<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Quick Start</td>
<td>1</td>
</tr>
<tr>
<td>2 Introduction Guide</td>
<td>7</td>
</tr>
<tr>
<td>3 Fast Performance</td>
<td>35</td>
</tr>
<tr>
<td>4 Callbacks</td>
<td>39</td>
</tr>
<tr>
<td>5 LightningModule</td>
<td>49</td>
</tr>
<tr>
<td>6 Loggers</td>
<td>81</td>
</tr>
<tr>
<td>7 Metrics</td>
<td>99</td>
</tr>
<tr>
<td>8 Model Hooks</td>
<td>135</td>
</tr>
<tr>
<td>9 Trainer</td>
<td>141</td>
</tr>
<tr>
<td>10 16-bit training</td>
<td>169</td>
</tr>
<tr>
<td>11 Computing cluster (SLURM)</td>
<td>171</td>
</tr>
<tr>
<td>12 Child Modules</td>
<td>175</td>
</tr>
<tr>
<td>13 Debugging</td>
<td>177</td>
</tr>
<tr>
<td>14 Experiment Logging</td>
<td>181</td>
</tr>
<tr>
<td>15 Experiment Reporting</td>
<td>187</td>
</tr>
<tr>
<td>16 Early stopping</td>
<td>191</td>
</tr>
<tr>
<td>17 Fast Training</td>
<td>193</td>
</tr>
<tr>
<td>18 Hyperparameters</td>
<td>195</td>
</tr>
<tr>
<td>19 Learning Rate Finder</td>
<td>201</td>
</tr>
<tr>
<td>20 Multi-GPU training</td>
<td>205</td>
</tr>
<tr>
<td>21 Multiple Datasets</td>
<td>217</td>
</tr>
<tr>
<td>22 Saving and loading weights</td>
<td>219</td>
</tr>
</tbody>
</table>
PyTorch Lightning is nothing more than organized PyTorch code. Once you’ve organized it into a LightningModule, it automates most of the training for you.

To illustrate, here’s the typical PyTorch project structure organized in a LightningModule.
1.1 Step 1: Define a LightningModule

```python
import os
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision import transforms
from pytorch_lightning.core.lightning import LightningModule

class LitModel(LightningModule):
    def __init__(self):
        super().__init__()
        self.l1 = torch.nn.Linear(28 * 28, 10)

    def forward(self, x):
        return torch.relu(self.l1(x.view(x.size(0), -1)))

    def training_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self(x)
        loss = F.cross_entropy(y_hat, y)
        tensorboard_logs = {'train_loss': loss}
        return {'loss': loss, 'log': tensorboard_logs}

    def configure_optimizers(self):
        return torch.optim.Adam(self.parameters(), lr=0.001)

    def train_dataloader(self):
        dataset = MNIST(os.getcwd(), train=True, download=True, transform=transforms.ToTensor())
        loader = DataLoader(dataset, batch_size=32, num_workers=4, shuffle=True)
        return loader
```

1.2 Step 2: Fit with a Trainer

```python
from pytorch_lightning import Trainer

model = LitModel()

# most basic trainer, uses good defaults
trainer = Trainer(gpus=8, num_nodes=1)
trainer.fit(model)
```

Under the hood, lightning does (in high-level pseudocode):

```python
model = LitModel()
train_dataloader = model.train_dataloader()
optimizer = model.configure_optimizers()

for epoch in epochs:
    train_outs = []
```
for batch in train_dataloader:
 loss = model.training_step(batch)
 loss.backward()
 train_outs.append(loss.detach())

 optimizer.step()
 optimizer.zero_grad()

 # optional for logging, etc...
 model.training_epoch_end(train_outs)

1.3 Validation loop

To also add a validation loop add the following functions

class LitModel(LightningModule):

 def validation_step(self, batch, batch_idx):
 x, y = batch
 y_hat = self(x)
 return {'val_loss': F.cross_entropy(y_hat, y)}

 def validation_epoch_end(self, outputs):
 avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
 tensorboard_logs = {'val_loss': avg_loss}
 return {'val_loss': avg_loss, 'log': tensorboard_logs}

 def val_dataloader(self):
 # TODO: do a real train/val split
 dataset = MNIST(os.getcwd(), train=False, download=True, transform=transforms.ToTensor())
 loader = DataLoader(dataset, batch_size=32, num_workers=4)
 return loader

And now the trainer will call the validation loop automatically

most basic trainer, uses good defaults
trainer = Trainer(gpus=8, num_nodes=1)
trainer.fit(model)

Under the hood in pseudocode, lightning does the following:

...
for batch in train_dataloader:
 loss = model.training_step()
 loss.backward()
 # ...

 if validate_at_some_point:
 model.eval()
 val_outs = []
 for val_batch in model.val_dataloader:
 val_out = model.validation_step(val_batch)
 val_outs.append(val_out)

 # ...

(continues on next page)
The beauty of Lightning is that it handles the details of when to validate, when to call `.eval()`, turning off gradients, detaching graphs, making sure you don’t enable shuffle for val, etc...

Note: Lightning removes all the million details you need to remember during research

1.4 Test loop

You might also need a test loop

```python
class LitModel(LightningModule):
    def test_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self(x)
        return {'test_loss': F.cross_entropy(y_hat, y)}

    def test_epoch_end(self, outputs):
        avg_loss = torch.stack([x['test_loss'] for x in outputs]).mean()
        tensorboard_logs = {'avg_test_loss': avg_loss}
        return {'avg_test_loss': avg_loss, 'log': tensorboard_logs}

    def test_dataloader(self):
        # TODO: do a real train/val split
        dataset = MNIST(os.getcwd(), train=False, download=True, transform=transforms.ToTensor())
        loader = DataLoader(dataset, batch_size=32, num_workers=4)
        return loader
```

However, this time you need to specifically call test (this is done so you don’t use the test set by mistake)

```python
# OPTION 1:
# test after fit
trainer.fit(model)
trainer.test()

# OPTION 2:
# test after loading weights
model = LitModel.load_from_checkpoint(PATH)
trainer = Trainer(tpu_cores=1)
trainer.test()
```

Again, under the hood, lightning does the following in (pseudocode):

```python
model.eval()
test_outs = []
for test_batch in model.test_dataloader:
    test_out = model.test_step(val_batch)
    test_outs.append(test_out)
```
model.test_epoch_end(test_outs)

1.5 Datasets

If you don’t want to define the datasets as part of the LightningModule, just pass them into fit instead.

```python
# pass in datasets if you want.
train_dataloader = DataLoader(dataset, batch_size=32, num_workers=4)
val_dataloader, test_dataloader = ...

trainer = Trainer(gpus=8, num_nodes=1)
trainer.fit(model, train_dataloader, val_dataloader)
trainer.test(test_dataloader=test_dataloader)
```

The advantage of this method is the ability to reuse models for different datasets. The disadvantage is that for research it makes readability and reproducibility more difficult. This is why we recommend to define the datasets in the LightningModule if you’re doing research, but use the method above for production models or for prediction tasks.

1.6 Why do you need Lightning?

Notice the code above has nothing about .cuda() or 16-bit or early stopping or logging, etc... This is where Lightning adds a ton of value.

Without changing a SINGLE line of your code, you can now do the following with the above code

```python
# train on TPUs using 16 bit precision with early stopping
# using only half the training data and checking validation every quarter of a
# training epoch
trainer = Trainer(
    tpu_cores=8,
    precision=16,
    early_stop_checkpoint=True,
    limit_train_batches=0.5,
    val_check_interval=0.25
)

# train on 256 GPUs
trainer = Trainer(
    gpus=8,
    num_nodes=32
)

# train on 1024 CPUs across 128 machines
trainer = Trainer(
    num_processes=8,
    num_nodes=128
)
```

And the best part is that your code is STILL just PyTorch... meaning you can do anything you would normally do.
model = LitModel()
model.eval()
y_hat = model(x)
model.anything_you_can_do_with_pytorch()

1.7 Summary

In short, by refactoring your PyTorch code:

1. You STILL keep pure PyTorch.
2. You DON’t lose any flexibility.
3. You can get rid of all of your boilerplate.
4. You make your code generalizable to any hardware.
5. Your code is now readable and easier to reproduce (ie: you help with the reproducibility crisis).
6. Your LightningModule is still just a pure PyTorch module.
PyTorch Lightning provides a very simple template for organizing your PyTorch code. Once you’ve organized it into a LightningModule, it automates most of the training for you.

To illustrate, here’s the typical PyTorch project structure organized in a LightningModule.

As your project grows in complexity with things like 16-bit precision, distributed training, etc... the part in blue quickly becomes onerous and starts distracting from the core research code.
2.1 Goal of this guide

This guide walks through the major parts of the library to help you understand what each part does. But at the end of the day, you write the same PyTorch code... just organize it into the LightningModule template which means you keep ALL the flexibility without having to deal with any of the boilerplate code.

To show how Lightning works, we’ll start with an MNIST classifier. We’ll end showing how to use inheritance to very quickly create an AutoEncoder.

Note: Any DL/ML PyTorch project fits into the Lightning structure. Here we just focus on 3 types of research to illustrate.

2.2 Installing Lightning

Lightning is trivial to install.

```bash
conda activate my_env
pip install pytorch-lightning
```

Or without conda environments, anywhere you can use pip.

```bash
pip install pytorch-lightning
```

Or with conda

```bash
conda install pytorch-lightning -c conda-forge
```

2.3 Lightning Philosophy

Lightning factors DL/ML code into three types:

- Research code
- Engineering code
- Non-essential code

2.3.1 Research code

In the MNIST generation example, the research code would be the particular system and how it’s trained (ie: A GAN or VAE). In Lightning, this code is abstracted out by the LightningModule.

```python
l1 = nn.Linear(...)
l2 = nn.Linear(...) decoder = Decoder()
x1 = l1(x)
```

(continues on next page)
x2 = l2(x2)
out = decoder(features, x)
loss = perceptual_loss(x1, x2, x) + CE(out, x)

2.3.2 Engineering code

The Engineering code is all the code related to training this system. Things such as early stopping, distribution over GPUs, 16-bit precision, etc. This is normally code that is THE SAME across most projects.

In Lightning, this code is abstracted out by the Trainer.

model.cuda(0)
x = x.cuda(0)
distributed = DistributedParallel(model)

with gpu_zero:
 download_data()

dist.barrier()

2.3.3 Non-essential code

This is code that helps the research but isn’t relevant to the research code. Some examples might be: 1. Inspect gradients 2. Log to tensorboard.

In Lightning this code is abstracted out by Callbacks.

log samples
z = Q.rsample()
generated = decoder(z)
self.experiment.log('images', generated)

2.4 Elements of a research project

Every research project requires the same core ingredients:

1. A model
2. Train/val/test data
3. Optimizer(s)
4. Training step computations
5. Validation step computations
6. Test step computations

2.4. Elements of a research project
2.4.1 The Model

The LightningModule provides the structure on how to organize these 5 ingredients. Let’s first start with the model. In this case we’ll design a 3-layer neural network.

```python
import torch
from torch.nn import functional as F
from torch import nn
from pytorch_lightning.core.lightning import LightningModule

class LitMNIST(LightningModule):
    def __init__(self):
        super().__init__()

        # mnist images are (1, 28, 28) (channels, width, height)
        self.layer_1 = nn.Linear(28 * 28, 128)
        self.layer_2 = nn.Linear(128, 256)
        self.layer_3 = nn.Linear(256, 10)

    def forward(self, x):
        batch_size, channels, width, height = x.size()

        # (b, 1, 28, 28) -> (b, 1*28*28)
        x = x.view(batch_size, -1)

        # layer 1
        x = self.layer_1(x)
        x = F.relu(x)

        # layer 2
        x = self.layer_2(x)
        x = F.relu(x)

        # layer 3
        x = self.layer_3(x)

        # probability distribution over labels
        x = torch.log_softmax(x, dim=1)

        return x
```

Notice this is a LightningModule instead of a torch.nn.Module. A LightningModule is equivalent to a PyTorch Module except it has added functionality. However, you can use it EXACTLY the same as you would a PyTorch Module.

```python
net = LitMNIST()
x = torch.Tensor(1, 1, 28, 28)
out = net(x)

Out:
torch.Size([1, 10])
```
2.4.2 Data

The Lightning Module organizes your dataloaders and data processing as well. Here’s the PyTorch code for loading MNIST.

```python
from torch.utils.data import DataLoader, random_split
from torchvision.datasets import MNIST
import os
from torchvision import datasets, transforms

# transforms
# prepare transforms standard to MNIST
transform=transforms.Compose([transforms.ToTensor(),
                               transforms.Normalize((0.1307,), (0.3081,))])

# data
mnist_train = MNIST(os.getcwd(), train=True, download=True)
mnist_train = DataLoader(mnist_train, batch_size=64)
```

When using PyTorch Lightning, we use the exact same code except we organize it into the LightningModule.

```python
from torch.utils.data import DataLoader, random_split
from torchvision.datasets import MNIST
import os
from torchvision import datasets, transforms

class LitMNIST(LightningModule):
    def train_dataloader(self):
        transform=transforms.Compose([transforms.ToTensor(),
                                       transforms.Normalize((0.1307,), (0.3081,))])
        mnist_train = MNIST(os.getcwd(), train=True, download=False, transform=transform)
        return DataLoader(mnist_train, batch_size=64)
```

Notice the code is exactly the same, except now the training dataloading has been organized by the LightningModule under the `train_dataloader` method. This is great because if you run into a project that uses Lightning and want to figure out how they prepare their training data you can just look in the `train_dataloader` method.

