEFAULT (single backwards pass per batch)
trainer = Trainer(truncated_bptt_steps=None)
# (split batch into sequences of size 2)
trainer = Trainer(truncated_bptt_steps=2)
NaN detection and intervention¶
In every forward pass in training, Lightning will check that
the loss you return in training_step is finite (not NaN and not +/-inf)
the model parameters have finite values.
Lightning will terminate the training loop with an error message if NaN or infinite values are detected. If this happens, you should investigate numerically unstable operations in your model.
-
class
pytorch_lightning.trainer.training_loop.
TrainerTrainLoopMixin
[source]¶ Bases:
abc.ABC
-
abstract
add_tqdm_metrics
(*args)[source]¶ Warning: this is just empty shell for code implemented in other class.
-
abstract
clip_gradients
()[source]¶ Warning: this is just empty shell for code implemented in other class.
-
abstract
detect_nan_tensors
(*args)[source]¶ Warning: this is just empty shell for code implemented in other class.
-
abstract
get_model
()[source]¶ Warning: this is just empty shell for code implemented in other class.
-
abstract
has_arg
(*args)[source]¶ Warning: this is just empty shell for code implemented in other class.
-
abstract
is_function_implemented
(*args)[source]¶ Warning: this is just empty shell for code implemented in other class.
-
abstract
is_overriden
(*args)[source]¶ Warning: this is just empty shell for code implemented in other class.
-
abstract
log_metrics
(*args)[source]¶ Warning: this is just empty shell for code implemented in other class.
-
abstract
process_output
(*args)[source]¶ Warning: this is just empty shell for code implemented in other class.
-
abstract
reset_train_dataloader
(*args)[source]¶ Warning: this is just empty shell for code implemented in other class.
-
abstract
reset_val_dataloader
(model)[source]¶ Warning: this is just empty shell for code implemented in other class.
-
abstract
run_evaluation
(*args)[source]¶ Warning: this is just empty shell for code implemented in other class.
-
training_forward
(batch, batch_idx, opt_idx, hiddens)[source]¶ Handle forward for each training case (distributed, single gpu, etc…) :param _sphinx_paramlinks_pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin.training_forward.batch: :param _sphinx_paramlinks_pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin.training_forward.batch_idx: :return:
-
abstract
transfer_batch_to_gpu
(*args)[source]¶ Warning: this is just empty shell for code implemented in other class.
-
abstract
transfer_batch_to_tpu
(*args)[source]¶ Warning: this is just empty shell for code implemented in other class.
-
abstract
-
pytorch_lightning.trainer.training_loop.
_recursive_detach
(in_dict)[source]¶ Detach all tensors in in_dict.
May operate recursively if some of the values in in_dict are dictionaries which contain instances of torch.Tensor. Other types in in_dict are not affected by this utility function.
-
pytorch_lightning.trainer.training_loop.
_with_is_last
(iterable)[source]¶ Pass through values from the given iterable with an added boolean indicating if this is the last item. See https://stackoverflow.com/a/1630350