Usually though, we want to separate the things that write to disk in data-processing from things like transforms which happen in memory. This is only relevant in multi-GPU or TPU training.

```python
class LitMNIST(LightningModule):

    def prepare_data(self):
        # download only (not called on every GPU, just the root GPU per node)
        MNIST(os.getcwd(), train=True, download=True)

    def train_dataloader(self):
        # no download, just transform
        transform=transforms.Compose([transforms.ToTensor(),
                                       transforms.Normalize((0.1307,), (0.3081,))])
        mnist_train = MNIST(os.getcwd(), train=True, download=False, transform=transform)
        return DataLoader(mnist_train, batch_size=64)
```

Doing it in the `prepare_data` method ensures that when you have multiple GPUs you won’t overwrite the data. This is a contrived example but it gets more complicated with things like NLP or Imagenet.
prepare_data gets called on the $LOCAL_RANK=0$ GPU per node. If your nodes share a file system, set `Trainer(prepare_data_per_node=False)` and it will be code from node=0, gpu=0 only.

In general fill these methods with the following:

```python
class LitMNIST(LightningModule):
    def prepare_data(self):
        # stuff here is done once at the very beginning of training
        # before any distributed training starts

        # download stuff
        # save to disk
        # etc...
        ...

    def train_dataloader(self):
        # data transforms
        # dataset creation
        # return a DataLoader
        ...
```

2.4.3 Models defined by data

Sometimes a model needs to know about the data to be built (ie: number of classes or vocab size). In this case we recommend the following:

1. use `prepare_data` to download and process the dataset.
2. use `setup` to do splits, and build your model internals

Example:

```python
class LitMNIST(LightningModule):
    def __init__(self):
        self.l1 = None

    def prepare_data(self):
        download_data()
        tokenize()

    def setup(self, step):
        # step is either 'fit' or 'test' 90% of the time not relevant
        data = load_data()
        num_classes = data.classes
        self.l1 = nn.Linear(..., num_classes)
```
2.4.4 Optimizer

Next we choose what optimizer to use for training our system. In PyTorch we do it as follows:

```python
from torch.optim import Adam
optimizer = Adam(LitMNIST().parameters(), lr=1e-3)
```

In Lightning we do the same but organize it under the configure_optimizers method.

```python
class LitMNIST(LightningModule):
    def configure_optimizers(self):
        return Adam(self.parameters(), lr=1e-3)
```

Note: The LightningModule itself has the parameters, so pass in `self.parameters()`.

However, if you have multiple optimizers use the matching parameters.

```python
class LitMNIST(LightningModule):
    def configure_optimizers(self):
        return Adam(self.generator(), lr=1e-3), Adam(self.discriminator(), lr=1e-3)
```

2.4.5 Training step

The training step is what happens inside the training loop.

```python
for epoch in epochs:
    for batch in data:
        # TRAINING STEP
        x, y = batch
        logits = model(x)
        loss = F.nll_loss(logits, y)
        # TRAINING STEP END
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()
```

In the case of MNIST we do the following

```python
for epoch in epochs:
    for batch in data:
        # TRAINING STEP START
        x, y = batch
        logits = model(x)
        loss = F.nll_loss(logits, y)
        # TRAINING STEP END
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()
```

In Lightning, everything that is in the training step gets organized under the `training_step` function in the Lightning-Module.
class LitMNIST(LightningModule):
 def __init__(self):
 super().__init__()
 self.layer_1 = torch.nn.Linear(28 * 28, 128)
 self.layer_2 = torch.nn.Linear(128, 256)
 self.layer_3 = torch.nn.Linear(256, 10)

 def forward(self, x):
 batch_size, channels, width, height = x.size()
 x = x.view(batch_size, -1)
 x = self.layer_1(x)
 x = torch.relu(x)
 x = self.layer_2(x)
 x = torch.relu(x)
 x = self.layer_3(x)
 x = torch.log_softmax(x, dim=1)
 return x

 def train_dataloader(self):
 transform=transforms.Compose([transforms.ToTensor(),
 transforms.Normalize((0.1307,), (0.3081,))])
 mnist_train = MNIST(os.getcwd(), train=True, download=False, transform=transform)
 return DataLoader(mnist_train, batch_size=64)

 def configure_optimizers(self):
 return Adam(self.parameters(), lr=1e-3)

 def training_step(self, batch, batch_idx):
 x, y = batch
 logits = self(x)
 loss = F.nll_loss(logits, y)
 return {'loss': loss}
 # return loss (also works)

Again, this is the same PyTorch code except that it has been organized by the LightningModule. This code is not restricted which means it can be as complicated as a full seq-2-seq, RL loop, GAN, etc...

2.5 Training

So far we defined 4 key ingredients in pure PyTorch but organized the code inside the LightningModule.

1. Model.
2. Training data.
3. Optimizer.
4. What happens in the training loop.

For clarity, we’ll recall that the full LightningModule now looks like this.

```python
class LitMNIST(LightningModule):
    def __init__(self):
        super().__init__()
        self.layer_1 = torch.nn.Linear(28 * 28, 128)
        self.layer_2 = torch.nn.Linear(128, 256)
        self.layer_3 = torch.nn.Linear(256, 10)

    def forward(self, x):
        batch_size, channels, width, height = x.size()
        x = x.view(batch_size, -1)
        x = self.layer_1(x)
        x = torch.relu(x)
        x = self.layer_2(x)
        x = torch.relu(x)
        x = self.layer_3(x)
        x = torch.log_softmax(x, dim=1)
        return x

    def train_dataloader(self):
        transform=transforms.Compose([transforms.ToTensor(),
                                       transforms.Normalize((0.1307,), (0.3081,))])
        mnist_train = MNIST(os.getcwd(), train=True, download=False, transform=transform)
        return DataLoader(mnist_train, batch_size=64)

    def configure_optimizers(self):
        return Adam(self.parameters(), lr=1e-3)

    def training_step(self, batch, batch_idx):
        x, y = batch
        logits = self(x)
        loss = F.nll_loss(logits, y)
        return {'loss': loss}
        # return loss (also works)
```

(continues on next page)
x, y = batch
logits = self(x)
loss = F.nll_loss(logits, y)

add logging
logs = {'loss': loss}
return {'loss': loss, 'log': logs}

Again, this is the same PyTorch code, except that it’s organized by the LightningModule. This organization now lets us train this model.

2.5.1 Train on CPU

```python
from pytorch_lightning import Trainer

model = LitMNIST()
trainer = Trainer()
trainer.fit(model)
```

You should see the following weights summary and progress bar:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Params</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>layer_1</td>
<td>Linear</td>
</tr>
<tr>
<td>1</td>
<td>layer_2</td>
<td>Linear</td>
</tr>
<tr>
<td>2</td>
<td>layer_3</td>
<td>Linear</td>
</tr>
</tbody>
</table>

Epoch 1: 27% 25/636 [00:08<00:22, 30.10/s, loss=0.353, v_num=2]

2.5.2 Logging

When we added the **log** key in the return dictionary it went into the built in tensorboard logger. But you could have also logged by calling:

```python
def training_step(self, batch, batch_idx):
    # ...
    loss = ...
    self.logger.summary.scalar('loss', loss)
```

Which will generate automatic tensorboard logs.

But you can also use any of the **number of other loggers** we support.

2.5.3 GPU training

But the beauty is all the magic you can do with the trainer flags. For instance, to run this model on a GPU:

```python
model = LitMNIST()
trainer = Trainer(gpus=1)
trainer.fit(model)
```
Start tensorboard.

```
$ load_ext tensorboard
tensorboard --logdir lightning_logs/
```

The tensorboard extension is already loaded. To reload it, use:
```
$ reload_ext tensorboard
```

TensorBoard

Scalars

- **Show data download links**
- **Ignore outliers in chart scaling**

Tooltip sorting method:

- **default**

Smoothing

- 0.6

Horizontal Axis

- **STEP**
- **RELATIVE**
- **WALL**

Runs

- **Write a regex to filter runs**
 - ✅ version_0

INFO: root:GPU available: True, used: True
INFO: root:VISIBLE GPUs: 0

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Params</th>
</tr>
</thead>
<tbody>
<tr>
<td>layer_1</td>
<td>Linear</td>
<td>100 K</td>
</tr>
<tr>
<td>layer_2</td>
<td>Linear</td>
<td>33 K</td>
</tr>
<tr>
<td>layer_3</td>
<td>Linear</td>
<td>2 K</td>
</tr>
</tbody>
</table>

Epoch 1: 53%

500/938 [00:07:00.07, 61.53it/s, loss=0.205, v._num=3]
2.5.4 Multi-GPU training

Or you can also train on multiple GPUs.

```python
model = LitMNIST()
trainer = Trainer(gpus=8)
trainer.fit(model)
```

Or multiple nodes

```python
# (32 GPUs)
model = LitMNIST()
trainer = Trainer(gpus=8, num_nodes=4, distributed_backend='ddp')
trainer.fit(model)
```

Refer to the distributed computing guide for more details.

2.5.5 TPUs

Did you know you can use PyTorch on TPUs? It’s very hard to do, but we’ve worked with the xla team to use their awesome library to get this to work out of the box!

Let’s train on Colab (full demo available here)

First, change the runtime to TPU (and reinstall Lightning).

Next, install the required xla library (adds support for PyTorch on TPUs)

```bash
!python pytorch-xla-env-setup.py --version nightly --apt-packages libomp5 libopenblas-dev
```

In distributed training (multiple GPUs and multiple TPU cores) each GPU or TPU core will run a copy of this program. This means that without taking any care you will download the dataset N times which will cause all sorts of issues.

To solve this problem, move the download code to the `prepare_data` method in the LightningModule. In this method we do all the preparation we need to do once (instead of on every gpu).

`prepare_data` can be called in two ways, once per node or only on the root node (`Trainer(prepare_data_per_node=False)`).

```python
class LitMNIST(LightningModule):
    def prepare_data(self):
        # download only
        MNIST(os.getcwd(), train=True, download=True, transform=transforms.ToTensor())
        MNIST(os.getcwd(), train=False, download=True, transform=transforms.ToTensor())

    def setup(self, stage):
        # transform
        transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0., 1307,), (0.3081,))])
        MNIST(os.getcwd(), train=True, download=False, transform=transform)
        MNIST(os.getcwd(), train=False, download=False, transform=transform)

        # train/val split
        mnist_train, mnist_val = random_split(mnist_train, [55000, 5000])

        # assign to use in dataloaders
```

(continues on next page)
```python
self.train_dataset = mnist_train
self.val_dataset = mnist_val
self.test_dataset = mnist_test

def train_dataloader(self):
    return DataLoader(self.train_dataset, batch_size=64)

def val_dataloader(self):
    return DataLoader(self.val_dataset, batch_size=64)

def test_dataloader(self):
    return DataLoader(self.test_dataset, batch_size=64)
```

The `prepare_data` method is also a good place to do any data processing that needs to be done only once (ie: download or tokenize, etc...).

Note: Lightning inserts the correct DistributedSampler for distributed training. No need to add yourself!

Now we can train the LightningModule on a TPU without doing anything else!

```python
model = LitMNIST()
trainer = Trainer(tpu_cores=8)
trainer.fit(model)
```

You’ll now see the TPU cores booting up.

```
INFO:root:training on 8 TPU cores
INFO:root:INIT TPU local core: 0, global rank: 0
INFO:root:INIT TPU local core: 3, global rank: 3
INFO:root:INIT TPU local core: 1, global rank: 1
```

Notice the epoch is MUCH faster!

```
INFO:root:
<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Params</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>layer_1</td>
<td>Linear</td>
</tr>
<tr>
<td>1</td>
<td>layer_2</td>
<td>Linear</td>
</tr>
<tr>
<td>2</td>
<td>layer_3</td>
<td>Linear</td>
</tr>
</tbody>
</table>
Using downloaded and verified file: /content/MNIST/raw/train-images-idx3-ubyte.gz
Extracting /content/MNIST/raw/train-images-idx3-ubyte.gz to /content/MNIST/raw
Using downloaded and verified file: /content/MNIST/raw/train-labels-idx1-ubyte.gz
Extracting /content/MNIST/raw/train-labels-idx1-ubyte.gz to /content/MNIST/raw
Using downloaded and verified file: /content/MNIST/raw/t10k-images-idx3-ubyte.gz
Extracting /content/MNIST/raw/t10k-images-idx3-ubyte.gz to /content/MNIST/raw
Using downloaded and verified file: /content/MNIST/raw/t10k-labels-idx1-ubyte.gz
Extracting /content/MNIST/raw/t10k-labels-idx1-ubyte.gz to /content/MNIST/raw
Processing...
Done!
Epoch 6: 42% 50/118 [00:00<00:01, 62.22it/s, loss=0.067, v_num=10]
```

2.5. Training
2.6 Hyperparameters

Lightning has utilities to interact seamlessly with the command line ArgumentParser and plays well with the hyperparameter optimization framework of your choice.

2.6.1 ArgumentParser

Lightning is designed to augment a lot of the functionality of the built-in Python ArgumentParser.

```python
from argparse import ArgumentParser

parser = ArgumentParser()
parser.add_argument('--layer_1_dim', type=int, default=128)
args = parser.parse_args()
```

This allows you to call your program like so:

```
python trainer.py --layer_1_dim 64
```

2.6.2 Argparser Best Practices

It is best practice to layer your arguments in three sections.

1. Trainer args (gpus, num_nodes, etc...)
2. Model specific arguments (layer_dim, num_layers, learning_rate, etc...)
3. Program arguments (data_path, cluster_email, etc...)

We can do this as follows. First, in your LightningModule, define the arguments specific to that module. Remember that data splits or data paths may also be specific to a module (ie: if your project has a model that trains on Imagenet and another on CIFAR-10).

```python
class LitModel(LightningModule):
    @staticmethod
    def add_model_specific_args(parent_parser):
        parser = ArgumentParser(parents=[parent_parser], add_help=False)
        parser.add_argument('--encoder_layers', type=int, default=12)
        parser.add_argument('--data_path', type=str, default='/some/path')
        return parser
```

Now in your main trainer file, add the Trainer args, the program args, and add the model args.

```
# trainer_main.py

from argparse import ArgumentParser

parser = ArgumentParser()

# add PROGRAM level args
parser.add_argument('--conda_env', type=str, default='some_name')
```

(continues on next page)
parser.add_argument('--notification_email', type=str, default='will@email.com')

add model specific args
parser = LitModel.add_model_specific_args(parser)

add all the available trainer options to argparse
ie: now --gpus --num_nodes ... --fast_dev_run all work in the cli
parser = Trainer.add_argparse_args(parser)

args = parser.parse_args()

Now you can call run your program like so:

```python
python trainer_main.py --gpus 2 --num_nodes 2 --conda_env 'my_env' --encoder_layers 12
```

Finally, make sure to start the training like so:

```python
# init the trainer like this
trainer = Trainer.from_argparse_args(args, early_stopping_callback=...)

# NOT like this
trainer = Trainer(gpus=hparams.gpus, ...)

# init the model with Namespace directly
model = LitModel(args)

# or init the model with all the key-value pairs
dict_args = vars(args)
model = LitModel(**dict_args)
```

2.6.3 LightningModule hyperparameters

Often times we train many versions of a model. You might share that model or come back to it a few months later at which point it is very useful to know how that model was trained (ie: what learning_rate, neural network, etc...).

Lightning has a few ways of saving that information for you in checkpoints and yaml files. The goal here is to improve readability and reproducibility

1. The first way is to ask lightning to save the values anything in the __init__ for you to the checkpoint. This also makes those values available via `self.hparams`.

```python
class LitMNIST(LightningModule):
    def __init__(self, layer_1_dim=128, learning_rate=1e-2, **kwargs):
        super().__init__()
        # call this to save (layer_1_dim=128, learning_rate=1e-4) to the checkpoint
        self.save_hyperparameters()

        # equivalent
        self.save_hyperparameters(['layer_1_dim', 'learning_rate'])

        # this now works
        self.hparams.layer_1_dim
```
2. Sometimes your init might have objects or other parameters you might not want to save. In that case, choose only a few

```python
class LitMNIST(LightningModule):
    def __init__(self, loss_fx, generator_network, layer_1_dim=128, **kwargs):
        super().__init__()
        self.layer_1_dim = layer_1_dim
        self.loss_fx = loss_fx

        # call this to save (layer_1_dim=128) to the checkpoint
        self.save_hyperparameters(['layer_1_dim'])

# to load specify the other args
model = LitMNIST.load_from_checkpoint(PATH, loss_fx=torch.nn.SomeOtherLoss, generator_network=MyGenerator())
```

3. Assign to `self.hparams`. Anything assigned to `self.hparams` will also be saved automatically.

```python
# using a argparse.Namespace
class LitMNIST(LightningModule):
    def __init__(self, hparams, *args, **kwargs):
        super().__init__()
        self.hparams = hparams

        self.layer_1 = torch.nn.Linear(28 * 28, self.hparams.layer_1_dim)
        self.layer_2 = torch.nn.Linear(self.hparams.layer_1_dim, self.hparams.layer_2_dim)
        self.layer_3 = torch.nn.Linear(self.hparams.layer_2_dim, 10)

        def train_dataloader(self):
            return DataLoader(mnist_train, batch_size=self.hparams.batch_size)
```

4. You can also save full objects such as `dict` or `Namespace` to the checkpoint.

```python
# using a argparse.Namespace
class LitMNIST(LightningModule):
    def __init__(self, conf, *args, **kwargs):
        super().__init__()
        self.hparams = conf

        # equivalent
        self.save_hyperparameters(conf)

        self.layer_1 = torch.nn.Linear(28 * 28, self.hparams.layer_1_dim)
        self.layer_2 = torch.nn.Linear(self.hparams.layer_1_dim, self.hparams.layer_2_dim)
        self.layer_3 = torch.nn.Linear(self.hparams.layer_2_dim, 10)

cfg = OmegaConf.create(...)
model = LitMNIST(cfg)

# this works
model.hparams.anything
```
2.6.4 Trainer args

To recap, add ALL possible trainer flags to the argparser and init the Trainer this way

```python
parser = ArgumentParser()
parser = Trainer.add_argparse_args(parser)
hparams = parser.parse_args()

trainer = Trainer.from_argparse_args(hparams)

# or if you need to pass in callbacks
trainer = Trainer.from_argparse_args(hparams, checkpoint_callback=..., callbacks=[...])
```

2.6.5 Multiple Lightning Modules

We often have multiple Lightning Modules where each one has different arguments. Instead of polluting the main.py file, the LightningModule lets you define arguments for each one.

```python
class LitMNIST(LightningModule):

    def __init__(self, layer_1_dim, **kwargs):
        super().__init__()
        self.layer_1 = torch.nn.Linear(28 * 28, layer_1_dim)

    @staticmethod
    def add_model_specific_args(parent_parser):
        parser = ArgumentParser(parents=[parent_parser], add_help=False)
        parser.add_argument('--layer_1_dim', type=int, default=128)
        return parser

class GoodGAN(LightningModule):

    def __init__(self, encoder_layers, **kwargs):
        super().__init__()
        self.encoder = Encoder(layers=encoder_layers)

    @staticmethod
    def add_model_specific_args(parent_parser):
        parser = ArgumentParser(parents=[parent_parser], add_help=False)
        parser.add_argument('--encoder_layers', type=int, default=12)
        return parser
```

Now we can allow each model to inject the arguments it needs in the main.py

```python
def main(args):
    dict_args = vars(args)

    # pick model
    if args.model_name == 'gan':
        model = GoodGAN(**dict_args)
    elif args.model_name == 'mnist':
        model = LitMNIST(**dict_args)
```

(continues on next page)
trainer = Trainer.from_argparse_args(args)
trainer.fit(model)

if __name__ == '__main__':
 parser = ArgumentParser()
 parser = Trainer.add_argparse_args(parser)

 # figure out which model to use
 parser.add_argument('--model_name', type=str, default='gan', help='gan or mnist')
 temp_args, _ = parser.parse_known_args()

 # let the model add what it wants
 if temp_args.model_name == 'gan':
 parser = GoodGAN.add_model_specific_args(parser)
 elif temp_args.model_name == 'mnist':
 parser = LitMNIST.add_model_specific_args(parser)

 args = parser.parse_args()
 main(args)

and now we can train MNIST or the GAN using the command line interface!

$ python main.py --model_name gan --encoder_layers 24
$ python main.py --model_name mnist --layer_1_dim 128

2.6.6 Hyperparameter Optimization

Lightning is fully compatible with the hyperparameter optimization libraries! Here are some useful ones:

- Hydra
- Optuna

2.7 Validating

For most cases, we stop training the model when the performance on a validation split of the data reaches a minimum. Just like the training_step, we can define a validation_step to check whatever metrics we care about, generate samples or add more to our logs.

```python
for epoch in epochs:
    for batch in data:
        # ...
        # train
        # validate
```
Since the `validation_step` processes a single batch, in Lightning we also have a `validation_epoch_end` method which allows you to compute statistics on the full dataset after an epoch of validation data and not just the batch.

In addition, we define a `val_dataloader` method which tells the trainer what data to use for validation. Notice we split the train split of MNIST into train, validation. We also have to make sure to do the sample split in the `train_dataloader` method.

```python
class LitMNIST(LightningModule):
    def validation_step(self, batch, batch_idx):
        x, y = batch
        logits = self(x)
        loss = F.nll_loss(logits, y)
        return {'val_loss': loss}

    def validation_epoch_end(self, outputs):
        avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
        tensorboard_logs = {'val_loss': avg_loss}
        return {'val_loss': avg_loss, 'log': tensorboard_logs}

    def val_dataloader(self):
        transform=transforms.Compose([transforms.ToTensor(),
                                     transforms.Normalize((0.1307,), (0.3081,))])
        mnist_train = MNIST(os.getcwd(), train=True, download=False, transform=transform)
        _, mnist_val = random_split(mnist_train, [55000, 5000])
        mnist_val = DataLoader(mnist_val, batch_size=64)
        return mnist_val
```

Again, we’ve just organized the regular PyTorch code into two steps, the `validation_step` method which operates on a single batch and the `validation_epoch_end` method to compute statistics on all batches.

If you have these methods defined, Lightning will call them automatically. Now we can train while checking the validation set.

```python
from pytorch_lightning import Trainer
model = LitMNIST()
trainer = Trainer(tpu_cores=8)
trainer.fit(model)
```

You may have noticed the words `Validation sanity check` logged. This is because Lightning runs 5 batches of validation before starting to train. This is a kind of unit test to make sure that if you have a bug in the validation loop, you won’t need to potentially wait a full epoch to find out.

Note: Lightning disables gradients, puts model in eval mode and does everything needed for validation.
2.8 Testing

Once our research is done and we’re about to publish or deploy a model, we normally want to figure out how it will generalize in the “real world.” For this, we use a held-out split of the data for testing.

Just like the validation loop, we define exactly the same steps for testing:

- test_step
- test_epoch_end
- test_dataloader

```python
class LitMNIST(LightningModule):
    def test_step(self, batch, batch_idx):
        x, y = batch
        logits = self(x)
        loss = F.nll_loss(logits, y)
        return {'val_loss': loss}

    def test_epoch_end(self, outputs):
        avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
        tensorboard_logs = {'val_loss': avg_loss}
        return {'val_loss': avg_loss, 'log': tensorboard_logs}

    def test_dataloader(self):
        transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0., 1307,), (0.3081,))])
        mnist_train = MNIST(os.getcwd(), train=False, download=False, transform=transform)
        _, mnist_val = random_split(mnist_train, [55000, 5000])
        mnist_val = DataLoader(mnist_val, batch_size=64)
        return mnist_val
```

However, to make sure the test set isn’t used inadvertently, Lightning has a separate API to run tests. Once you train your model simply call `.test()`.

```python
from pytorch_lightning import Trainer

model = LitMNIST()
trainer = Trainer(tpu_cores=8)
trainer.fit(model)

# run test set
trainer.test()
```

Out:

```
--------------------------------------------------------------
TEST RESULTS
{'test_loss': tensor(1.1703, device='cuda:0')}
--------------------------------------------------------------
```

You can also run the test from a saved lightning model

```python
model = LitMNIST.load_from_checkpoint(PATH)
trainer = Trainer(tpu_cores=8)
trainer.test(model)
```
Note: Lightning disables gradients, puts model in eval mode and does everything needed for testing.

Warning: .test() is not stable yet on TPUs. We’re working on getting around the multiprocessing challenges.

2.9 Predicting

Again, a LightningModule is exactly the same as a PyTorch module. This means you can load it and use it for prediction.

```python
model = LitMNIST.load_from_checkpoint(PATH)
x = torch.Tensor(1, 1, 28, 28)
out = model(x)
```

On the surface, it looks like `forward` and `training_step` are similar. Generally, we want to make sure that what we want the model to do is what happens in the `forward`, whereas the `training_step` likely calls `forward` from within it.

```python
class MNISTClassifier(LightningModule):
    def forward(self, x):
        batch_size, channels, width, height = x.size()
        x = x.view(batch_size, -1)
        x = self.layer_1(x)
        x = torch.relu(x)
        x = self.layer_2(x)
        x = torch.relu(x)
        x = self.layer_3(x)
        x = torch.log_softmax(x, dim=1)
        return x

    def training_step(self, batch, batch_idx):
        x, y = batch
        logits = self(x)
        loss = F.nll_loss(logits, y)
        return loss
```

```python
model = MNISTClassifier()
x = mnist_image()
logits = model(x)
```

In this case, we’ve set this LightningModel to predict logits. But we could also have it predict feature maps:

```python
class MNISTRepresentator(LightningModule):
    def forward(self, x):
        batch_size, channels, width, height = x.size()
        x = x.view(batch_size, -1)
        x = self.layer_1(x)
        x1 = torch.relu(x)
        x = self.layer_2(x1)
        x1 = torch.relu(x)
        x = self.layer_3(x1)

(continues on next page)
x2 = torch.relu(x)
x3 = self.layer_3(x2)
return [x, x1, x2, x3]

def training_step(self, batch, batch_idx):
x, y = batch
out, l1_feats, l2_feats, l3_feats = self(x)
logits = torch.log_softmax(out, dim=1)
ce_loss = F.nll_loss(logits, y)
loss = perceptual_loss(l1_feats, l2_feats, l3_feats) + ce_loss
return loss

model = MNISTRepresentator.load_from_checkpoint(PATH)
x = mnist_image()
feature_maps = model(x)

Or maybe we have a model that we use to do generation

class LitMNISTDreamer(LightningModule):
    def forward(self, z):
        imgs = self.decoder(z)
        return imgs

def training_step(self, batch, batch_idx):
x, y = batch
representation = self.encoder(x)
imgs = self(representation)

    loss = perceptual_loss(imgs, x)
    return loss

model = LitMNISTDreamer.load_from_checkpoint(PATH)
z = sample_noise()
generated_imgs = model(z)

How you split up what goes in forward vs training_step depends on how you want to use this model for prediction.
2.10 Extensibility

Although lightning makes everything super simple, it doesn’t sacrifice any flexibility or control. Lightning offers multiple ways of managing the training state.

2.10.1 Training overrides

Any part of the training, validation and testing loop can be modified. For instance, if you wanted to do your own backward pass, you would override the default implementation

```python
def backward(self, use_amp, loss, optimizer):
 if use_amp:
 with amp.scale_loss(loss, optimizer) as scaled_loss:
 scaled_loss.backward()
 else:
 loss.backward()
```

With your own

```python
class LitMNIST(LightningModule):
 def backward(self, use_amp, loss, optimizer):
 # do a custom way of backward
 loss.backward(retain_graph=True)
```

Or if you wanted to initialize ddp in a different way than the default one

```python
def configure_ddp(self, model, device_ids):
 # Lightning DDP simply routes to test_step, val_step, etc...
 model = LightningDistributedDataParallel(
 model,
 device_ids=device_ids,
 find_unused_parameters=True
)
 return model
```

you could do your own:

```python
class LitMNIST(LightningModule):
 def configure_ddp(self, model, device_ids):
 model = Horovod(model)
 # model = Ray(model)
 return model
```

Every single part of training is configurable this way. For a full list look at `LightningModule`. 
2.11 Callbacks

Another way to add arbitrary functionality is to add a custom callback for hooks that you might care about

```python
from pytorch_lightning.callbacks import Callback

class MyPrintingCallback(Callback):
 def on_init_start(self, trainer):
 print('Starting to init trainer!')
 def on_init_end(self, trainer):
 print('Trainer is init now')
 def on_train_end(self, trainer, pl_module):
 print('do something when training ends')

And pass the callbacks into the trainer

trainer = Trainer(callbacks=[MyPrintingCallback()])
```

Note: See full list of 12+ hooks in the Callbacks.

2.12 Child Modules

Research projects tend to test different approaches to the same dataset. This is very easy to do in Lightning with inheritance.

For example, imagine we now want to train an Autoencoder to use as a feature extractor for MNIST images. Recall that LitMNIST already defines all the dataloading etc… The only things that change in the Autoencoder model are the init, forward, training, validation and test step.

```python
class Encoder(torch.nn.Module):
 pass

class Decoder(torch.nn.Module):
 pass

class AutoEncoder(LitMNIST):
 def __init__(self):
 super().__init__()
 self.encoder = Encoder()
 self.decoder = Decoder()

 def forward(self, x):
 generated = self.decoder(x)

 def training_step(self, self, batch, batch_idx):
 x, _ = batch
```

(continues on next page)
representation = self.encoder(x)
x_hat = self(representation)

loss = MSE(x, x_hat)
return loss

def validation_step(self, batch, batch_idx):
    return self._shared_eval(batch, batch_idx, 'val')
def test_step(self, batch, batch_idx):
    return self._shared_eval(batch, batch_idx, 'test')
def _shared_eval(self, batch, batch_idx, prefix):
    x, y = batch
    representation = self.encoder(x)
x_hat = self(representation)

    loss = F.nll_loss(logits, y)
    return {f'{prefix}_loss': loss}

and we can train this using the same trainer

trainer.fit(autoencoder)

And remember that the forward method is to define the practical use of a LightningModule. In this case, we want to
use the AutoEncoder to extract image representations

some_images = torch.Tensor(32, 1, 28, 28)
representations = autoencoder(some_images)

2.13 Transfer Learning

2.13.1 Using Pretrained Models

Sometimes we want to use a LightningModule as a pretrained model. This is fine because a LightningModule is just
a torch.nn.Module!

Note: Remember that a LightningModule is EXACTLY a torch.nn.Module but with more capabilities.

Let’s use the AutoEncoder as a feature extractor in a separate model.

class Encoder(torch.nn.Module):
    ...
class AutoEncoder(LightningModule):
    def __init__(self):
        self.encoder = Encoder()
        self.decoder = Decoder()
class CIFAR10Classifier(LightningModule):
    def __init__(self):
        # init the pretrained LightningModule
        self.feature_extractor = AutoEncoder.load_from_checkpoint(PATH)
        self.feature_extractor.freeze()

        # the autoencoder outputs a 100-dim representation and CIFAR-10 has 10 classes
        self.classifier = nn.Linear(100, 10)

    def forward(self, x):
        representations = self.feature_extractor(x)
        x = self.classifier(representations)

We used our pretrained Autoencoder (a LightningModule) for transfer learning!

2.13.2 Example: Imagenet (computer Vision)

import torchvision.models as models

class ImagenetTransferLearning(LightningModule):
    def __init__(self):
        # init a pretrained resnet
        num_target_classes = 10
        self.feature_extractor = models.resnet50(
            pretrained=True,
            num_classes=num_target_classes)

        self.feature_extractor.eval()

        # use the pretrained model to classify cifar-10 (10 image classes)
        self.classifier = nn.Linear(2048, num_target_classes)

    def forward(self, x):
        representations = self.feature_extractor(x)
        x = self.classifier(representations)

Finetune

model = ImagenetTransferLearning()
trainer = Trainer()
trainer.fit(model)

And use it to predict your data of interest

model = ImagenetTransferLearning.load_from_checkpoint(PATH)
model.freeze()

x = some_images_from_cifar10()
predictions = model(x)

We used a pretrained model on imagenet, finetuned on CIFAR-10 to predict on CIFAR-10. In the non-academic world we would finetune on a tiny dataset you have and predict on your dataset.
2.13.3 Example: BERT (NLP)

Lightning is completely agnostic to what’s used for transfer learning so long as it is a `torch.nn.Module` subclass. Here’s a model that uses Huggingface transformers.

```python
class BertMNLIFinetuner(LightningModule):
 def __init__(self):
 super().__init__()

 self.bert = BertModel.from_pretrained('bert-base-cased', output_attentions=True)
 self.W = nn.Linear(bert.config.hidden_size, 3)
 self.num_classes = 3

 def forward(self, input_ids, attention_mask, token_type_ids):
 h, _, attn = self.bert(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)

 h_cls = h[:, 0]
 logits = self.W(h_cls)
 return logits, attn
```

2.13. Transfer Learning
Here are some best practices to increase your performance.

### 3.1 Dataloaders

When building your Dataloader set `num_workers > 0` and `pin_memory=True` (only for GPUs).

```python
dataloader(dataset, num_workers=8, pin_memory=True)
```

#### 3.1.1 num_workers

The question of how many `num_workers` is tricky. Here’s a summary of some references, [1], and our suggestions.

1. `num_workers=0` means ONLY the main process will load batches (that can be a bottleneck).
2. `num_workers=1` means ONLY one worker (just not the main process) will load data but it will still be slow.
3. The `num_workers` depends on the batch size and your machine.
4. A general place to start is to set `num_workers` equal to the number of CPUs on that machine.

**Warning:** Increasing `num_workers` will ALSO increase your CPU memory consumption.

The best thing to do is to increase the `num_workers` slowly and stop once you see no more improvement in your training speed.

#### 3.1.2 Spawn

When using `distributed_backend=ddp_spawn` (the ddp default) or TPU training, the way multiple GPUs/TPU cores are used is by calling `.spawn()` under the hood. The problem is that PyTorch has issues with `num_workers > 0` when using `.spawn()`. For this reason we recommend you use `distributed_backend=ddp` so you can increase the `num_workers`, however your script has to be callable like so:

```bash
gpus X
```

```python
gpus X
```
3.2 `.item(), .numpy(), .cpu()`

Don’t call `.item()` anywhere on your code. Use `.detach()` instead to remove the connected graph calls. Lightning takes a great deal of care to be optimized for this.

3.3 `empty_cache()`

Don’t call this unnecessarily! Every time you call this ALL your GPUs have to wait to sync.

3.4 `construct tensors directly on device`

LightningModules know what device they are on! construct tensors on the device directly to avoid CPU->Device transfer.

```python
bad
t = tensor.rand(2, 2).cuda()

good (self is lightningModule)
t = tensor.rand(2, 2, device=self.device)
```

3.5 `Use DDP not DP`

DP performs three GPU transfers for EVERY batch:

1. Copy model to device.
2. Copy data to device.
3. Copy outputs of each device back to master.

Whereas DDP only performs 1 transfer to sync gradients. Because of this, DDP is MUCH faster than DP.

3.6 `16-bit precision`

Use 16-bit to decrease the memory (and thus increase your batch size). On certain GPUs (V100s, 2080tis), 16-bit calculations are also faster. However, know that 16-bit and multi-processing (any DDP) can have issues. Here are some common problems.

1. **CUDA error: an illegal memory access was encountered.** The solution is likely setting a specific CUDA, CUDNN, PyTorch version combination.
2. **CUDA error: device-side assert triggered.** This is a general catch-all error. To see the actual error run your script like so:
We also recommend using 16-bit native found in PyTorch 1.6. Just install this version and Lightning will automatically use it.
Lightning has a callback system to execute arbitrary code. Callbacks should capture NON-ESSENTIAL logic that is NOT required for your \textit{LightningModule} to run.

An overall Lightning system should have:

1. Trainer for all engineering
2. LightningModule for all research code.
3. Callbacks for non-essential code.

Example:

```python
class MyPrintingCallback(Callback):
 def on_init_start(self, trainer):
 print('Starting to init trainer!')
 def on_init_end(self, trainer):
 print('trainer is init now')
 def on_train_end(self, trainer, pl_module):
 print('do something when training ends')

trainer = Trainer(callbacks=[MyPrintingCallback()])
```

Starting to init trainer!
trainer is init now

We successfully extended functionality without polluting our super clean \textit{LightningModule} research code.

### 4.1 Callback Base

Abstract base class used to build new callbacks.

```python
class pytorch_lightning.callbacks.base.Callback
 Bases: abc.ABC

 Abstract base class used to build new callbacks.

 on_batch_end(trainer, pl_module)
 Called when the training batch ends.
```
on_batch_start (trainer, pl_module)
Called when the training batch begins.

on_epoch_end (trainer, pl_module)
Called when the epoch ends.

on_epoch_start (trainer, pl_module)
Called when the epoch begins.

on_fit_end (trainer)
Called when fit ends

on_fit_start (trainer)
Called when fit begins

on_init_end (trainer)
Called when the trainer initialization ends, model has not yet been set.

on_init_start (trainer)
Called when the trainer initialization begins, model has not yet been set.

on_keyboard_interrupt (trainer, pl_module)
Called when the training is interrupted by KeyboardInterrupt.

on_sanity_check_end (trainer, pl_module)
Called when the validation sanity check ends.

on_sanity_check_start (trainer, pl_module)
Called when the validation sanity check starts.

on_test_batch_end (trainer, pl_module)
Called when the test batch ends.

on_test_batch_start (trainer, pl_module)
Called when the test batch begins.

on_test_end (trainer, pl_module)
Called when the test ends.

on_test_start (trainer, pl_module)
Called when the test begins.

on_train_end (trainer, pl_module)
Called when the train ends.

on_train_start (trainer, pl_module)
Called when the train begins.

on_validation_batch_end (trainer, pl_module)
Called when the validation batch ends.

on_validation_batch_start (trainer, pl_module)
Called when the validation batch begins.

on_validation_end (trainer, pl_module)
Called when the validation loop ends.

on_validation_start (trainer, pl_module)
Called when the validation loop begins.

setup (trainer, stage)
Called when fit or test begins
teardown (trainer, stage)
Called when fit or test ends

4.2 Early Stopping

Monitor a validation metric and stop training when it stops improving.

class pytorch_lightning.callbacks.early_stopping.EarlyStopping (monitor='val_loss',
min_delta=0.0,
patience=3,
verbose=False,
mode='auto',
strict=True)

Bases: pytorch_lightning.callbacks.base.Callback

Parameters

• monitor (str) – quantity to be monitored. Default: 'val_loss'.

• min_delta (float) – minimum change in the monitored quantity to qualify as an improvement, i.e. an absolute change of less than min_delta, will count as no improvement. Default: 0.

• patience (int) – number of validation epochs with no improvement after which training will be stopped. Default: 0.

• verbose (bool) – verbosity mode. Default: False.

• mode (str) – one of {auto, min, max}. In min mode, training will stop when the quantity monitored has stopped decreasing; in max mode it will stop when the quantity monitored has stopped increasing; in auto mode, the direction is automatically inferred from the name of the monitored quantity. Default: 'auto'.

• strict (bool) – whether to crash the training if monitor is not found in the validation metrics. Default: True.

Example:

```python
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.callbacks import EarlyStopping
>>> early_stopping = EarlyStopping('val_loss')
>>> trainer = Trainer(early_stop_callback=early_stopping)
```

_validate_condition_metric (logs)
Checks that the condition metric for early stopping is good :param
_on_train_end (trainer, pl_module)
Called when the train ends.

_on_train_start (trainer, pl_module)
Called when the train begins.

_on_validation_end (trainer, pl_module)
Called when the validation loop ends.
4.3 Gradient Accumulator

Change gradient accumulation factor according to scheduling.

```python
class pytorch_lightning.callbacks.gradient_accumulation_scheduler.GradientAccumulationScheduler
 Bases: pytorch_lightning.callbacks.base.Callback
 Change gradient accumulation factor according to scheduling.
 Parameters scheduling (dict) – scheduling in format {epoch: accumulation_factor}
```

**Warning:** Epochs indexing starts from “1” until v0.6.x, but will start from “0” in v0.8.0.

Example:

```python
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.callbacks import GradientAccumulationScheduler

at epoch 5 start accumulating every 2 batches
>>> accumulator = GradientAccumulationScheduler(scheduling={5: 2})
>>> trainer = Trainer(callbacks=[accumulator])

alternatively, pass the scheduling dict directly to the Trainer
>>> trainer = Trainer(accumulate_grad_batches={5: 2})
```

```python
def on_epoch_start(trainer, pl_module)
 Called when the epoch begins.
```

4.4 Learning Rate Logger

Log learning rate for lr schedulers during training.

```python
class pytorch_lightning.callbacks.lr_logger.LearningRateLogger
 Bases: pytorch_lightning.callbacks.base.Callback
 Automatically logs learning rate for learning rate schedulers during training.
```

Example:

```python
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.callbacks import LearningRateLogger

>>> lr_logger = LearningRateLogger()
>>> trainer = Trainer(callbacks=[lr_logger])
```

Logging names are automatically determined based on optimizer class name. In case of multiple optimizers of same type, they will be named Adam, Adam-1 etc. If a optimizer has multiple parameter groups they will be named Adam/pg1, Adam/pg2 etc. To control naming, pass in a name keyword in the construction of the learning rate schedulers.

Example:
def configure_optimizer(self):
    optimizer = torch.optim.Adam(...)
    lr_scheduler = {'scheduler': torch.optim.lr_schedulers.LambdaLR(optimizer, ...)
        'name': 'my_logging_name'}
    return [optimizer], [lr_scheduler]

_extract_lr (trainer, interval)
Extracts learning rates for lr schedulers and saves information into dict structure.

_on_batch_start (trainer, pl_module)
Called when the training batch begins.

_on_epoch_start (trainer, pl_module)
Called when the epoch begins.

_on_train_start (trainer, pl_module)
Called before training, determines unique names for all lr schedulers in the case of multiple of the same type or in the case of multiple parameter groups

4.5 Model Checkpointing

Automatically save model checkpoints during training.

class pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint (filepath=None, 
monitor='val_loss', 
verbose=False, 
save_last=False, 
save_top_k=1, 
save_weights_only=False, 
mode='auto', 
period=1, 
prefix='')

Bases: pytorch_lightning.callbacks.base.Callback

Save the model after every epoch if it improves.

After training finishes, use best_model_path to retrieve the path to the best checkpoint file and best_model_score to retrieve its score.

Parameters

• filepath (Optional[str]) – path to save the model file. Can contain named formatting options to be auto-filled.

Example:

# custom path
# saves a file like: my/path/epoch_0.ckpt
>>> checkpoint_callback = ModelCheckpoint('my/path/')

# save any arbitrary metrics like 'val_loss', etc. in name
# saves a file like: my/path/epoch=2-val_loss=0.2_other_metric=0.3.ckpt

(continues on next page)
Can also be set to None, then it will be set to default location during trainer construction.

- **monitor (str)** – quantity to monitor.
- **save_last (bool)** – always saves the model at the end of the epoch. Default: False.
- **save_top_k (int)** – if save_top_k == k, the best k models according to the quantity monitored will be saved. If save_top_k == 0, no models are saved. If save_top_k == -1, all models are saved. Please note that the monitors are checked every period epochs. If save_top_k >= 2 and the callback is called multiple times inside an epoch, the name of the saved file will be appended with a version count starting with v0.
- **mode (str)** – one of {auto, min, max}. If save_top_k != 0, the decision to overwrite the current save file is made based on either the maximization or the minimization of the monitored quantity. For val_acc, this should be max, for val_loss this should be min, etc. In auto mode, the direction is automatically inferred from the name of the monitored quantity.
- **save_weights_only (bool)** – if True, then only the model’s weights will be saved (model.save_weights(filepath)), else the full model is saved (model.save(filepath)).
- **period (int)** – Interval (number of epochs) between checkpoints.

**Example:**

```
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.callbacks import ModelCheckpoint

saves checkpoints to 'my/path/' whenever 'val_loss' has a new min
>>> checkpoint_callback = ModelCheckpoint(filepath='my/path/)

save epoch and val_loss in name
saves a file like: my/path/sample-mnist_epoch=02_val_loss=0.32.ckpt
>>> checkpoint_callback = ModelCheckpoint(
... filepath='my/path/sample-mnist_{epoch:02d}-{val_loss:.2f}',
...)

retrieve the best checkpoint after training
checkpoint_callback = ModelCheckpoint(filepath='my/path/')
trainer = Trainer(checkpoint_callback=checkpoint_callback)
model = ...
trainer.fit(model)
checkpoint_callback.best_model_path
```

**format_checkpoint_name (epoch, metrics, ver=None)**

Generate a filename according to the defined template.

**Example:**

```
>>> tmpdir = os.path.dirname(__file__)
>>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{epoch}'))
```
>>> os.path.basename(ckpt.format_checkpoint_name(0, {}))
'epoch=0.ckpt'
>>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{epoch:03d}'))
>>> os.path.basename(ckpt.format_checkpoint_name(5, {}))
'epoch=005.ckpt'
>>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{epoch}-{val_loss:.2f}'))
>>> os.path.basename(ckpt.format_checkpoint_name(2, dict(val_loss=0.123456)))
'epoch=2-val_loss=0.12.ckpt'
>>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{missing:d}'))
>>> os.path.basename(ckpt.format_checkpoint_name(0, {}))
'missing=0.ckpt'

**on_validation_end**(trainer, *pl_module*)

Called when the validation loop ends.

### 4.6 Progress Bars

Use or override one of the progress bar callbacks.

```python
class pytorch_lightning.callbacks.progress.ProgressBar (refresh_rate=1, process_position=0)
```

**Bases:** pytorch_lightning.callbacks.progress.ProgressBarBase

This is the default progress bar used by Lightning. It prints to *stdout* using the *tqdm* package and shows up to four different bars:

- **sanity check progress:** the progress during the sanity check run
- **main progress:** shows training + validation progress combined. It also accounts for multiple validation runs during training when *val_check_interval* is used.
- **validation progress:** only visible during validation; shows total progress over all validation datasets.
- **test progress:** only active when testing; shows total progress over all test datasets.

For infinite datasets, the progress bar never ends.

If you want to customize the default *tqdm* progress bars used by Lightning, you can override specific methods of the callback class and pass your custom implementation to the *Trainer*:

**Example:**

```python
class LitProgressBar(ProgressBar):
 def init_validation_tqdm(self):
 bar = super().init_validation_tqdm()
 bar.set_description('running validation ...')
 return bar

bar = LitProgressBar()
trainer = Trainer(callbacks=[bar])
```

**Parameters**
• **refresh_rate** (*int*) – Determines at which rate (in number of batches) the progress bars get updated. Set it to 0 to disable the display. By default, the *trainer* uses this implementation of the progress bar and sets the refresh rate to the value provided to the *progress_bar_refresh_rate* argument in the *trainer*.

• **process_position** (*int*) – Set this to a value greater than 0 to offset the progress bars by this many lines. This is useful when you have progress bars defined elsewhere and want to show all of them together. This corresponds to *process_position* in the *trainer*.

**disable()**
You should provide a way to disable the progress bar. The *trainer* will call this to disable the output on processes that have a rank different from 0, e.g., in multi-node training.

**Return type** None

**enable()**
You should provide a way to enable the progress bar. The *trainer* will call this in e.g., pre-training routines like the *learning rate finder* to temporarily enable and disable the main progress bar.

**Return type** None

**init_sanity_tqdm()**
Override this to customize the tqdm bar for the validation sanity run.

**Return type** tqdm

**init_test_tqdm()**
Override this to customize the tqdm bar for testing.

**Return type** tqdm

**init_train_tqdm()**
Override this to customize the tqdm bar for training.

**Return type** tqdm

**init_validation_tqdm()**
Override this to customize the tqdm bar for validation.

**Return type** tqdm

**on_batch_end**(trainer, pl_module)
Called when the training batch ends.

**on_epoch_start**(trainer, pl_module)
Called when the epoch begins.

**on_sanity_check_end**(trainer, pl_module)
Called when the validation sanity check ends.

**on_sanity_check_start**(trainer, pl_module)
Called when the validation sanity check starts.

**on_test_batch_end**(trainer, pl_module)
Called when the test batch ends.

**on_test_end**(trainer, pl_module)
Called when the test ends.

**on_test_start**(trainer, pl_module)
Called when the test begins.

**on_train_end**(trainer, pl_module)
Called when the train ends.
on_train_start (trainer, pl_module)
Called when the train begins.

on_validation_batch_end (trainer, pl_module)
Called when the validation batch ends.

on_validation_end (trainer, pl_module)
Called when the validation loop ends.

on_validation_start (trainer, pl_module)
Called when the validation loop begins.

class pytorch_lightning.callbacks.progress.ProgressBarBase
   Bases: pytorch_lightning.callbacks.base.Callback
The base class for progress bars in Lightning. It is a Callback that keeps track of the batch progress in the Trainer. You should implement your highly custom progress bars with this as the base class.

Example:

class LitProgressBar (ProgressBarBase):
   def __init__(self):
      super().__init__() # don't forget this :
      self.enable = True
   
def disable(self):
      self.enable = False
   
def on_batch_end(self, trainer, pl_module):
      super().on_batch_end(trainer, pl_module) # don't forget this :
      percent = (self.train_batch_idx / self.total_train_batches) * 100
      sys.stdout.flush()
      sys.stdout.write(f'{percent:.01f} percent complete \r')

bar = LitProgressBar()
trainer = Trainer(callbacks=[bar])

disable ()
You should provide a way to disable the progress bar. The Trainer will call this to disable the output on processes that have a rank different from 0, e.g., in multi-node training.

enable ()
You should provide a way to enable the progress bar. The Trainer will call this in e.g. pre-training routines like the learning rate finder to temporarily enable and disable the main progress bar.

on_batch_end (trainer, pl_module)
Called when the training batch ends.

on_epoch_start (trainer, pl_module)
Called when the epoch begins.

on_init_end (trainer)
Called when the trainer initialization ends, model has not yet been set.

on_test_batch_end (trainer, pl_module)
Called when the test batch ends.

on_test_start (trainer, pl_module)
Called when the test begins.
on_train_start (trainer, pl_module)
Called when the train begins.

on_validation_batch_end (trainer, pl_module)
Called when the validation batch ends.

on_validation_start (trainer, pl_module)
Called when the validation loop begins.

property test_batch_idx
The current batch index being processed during testing. Use this to update your progress bar.

   Return type int

property total_test_batches
The total number of training batches during testing, which may change from epoch to epoch. Use this to set the total number of iterations in the progress bar. Can return inf if the test dataloader is of infinite size.

   Return type int

property total_train_batches
The total number of training batches during training, which may change from epoch to epoch. Use this to set the total number of iterations in the progress bar. Can return inf if the training dataloader is of infinite size.

   Return type int

property total_val_batches
The total number of training batches during validation, which may change from epoch to epoch. Use this to set the total number of iterations in the progress bar. Can return inf if the validation dataloader is of infinite size.

   Return type int

property train_batch_idx
The current batch index being processed during training. Use this to update your progress bar.

   Return type int

property val_batch_idx
The current batch index being processed during validation. Use this to update your progress bar.

   Return type int

pytorch_lightning.callbacks.progress.convert_inf (x)
The tqdm doesn’t support inf values. We have to convert it to None.
A LightningModule organizes your PyTorch code into the following sections:

**PyTorch**

```python
model
class Net(nn.Module):
 def __init__(self):
 self.layer_1 = torch.nn.Linear(28 * 28, 128)
 self.layer_2 = torch.nn.Linear(128, 10)

 def forward(self, x):
 x = x.view(x.size(0), -1)
 x = self.layer_1(x)
 x = F.relu(x)
 x = self.layer_2(x)
 return x

train loader
mnist_train = MNIST(os.getcwd(), train=True, download=True,
 transform=transforms.ToTensor())

optimizer + scheduler
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
scheduler = StepLR(optimizer, step_size=1)

train
for epoch in range(1, 100):
 model.train()
 for batch_idx, (data, target) in enumerate(train_loader):
 data, target = data.to(device), target.to(device)
 optimizer.zero_grad()
 output = model(data)
 loss = F.nll_loss(output, target)
 loss.backward()
 optimizer.step()
```

**PyTorch Lightning**

```python
model
class Net(LightningModule):
 def __init__(self):
 self.layer_1 = torch.nn.Linear(28 * 28, 128)
 self.layer_2 = torch.nn.Linear(128, 10)

 def forward(self, x):
 x = x.view(x.size(0), -1)
 x = self.layer_1(x)
 x = F.relu(x)
 x = self.layer_2(x)
 return x

 def train_dataloader(self):
 mnist_train = MNIST(os.getcwd(), train=True, download=True,
 transform=transforms.ToTensor())
 return DataLoader(mnist_train, batch_size=64)

 def configure_optimizers(self):
 optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
 scheduler = StepLR(optimizer, step_size=1)
 return optimizer, scheduler

 def training_step(self, batch, batch_idx):
 data, target = batch
 output = self.forward(data)
 loss = F.nll_loss(output, target)
 return {'loss': loss}
```

Notice a few things.

1. It’s the SAME code.
2. The PyTorch code IS NOT abstracted - just organized.
3. All the other code that’s not in the LightningModule has been automated for you by the trainer.
net = Net()
trainer = Trainer()
trainer.fit(net)

4. There are no .cuda() or .to() calls... Lightning does these for you.

```python
don't do in lightning
x = torch.Tensor(2, 3)
x = x.cuda()
x = x.to(device)

do this instead
x = x # leave it alone!

or to init a new tensor
new_x = torch.Tensor(2, 3)
new_x = new_x.type_as(x.type())
```

5. There are no samplers for distributed, Lightning also does this for you.

```python
Don't do in Lightning...
data = MNIST(...)
sampler = DistributedSampler(data)
DataLoader(data, sampler=sampler)

do this instead
data = MNIST(...)
DataLoader(data)
```

6. A LightningModule is a torch.nn.Module but with added functionality. Use it as such!

```python
net = Net.load_from_checkpoint(PATH)
net.freeze()
out = net(x)
```

Thus, to use Lightning, you just need to organize your code which takes about 30 minutes, (and let’s be real, you probably should do anyhow).

### 5.1 Minimal Example

Here are the only required methods.

```python
>>> import pytorch_lightning as pl

>>> class LitModel(pl.LightningModule):
 ...
 ...
 def __init__(self):
 ...
 super().__init__()
 self.l1 = torch.nn.Linear(28 * 28, 10)
 ...
 ...
 def forward(self, x):
 ...
 return torch.relu(self.l1(x.view(x.size(0), -1)))
 ...
 ...
 def training_step(self, self, batch, batch_idx):
(continues on next page)```
... x, y = batch
... y_hat = self(x)
... return {'loss': F.cross_entropy(y_hat, y)}
...
... def train_dataloader(self):
... return DataLoader(MNIST(os.getcwd(), train=True, download=True,
... transform=transforms.ToTensor()), batch_size=32)
... def configure_optimizers(self):
... return torch.optim.Adam(self.parameters(), lr=0.02)

Which you can train by doing:

```python
trainer = pl.Trainer()
model = LitModel()
trainer.fit(model)
```

5.2 Training loop structure

The general pattern is that each loop (training, validation, test loop) has 3 methods:

- ___step
- ___step_end
- ___epoch_end

To show how Lightning calls these, let’s use the validation loop as an example:

```python
val_outs = []
for val_batch in val_data:
    # do something with each batch
    out = validation_step(val_batch)
    val_outs.append(out)

# do something with the outputs for all batches
# like calculate validation set accuracy or loss
validation_epoch_end(val_outs)
```

If we use dp or ddp2 mode, we can also define the XXX_step_end method to operate on all parts of the batch:

```python
val_outs = []
for val_batch in val_data:
    batches = split_batch(val_batch)
    dp_outs = []
    for sub_batch in batches:
        dp_out = validation_step(sub_batch)
        dp_outs.append(dp_out)

    out = validation_step_end(dp_outs)
    val_outs.append(out)

# do something with the outputs for all batches
(continues on next page)```
# like calculate validation set accuracy or loss
validation_epoch_end(val_outs)

## 5.2.1 Add validation loop

Thus, if we wanted to add a validation loop you would add this to your `LightningModule`:

```python
>>> class LitModel(pl.LightningModule):
... def validation_step(self, batch, batch_idx):
... x, y = batch
... y_hat = self(x)
... return {'val_loss': F.cross_entropy(y_hat, y)}
...
... def validation_epoch_end(self, outputs):
... val_loss_mean = torch.stack([x['val_loss'] for x in outputs]).mean()
... return {'val_loss': val_loss_mean}
...
... def val_dataloader(self):
... # can also return a list of val dataloaders
... return DataLoader(...)```

5.2.2 Add test loop

```python
>>> class LitModel(pl.LightningModule):
...     def test_step(self, batch, batch_idx):
...         x, y = batch
...         y_hat = self(x)
...         return {'test_loss': F.cross_entropy(y_hat, y)}
...     
...     def test_epoch_end(self, outputs):
...         test_loss_mean = torch.stack([x['test_loss'] for x in outputs]).mean()
...         return {'test_loss': test_loss_mean}
...     
...     def test_dataloader(self):
...         # can also return a list of test dataloaders
...         return DataLoader(...)```

However, the test loop won’t ever be called automatically to make sure you don’t run your test data by accident. Instead you have to explicitly call:

```python
call after training
trainer = Trainer()
trainer.fit(model)
trainer.test()

or call with pretrained model
model = MyLightningModule.load_from_checkpoint(PATH)
trainer = Trainer()
trainer.test(model)```
5.3 Training_step_end method

When using LightningDataParallel or LightningDistributedDataParallel, the training_step() will be operating on a portion of the batch. This is normally ok but in special cases like calculating NCE loss using negative samples, we might want to perform a softmax across all samples in the batch. For these types of situations, each loop has an additional __step_end method which allows you to operate on the pieces of the batch:

```python
training_outs = []
for train_batch in train_data:
    # dp, ddp2 splits the batch
    sub_batches = split_batches_for_dp(batch)

    # run training_step on each piece of the batch
    batch_parts_outputs = [training_step(sub_batch) for sub_batch in sub_batches]

    # do softmax with all pieces
    out = training_step_end(batch_parts_outputs)
    training_outs.append(out)

# do something with the outputs for all batches
# like calculate validation set accuracy or loss
training_epoch_end(val_outs)
```

5.4 Remove cuda calls

In a LightningModule, all calls to .cuda() and .to(device) should be removed. Lightning will do these automatically. This will allow your code to work on CPUs, TPUs and GPUs.

When you init a new tensor in your code, just use type_as():

```python
def training_step(self, batch, batch_idx):
    x, y = batch

    # put the z on the appropriate gpu or tpu core
    z = sample_noise()
    z = z.type_as(x)
```

5.5 Data preparation

Data preparation in PyTorch follows 5 steps:

1. Download
2. Clean and (maybe) save to disk
3. Load inside Dataset
4. Apply transforms (rotate, tokenize, etc...)
5. Wrap inside a DataLoader
When working in distributed settings, steps 1 and 2 have to be done from a single GPU, otherwise you will overwrite these files from every GPU. The `LightningModule` has the `prepare_data` method to allow for this:

```python
>>> class LitModel(pl.LightningModule):
...     def prepare_data(self):
...         # download
...         MNIST(os.getcwd(), train=True, download=True, transform=transforms.ToTensor())
...         MNIST(os.getcwd(), train=False, download=True, transform=transforms.ToTensor())
...         # train/val split
...         mnist_train, mnist_val = random_split(mnist_train, [55000, 5000])
...     # assign to use in dataloaders
...     self.train_dataset = mnist_train
...     self.val_dataset = mnist_val
...     self.test_dataset = mnist_test
...     def train_dataloader(self):
...         return DataLoader(self.train_dataset, batch_size=64)
...     def val_dataloader(self):
...         return DataLoader(self.mnist_val, batch_size=64)
...     def test_dataloader(self):
...         return DataLoader(self.mnist_test, batch_size=64)
```

Note: `prepare_data()` is called once.

Note: Do anything with data that needs to happen ONLY once here, like download, tokenize, etc…

5.6 Lifecycle

The methods in the `LightningModule` are called in this order:

1. `__init__()`
2. `prepare_data()`
3. `configure_optimizers()`
4. `train_dataloader()`

If you define a validation loop then

5. `val_dataloader()`

And if you define a test loop:
6. `test_dataloader()`

Note: `test_dataloader()` is only called with `.test()`

In every epoch, the loop methods are called in this frequency:

1. `validation_step()` called every batch
2. `validation_epoch_end()` called every epoch

5.7 Live demo

Check out this COLAB for a live demo.

5.8 LightningModule Class

```python
class pytorch_lightning.core.LightningModule(*args, **kwargs)
    Bases: abc.ABC, pytorch_lightning.utilities.device_dtype_mixin.
    DeviceDtypeModuleMixin, pytorch_lightning.core.grads.GradInformation,
    pytorch_lightning.core.saving.ModelIO, pytorch_lightning.core.hooks.
    ModelHooks, torch.nn.Module

    _LightningModule__get_hparams_assignment_variable()
        looks at the code of the class to figure out what the user named self.hparams this only happens when the
        user explicitly sets self.hparams

classmethod _auto_collect_arguments(frame=None)
    Collect all module arguments in the current constructor and all child constructors. The child constructors
    are all the __init__ methods that reach the current class through (chained) super().__init__() calls.

    Parameters frame -- instance frame

    Returns arguments dictionary of the first instance parents_arguments: arguments dictionary of
    the parent’s instances

    Return type self_arguments

    _init_slurm_connection()
        Sets up environment variables necessary for pytorch distributed communications based on slurm environ-
        ment.

    Return type None

configure_apex(amp, model, optimizers, amp_level)
    Override to init AMP your own way. Must return a model and list of optimizers.

    Parameters

    • amp (object) -- pointer to amp library object.

    • model (LightningModule) -- pointer to current LightningModule.

    • optimizers (List[Optimizer]) -- list of optimizers passed in
      configure_optimizers().

    • amp_level (str) -- AMP mode chosen ('O1', 'O2', etc...)
Return type `Tuple[LightningModule, List[Optimizer]]`

Returns Apex wrapped model and optimizers

Examples

```python
Default implementation used by Trainer.
def configure_apex(self, amp, model, optimizers, amp_level):
 model, optimizers = amp.initialize(
 model, optimizers, opt_level=amp_level,
)
 return model, optimizers
```

`configure_ddp(model, device_ids)`

Override to init DDP in your own way or with your own wrapper. The only requirements are that:

1. On a validation batch the call goes to `model.validation_step`.
2. On a training batch the call goes to `model.training_step`.
3. On a testing batch, the call goes to `model.test_step`.

Parameters

- `model (LightningModule)` – the `LightningModule` currently being optimized.
- `device_ids (List[int])` – the list of GPU ids.

Return type `DistributedDataParallel`

Returns DDP wrapped model

Examples

```python
default implementation used in Trainer
def configure_ddp(self, model, device_ids):
 # Lightning DDP simply routes to test_step, val_step, etc...
 model = LightningDistributedDataParallel(
 model,
 device_ids=device_ids,
 find_unused_parameters=True
)
 return model
```

`configure_optimizers()`

Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you'd need one. But in the case of GANs or similar you might have multiple.

Return type `Union[Optimizer, Sequence[Optimizer], Dict, Sequence[Dict], Tuple[List, List], None]`

Returns

- Any of these 6 options.
  - Single optimizer.
  - List or Tuple - List of optimizers.
• Two lists - The first list has multiple optimizers, the second a list of LR schedulers (or lr_dict).
• Dictionary, with an ‘optimizer’ key, and (optionally) a ‘lr_scheduler’ key which value is a single LR scheduler or lr_dict.
• Tuple of dictionaries as described, with an optional ‘frequency’ key.
• None - Fit will run without any optimizer.

**Note:** The ‘frequency’ value is an int corresponding to the number of sequential batches optimized with the specific optimizer. It should be given to none or to all of the optimizers. There is a difference between passing multiple optimizers in a list, and passing multiple optimizers in dictionaries with a frequency of 1: In the former case, all optimizers will operate on the given batch in each optimization step. In the latter, only one optimizer will operate on the given batch at every step.

The lr_dict is a dictionary which contains scheduler and its associated configuration. It has five keys. The default configuration is shown below.

```python
{
 'scheduler': lr_scheduler, # The LR scheduler
 'interval': 'epoch', # The unit of the scheduler's step size
 'frequency': 1, # The frequency of the scheduler
 'reduce_on_plateau': False, # For ReduceLROnPlateau scheduler
 'monitor': 'val_loss' # Metric to monitor
}
```

If user only provides LR schedulers, then their configuration will set to default as shown above.

**Examples**

```
most cases
def configure_optimizers(self):
 opt = Adam(self.parameters(), lr=1e-3)
 return opt

multiple optimizer case (e.g.: GAN)
def configure_optimizers(self):
 generator_opt = Adam(self.model_gen.parameters(), lr=0.01)
 discriminator_opt = Adam(self.model_disc.parameters(), lr=0.02)
 return generator_opt, discriminator_opt

example with learning rate schedulers
def configure_optimizers(self):
 generator_opt = Adam(self.model_gen.parameters(), lr=0.01)
 discriminator_opt = Adam(self.model_disc.parameters(), lr=0.02)
 discriminator_sched = CosineAnnealing(discriminator_opt, T_max=10)
 return [generator_opt, discriminator_opt], [discriminator_sched]

example with step-based learning rate schedulers
def configure_optimizers(self):
 gen_opt = Adam(self.model_gen.parameters(), lr=0.01)
 dis_opt = Adam(self.model_disc.parameters(), lr=0.02)
 gen_sched = {'scheduler': ExponentialLR(gen_opt, 0.99),
 'interval': 'step'} # called after each training step
```

(continues on next page)
dis_sched = CosineAnnealing(discriminator_opt, T_max=10) # called every epoch
return [gen_opt, dis_opt], [gen_sched, dis_sched]

# example with optimizer frequencies
# see training procedure in 'Improved Training of Wasserstein GANs'
# Algorithm 1
# https://arxiv.org/abs/1704.00028

def configure_optimizers(self):
gen_opt = Adam(self.model_gen.parameters(), lr=0.01)
dis_opt = Adam(self.model_disc.parameters(), lr=0.02)
n_critic = 5
return {
    'optimizer': dis_opt, 'frequency': n_critic,
    'optimizer': gen_opt, 'frequency': 1
}

Note: Some things to know:

- Lightning calls .backward() and .step() on each optimizer and learning rate scheduler as needed.
- If you use 16-bit precision (precision=16), Lightning will automatically handle the optimizers for you.
- If you use multiple optimizers, training_step() will have an additional optimizer_idx parameter.
- If you use LBFGS Lightning handles the closure function automatically for you.
- If you use multiple optimizers, gradients will be calculated only for the parameters of current optimizer at each training step.
- If you need to control how often those optimizers step or override the default .step() schedule, override the optimizer_step() hook.
- If you only want to call a learning rate scheduler every $x$ step or epoch, or want to monitor a custom metric, you can specify these in a lr_dict:

```py
lr_dict = {
 'scheduler': lr_scheduler,
 'interval': 'step', # or 'epoch'
 'monitor': 'val_f1',
 'frequency': x,
}
```

abstract forward(*args, **kwargs)

Same as torch.nn.Module.forward(), however in Lightning you want this to define the operations you want to use for prediction (i.e.: on a server or as a feature extractor).

Normally you’d call self() from your training_step() method. This makes it easy to write a complex system for training with the outputs you’d want in a prediction setting.

You may also find the auto_move_data() decorator useful when using the module outside Lightning in a production setting.

Parameters
• *args – Whatever you decide to pass into the forward method.
• **kwargs – Keyword arguments are also possible.

Returns Predicted output

Examples

```python
example if we were using this model as a feature extractor
def forward(self, x):
 feature_maps = self.convnet(x)
 return feature_maps

def training_step(self, batch, batch_idx):
 x, y = batch
 feature_maps = self(x)
 logits = self.classifier(feature_maps)

 # ...
 return loss

splitting it this way allows model to be used as a feature extractor
model = MyModelAbove()

inputs = server.get_request()
results = model(inputs)
server.write_results(results)

This is in stark contrast to torch.nn.Module where normally you would have:

def forward(self, batch):
 x, y = batch
 feature_maps = self.convnet(x)
 logits = self.classifier(feature_maps)
 return logits

freeze()

Freeze all params for inference.

Example

```python
model = MyLightningModule(...)
model.freeze()
```

Return type None

get_progress_bar_dict()
Additional items to be displayed in the progress bar.

Return type Dict[str, Union[int, str]]

Returns Dictionary with the items to be displayed in the progress bar.

get_tqdm_dict()
Additional items to be displayed in the progress bar.
Return type Dict[str, Union[int, str]]

Returns Dictionary with the items to be displayed in the progress bar.

Warning: Deprecated since v0.7.3. Use `get_progress_bar_dict()` instead.

`init_ddp_connection (global_rank, world_size, is_slurm_managing_tasks=True)`

Override to define your custom way of setting up a distributed environment.

Lightning’s implementation uses env:// init by default and sets the first node as root for SLURM managed cluster.

Parameters

- `global_rank` (int) – The global process idx.
- `world_size` (int) – Number of GPUs being use across all nodes. (num_nodes * num_gpus).
- `is_slurm_managing_tasks` (bool) – is cluster managed by SLURM.

Return type None

`on_load_checkpoint (checkpoint)`

Called by Lightning to restore your model. If you saved something with `on_save_checkpoint()` this is your chance to restore this.

Parameters `checkpoint (Dict[str, Any])` – Loaded checkpoint

Example

```python
def on_load_checkpoint(self, checkpoint):
    # 99% of the time you don't need to implement this method
    self.something_cool_i_want_to_save = checkpoint['something_cool_i_want_to_save']
```

Note: Lightning auto-restores global step, epoch, and train state including amp scaling. There is no need for you to restore anything regarding training.

Return type None

`on_save_checkpoint (checkpoint)`

Called by Lightning when saving a checkpoint to give you a chance to store anything else you might want to save.

Parameters `checkpoint (Dict[str, Any])` – Checkpoint to be saved
Example

```python
def on_save_checkpoint(self, checkpoint):
    # 99% of use cases you don’t need to implement this method
    checkpoint['something_cool_i_want_to_save'] = my_cool_pickable_object
```

Note: Lightning saves all aspects of training (epoch, global step, etc...) including amp scaling. There is no need for you to store anything about training.

Return type None

```python
optimizer_step(epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None)
```

Override this method to adjust the default way the Trainer calls each optimizer. By default, Lightning calls `step()` and `zero_grad()` as shown in the example once per optimizer.

Parameters

- **epoch** *(int)* – Current epoch
- **batch_idx** *(int)* – Index of current batch
- **optimizer** *(Optimizer)* – A PyTorch optimizer
- **optimizer_idx** *(int)* – If you used multiple optimizers this indexes into that list.
- **second_order_closure** *(Optional[Callable])* – closure for second order methods

Examples

```python
# DEFAULT
def optimizer_step(self, current_epoch, batch_idx, optimizer, optimizer_idx,
    second_order_closure=None):
    optimizer.step()
    optimizer.zero_grad()

# Alternating schedule for optimizer steps (i.e.: GANs)
def optimizer_step(self, current_epoch, batch_idx, optimizer, optimizer_idx,
    second_order_closure=None):
    # update generator opt every 2 steps
    if optimizer_idx == 0:
        if batch_idx % 2 == 0:
            optimizer.step()
            optimizer.zero_grad()

    # update discriminator opt every 4 steps
    if optimizer_idx == 1:
        if batch_idx % 4 == 0:
            optimizer.step()
            optimizer.zero_grad()

    # ...
    # add as many optimizers as you want
```

Here's another example showing how to use this for more advanced things such as learning rate warm-up:
learning rate warm-up

def optimizer_step(self, current_epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None):
 # warm up lr
 if self.trainer.global_step < 500:
 lr_scale = min(1., float(self.trainer.global_step + 1) / 500.)
 for pg in optimizer.param_groups:
 pg['lr'] = lr_scale * self.learning_rate

 # update params
 optimizer.step()
 optimizer.zero_grad()

Note: If you also override the on_before_zero_grad() model hook don’t forget to add the call to it before optimizer.zero_grad() yourself.

Return type None

prepare_data()

Use this to download and prepare data.

Warning: DO NOT set state to the model (use setup instead) since this is NOT called on every GPU in DDP/TPU

Example:

def prepare_data(self):
 # good
 download_data()
 tokenize()
 etc()

 # bad
 self.split = data_split
 self.some_state = some_other_state()
model.prepare_data()
 if ddp/tpu: init()
model.setup(step)
model.train_dataloader()
model.val_dataloader()
model.test_dataloader()

Return type None

print (*args, **kwargs)
Prints only from process 0. Use this in any distributed mode to log only once.

Parameters

• *args – The thing to print. Will be passed to Python’s built-in print function.

• **kwargs – Will be passed to Python’s built-in print function.

Example

def forward(self, x):
 self.print(x, 'in forward')

Return type None

save_hyperparameters (*args, frame=None)
Save all model arguments.

Parameters args – single object of dict, Namespace or OmegaConf or string names or argument names from class __init__

>>> from collections import OrderedDict
>>> class ManuallyArgsModel(LightningModule):
... def __init__(self, arg1, arg2, arg3):
... super().__init__()
... # manually assign arguments
... self.save_hyperparameters('arg1', 'arg3')
... def forward(self, *args, **kwargs):
... ...
>>> model = ManuallyArgsModel(1, 'abc', 3.14)
>>> model.hparams
"arg1": 1
"arg3": 3.14

>>> class AutomaticArgsModel(LightningModule):
... def __init__(self, arg1, arg2, arg3):
... super().__init__()
... # equivalent automatic
... self.save_hyperparameters()
... def forward(self, *args, **kwargs):
... ...
>>> model = AutomaticArgsModel(1, 'abc', 3.14)
>>> model.hparams
"arg1": 1
"arg2": abc
"arg3": 3.14

5.8. LightningModule Class 63
```python
>>> class SingleArgModel(LightningModule):
...     def __init__(self, params):
...         super().__init__()
...         # manually assign single argument
...         self.save_hyperparameters(params)
...     def forward(self, *args, **kwargs):
...         ...

>>> model = SingleArgModel(Namespace(p1=1, p2='abc', p3=3.14))
>>> model.hparams
"p1": 1
"p2": abc
"p3": 3.14
```

Return type None

tbptt_split_batch `batch, split_size`
When using truncated backpropagation through time, each batch must be split along the time dimension. Lightning handles this by default, but for custom behavior override this function.

Parameters

- `batch` (Tensor) – Current batch
- `split_size` (int) – The size of the split

Return type list

Returns List of batch splits. Each split will be passed to `training_step()` to enable truncated back propagation through time. The default implementation splits root level Tensors and Sequences at dim=1 (i.e. time dim). It assumes that each time dim is the same length.

Examples

```python
def tbptt_split_batch(self, batch, split_size):
    splits = []
    for t in range(0, time_dims[0], split_size):
        batch_split = []
        for i, x in enumerate(batch):
            if isinstance(x, torch.Tensor):
                split_x = x[:, t:t + split_size]
            elif isinstance(x, collections.Sequence):
                split_x = [None] * len(x)
                for batch_idx in range(len(x)):
                    split_x[batch_idx] = x[batch_idx][t:t + split_size]
            batch_split.append(split_x)
        batch_split.append(batch_split)
    return splits
```

Note: Called in the training loop after `on_batch_start()` if `truncated_bptt_steps > 0`. Each returned batch split is passed separately to `training_step()`.

test_dataloader()
Implement one or multiple PyTorch DataLoaders for testing.
The dataloader you return will not be called every epoch unless you set `reload_dataloaders_every_epoch` to `True`.

It’s recommended that all data downloads and preparation happen in `prepare_data()`.

- `fit()`
- `...`
- `prepare_data()`
- `train_dataloader()`
- `val_dataloader()`
- `test_dataloader()`

Note: Lightning adds the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself.

Return type `Union[DataLoader, List[DataLoader]]`

Returns Single or multiple PyTorch DataLoaders.

Example

```python
def test_dataloader(self):
    transform = transforms.Compose([transforms.ToTensor(),
                                     transforms.Normalize((0.5,), (1.0,))])
    dataset = MNIST(root='/path/to/mnist/', train=False, transform=transform,
                    download=True)
    loader = torch.utils.data.DataLoader(
        dataset=dataset,
        batch_size=self.batch_size,
        shuffle=False
    )
    return loader
```

Note: If you don’t need a test dataset and a `test_step()`, you don’t need to implement this method.

test_end(outputs)

Warning: Deprecated in v0.7.0. Use `test_epoch_end()` instead. Will be removed in 1.0.0.

test_epoch_end(outputs)

Called at the end of a test epoch with the output of all test steps.

```python
# the pseudocode for these calls
test_outs = []
for test_batch in test_data:
    out = test_step(test_batch)
```
Parameters `outputs` (Union[List[Dict[str, Tensor]], List[List[Dict[str, Tensor]]]]) – List of outputs you defined in `test_step_end()`, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader

Returns

Dict has the following optional keys:

- `progress_bar` -> Dict for progress bar display. Must have only tensors.
- `log` -> Dict of metrics to add to logger. Must have only tensors (no images, etc).

Return type Dict or OrderedDict

Note: If you didn’t define a `test_step()`, this won’t be called.

- The outputs here are strictly for logging or progress bar.
- If you don’t need to display anything, don’t return anything.
- If you want to manually set current step, specify it with the ‘step’ key in the ‘log’ Dict

Examples

With a single dataloader:

```python
def test_epoch_end(self, outputs):
    test_acc_mean = 0
    for output in outputs:
        test_acc_mean += output['test_acc']

    test_acc_mean /= len(outputs)
    tqdm_dict = {'test_acc': test_acc_mean.item()}

    # show test_loss and test_acc in progress bar but only log test_loss
    results = {
        'progress_bar': tqdm_dict,
        'log': {'test_acc': test_acc_mean.item()}
    }

    return results
```

With multiple dataloaders, `outputs` will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each test step for that dataloader.

```python
def test_epoch_end(self, outputs):
    test_acc_mean = 0
    i = 0
    for dataloader_outputs in outputs:
        for output in dataloader_outputs:
            test_acc_mean += output['test_acc']
        i += 1
```

(continues on next page)
test_acc_mean /= i

tqdm_dict = {'test_acc': test_acc_mean.item()}

show test_loss and test_acc in progress bar but only log test_loss
results = {
 'progress_bar': tqdm_dict,
 'log': {'test_acc': test_acc_mean.item(), 'step': self.current_epoch}
}

return results

test_step(args, **kwargs)**

Operates on a single batch of data from the test set. In this step you’d normally generate examples or calculate anything of interest such as accuracy.

```python
# the pseudocode for these calls
test_outs = []
for test_batch in test_data:
    out = test_step(test_batch)
    test_outs.append(out)
test_epoch_end(test_outs)
```

Parameters

- **batch** *(Tensor|(Tensor,...)|[Tensor,...]) – The output of your DataLoader.*
 A tensor, tuple or list.

- **batch_idx** *(int) – The index of this batch.*

- **dataloader_idx** *(int) – The index of the dataloader that produced this batch (only if multiple test datasets used).*

Return type Dict[str, Tensor]

Returns Dict or OrderedDict - passed to the test_epoch_end() method. If you defined test_step_end() it will go to that first.

```python
# if you have one test dataloader:
def test_step(self, batch, batch_idx):
# if you have multiple test dataloaders:
def test_step(self, batch, batch_idx, dataloader_idx)
```

Examples

```python
# CASE 1: A single test dataset
def test_step(self, batch, batch_idx):
    x, y = batch

    # implement your own
    out = self(x)
    loss = self.loss(out, y)

    # log 6 example images
    # or generated text... or whatever
    sample_imgs = x[:6]
```

(continues on next page)
grid = torchvision.utils.make_grid(sample_imgs)
self.logger.experiment.add_image('example_images', grid, 0)

calculate acc
labels_hat = torch.argmax(out, dim=1)
val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)

all optional...
return whatever you need for the collation function test_epoch_end
output = OrderedDict({'val_loss': loss_val,
 'val_acc': torch.tensor(val_acc), # everything must be a tensor
 })

return an optional dict
return output

If you pass in multiple validation datasets, test_step() will have an additional argument.

CASE 2: multiple test datasets
def test_step(self, batch, batch_idx, dataset_idx):
 # dataset_idx tells you which dataset this is.

Note: If you don’t need to validate you don’t need to implement this method.

Note: When the test_step() is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of the test epoch, the model goes back to training mode and gradients are enabled.

test_step_end(*args, **kwargs)
Use this when testing with dp or ddp2 because test_step() will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss.

Note: If you later switch to ddp or some other mode, this will still be called so that you don’t have to change your code.

pseudocode
sub_batches = split_batches_for_dp(batch)
batch_parts_outputs = [test_step(sub_batch) for sub_batch in sub_batches]
test_step_end(batch_parts_outputs)

Parameters batch_parts_outputs – What you return in test_step() for each batch part.

Return type Dict[str, Tensor]

Returns Dict or OrderedDict - passed to the test_epoch_end().
Examples

```python
# WITHOUT test_step_end
# if used in DP or DDP2, this batch is 1/num_gpus large
def test_step(self, batch, batch_idx):
    # batch is 1/num_gpus big
    x, y = batch
    out = self(x)
    loss = self.softmax(out)
    loss = nce_loss(loss)
    return {'loss': loss}

# --------------
# with test_step_end to do softmax over the full batch
def test_step(self, batch, batch_idx):
    # batch is 1/num_gpus big
    x, y = batch
    out = self(x)
    return {'out': out}

def test_step_end(self, outputs):
    # this out is now the full size of the batch
    out = outputs['out']
    # this softmax now uses the full batch size
    loss = nce_loss(loss)
    return {'loss': loss}
```

See also:

See the Multi-GPU training guide for more details.

`tng_dataloader()`

Warning: Deprecated in v0.5.0. Use `train_dataloader()` instead. Will be removed in 1.0.0.

`train_dataloader()`

Implement a PyTorch DataLoader for training.

- **Return type**: DataLoader
- **Returns**: Single PyTorch DataLoader.

The dataloader you return will not be called every epoch unless you set `reload_dataloaders_every_epoch` to True.

It’s recommended that all data downloads and preparation happen in `prepare_data()`.

- `fit()`
- `...`
- `prepare_data()`
- `train_dataloader()`
Note: Lightning adds the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself.

Example

```python
def train_dataloader(self):
    transform = transforms.Compose([transforms.ToTensor(),
                                     transforms.Normalize((0.5,), (1.0,))])
    dataset = MNIST(root='/path/to/mnist/', train=True, transform=transform,
                    download=True)
    loader = torch.utils.data.DataLoader(
        dataset=dataset,
        batch_size=self.batch_size,
        shuffle=True
    )
    return loader
```

`training_end(*args, **kwargs)`

Warning: Deprecated in v0.7.0. Use `training_step_end()` instead.

`training_epoch_end(outputs)`

Called at the end of the training epoch with the outputs of all training steps.

```python
# the pseudocode for these calls
train_outs = []
for train_batch in train_data:
    out = training_step(train_batch)
    train_outs.append(out)
training_epoch_end(train_outs)
```

Parameters outputs `Union[List[Dict[str, Tensor]], List[List[Dict[str, Tensor]]]]` – List of outputs you defined in `training_step()`, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader.

Return type `Dict[str, Dict[str, Tensor]]`

Returns

Dict or OrderedDict. May contain the following optional keys:

- **log** (metrics to be added to the logger; only tensors)
- **progress_bar** (dict for progress bar display)
- **any metric used in a callback (e.g. early stopping).**

Note: If this method is not overridden, this won’t be called.

- The outputs here are strictly for logging or progress bar.
- If you don’t need to display anything, don’t return anything.
• If you want to manually set current step, you can specify the ‘step’ key in the ‘log’ dict.

Examples

With a single dataloader:

```python
def training_epoch_end(self, outputs):
    train_acc_mean = 0
    for output in outputs:
        train_acc_mean += output['train_acc']
    train_acc_mean /= len(outputs)

    # log training accuracy at the end of an epoch
    results = {
        'log': {'train_acc': train_acc_mean.item()},
        'progress_bar': {'train_acc': train_acc_mean},
    }
    return results
```

With multiple dataloaders, outputs will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each training step for that dataloader.

```python
def training_epoch_end(self, outputs):
    train_acc_mean = 0
    i = 0
    for dataloader_outputs in outputs:
        for output in dataloader_outputs:
            train_acc_mean += output['train_acc']
            i += 1
    train_acc_mean /= i

    # log training accuracy at the end of an epoch
    results = {
        'log': {'train_acc': train_acc_mean.item(), 'step': self.current_epoch},
        'progress_bar': {'train_acc': train_acc_mean},
    }
    return results
```

`training_step(*args, **kwargs)`

Here you compute and return the training loss and some additional metrics for e.g. the progress bar or logger.

Parameters

- **batch** *(Tensor|Tensor|...)|[Tensor, ...]*) – The output of your `DataLoader`. A tensor, tuple or list.
- **batch_idx** *(int)* – Integer displaying index of this batch
- **optimizer_idx** *(int)* – When using multiple optimizers, this argument will also be present.
- **hiddens** *(Tensor)* – Passed in if `truncated_bptt_steps > 0`.

Return type: Union[int, Dict[str, Union[Tensor, Dict[str, Tensor]]]]
Returns

Dict with loss key and optional log or progress bar keys. When implementing `training_step()`, return whatever you need in that step:

- loss -> tensor scalar **REQUIRED**
- progress_bar -> Dict for progress bar display. Must have only tensors
- log -> Dict of metrics to add to logger. Must have only tensors (no images, etc)

In this step you’d normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something model specific.

Examples

```python
def training_step(self, batch, batch_idx):
    x, y, z = batch
    # implement your own
    out = self(x)
    loss = self.loss(out, x)
    logger_logs = {'training_loss': loss}  # optional (MUST ALL BE TENSORS)

    # if using TestTubeLogger or TensorBoardLogger you can nest scalars
    logger_logs = {'losses': logger_logs}  # optional (MUST ALL BE TENSORS)

    output = {
        'loss': loss,  # required
        'progress_bar': {'training_loss': loss},  # optional (MUST ALL BE TENSORS)
        'log': logger_logs
    }
    # return a dict
    return output
```

If you define multiple optimizers, this step will be called with an additional `optimizer_idx` parameter.

```python
# Multiple optimizers (e.g.: GANs)
def training_step(self, batch, batch_idx, optimizer_idx):
    if optimizer_idx == 0:
        # do training_step with encoder
    if optimizer_idx == 1:
        # do training_step with decoder
```

If you add truncated back propagation through time you will also get an additional argument with the hidden states of the previous step.

```python
# Truncated back-propagation through time
def training_step(self, batch, batch_idx, hiddens):
    # hiddens are the hidden states from the previous truncated backprop step
    ...
    out, hiddens = self.lstm(data, hiddens)
    ...
    return {
```
"loss": ...,
"hiddens": hiddens # remember to detach() this
}

Notes

The loss value shown in the progress bar is smoothed (averaged) over the last values, so it differs from the actual loss returned in train/validation step.

training_step_end (*args, **kwargs)

Use this when training with dp or ddp2 because **training_step()** will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss.

Note: If you later switch to ddp or some other mode, this will still be called so that you don’t have to change your code

```python
# pseudocode
sub_batches = split_batches_for_dp(batch)
batch_parts_outputs = [training_step(sub_batch) for sub_batch in sub_batches]
training_step_end(batch_parts_outputs)
```

Parameters `batch_parts_outputs` – What you return in **training_step** for each batch part.

Return type `Dict[str, Union[Tensor, Dict[str, Tensor]]]`

Returns

Dict with loss key and optional log or progress bar keys.

- **loss** -> tensor scalar **REQUIRED**
- **progress_bar** -> Dict for progress bar display. Must have only tensors
- **log** -> Dict of metrics to add to logger. Must have only tensors (no images, etc)

Examples

```python
# WITHOUT training_step_end
# if used in DP or DDP2, this batch is 1/num_gpus large
def training_step(self, batch, batch_idx):
    # batch is 1/num_gpus big
    x, y = batch

    out = self(x)
    loss = self.softmax(out)
    loss = nce_loss(loss)
    return {'loss': loss}

# ----------------
# with training_step_end to do softmax over the full batch
def training_step(self, batch, batch_idx):
    # batch is 1/num_gpus big
    x, y = batch
```
out = self(x)
return {'out': out}

def training_step_end(self, outputs):
 # this out is now the full size of the batch
 out = outputs['out']

 # this softmax now uses the full batch size
 loss = nce_loss(loss)
 return {'loss': loss}

See also:
See the Multi-GPU training guide for more details.

unfreeze()
Unfreeze all parameters for training.

model = MyLightningModule(...)
model.unfreeze()

 Return type None

val_dataloader()
Implement one or multiple PyTorch DataLoaders for validation.

 The dataloader you return will not be called every epoch unless you set
 reload_dataloaders_every_epoch to True.

 It’s recommended that all data downloads and preparation happen in prepare_data().
 • fit()
 • ...
 • prepare_data()
 • train_dataloader()
 • val_dataloader()
 • test_dataloader()

 Note: Lightning adds the correct sampler for distributed and arbitrary hardware There is no need to set it yourself.

 Return type Union[DataLoader, List[DataLoader]]

 Returns Single or multiple PyTorch DataLoaders.
Examples

```python
def val_dataloader(self):
    transform = transforms.Compose([transforms.ToTensor(),
                                    transforms.Normalize((0.5,), (1.0,))])
    dataset = MNIST(root='/path/to/mnist/', train=False,
                    transform=transform, download=True)
    loader = torch.utils.data.DataLoader(
        dataset=dataset,
        batch_size=self.batch_size,
        shuffle=False)
    return loader

# can also return multiple dataloaders
def val_dataloader(self):
    return [loader_a, loader_b, ..., loader_n]
```

Note: If you don’t need a validation dataset and a `validation_step()`, you don’t need to implement this method.

Note: In the case where you return multiple validation dataloaders, the `validation_step()` will have an argument `dataset_idx` which matches the order here.

`validation_end(outputs)`

Warning: Deprecated in v0.7.0. Use `validation_epoch_end()` instead. Will be removed in 1.0.0.

`validation_epoch_end(outputs)`

Called at the end of the validation epoch with the outputs of all validation steps.

```python
# the pseudocode for these calls
val_outs = []
for val_batch in val_data:
    out = validation_step(val_batch)
    val_outs.append(out)
validation_epoch_end(val_outs)
```

Parameters outputs *(Union[List[Dict[str, Tensor]], List[List[Dict[str, Tensor]]]])* – List of outputs you defined in `validation_step()`, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader.

Return type `Dict[str, Dict[str, Tensor]]`

Returns

Dict or OrderedDict. May have the following optional keys:

- progress_bar (dict for progress bar display; only tensors)
- log (dict of metrics to add to logger; only tensors).
Note: If you didn’t define a `validation_step()`, this won’t be called.

- The outputs here are strictly for logging or progress bar.
- If you don’t need to display anything, don’t return anything.
- If you want to manually set current step, you can specify the ‘step’ key in the ‘log’ dict.

Examples

With a single dataloader:

```python
def validation_epoch_end(self, outputs):
    val_acc_mean = 0
    for output in outputs:
        val_acc_mean += output['val_acc']
    val_acc_mean /= len(outputs)
    tqdm_dict = {'val_acc': val_acc_mean.item()}
    # show val_acc in progress bar but only log val_loss
    results = {
        'progress_bar': tqdm_dict,
        'log': {'val_acc': val_acc_mean.item()}
    }
    return results
```

With multiple dataloaders, `outputs` will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each validation step for that dataloader.

```python
def validation_epoch_end(self, outputs):
    val_acc_mean = 0
    i = 0
    for dataloader_outputs in outputs:
        for output in dataloader_outputs:
            val_acc_mean += output['val_acc']
        i += 1
    val_acc_mean /= i
    tqdm_dict = {'val_acc': val_acc_mean.item()}
    # show val_loss and val_acc in progress bar but only log val_loss
    results = {
        'progress_bar': tqdm_dict,
        'log': {'val_acc': val_acc_mean.item(), 'step': self.current_epoch}
    }
    return results
```

`validation_step(*args, **kwargs)`

Operates on a single batch of data from the validation set. In this step you’d might generate examples or calculate anything of interest like accuracy.

```python
# the pseudocode for these calls
val_outs = []
for val_batch in val_data:
```
out = validation_step(train_batch)
val_outs.append(out)
validation_epoch_end(val_outs)

Parameters

- **batch** (Tensor|Tensor,...)|[Tensor,...]) – The output of your DataLoader. A tensor, tuple or list.

- **batch_idx** (int) – The index of this batch

- **dataloader_idx** (int) – The index of the dataloader that produced this batch (only if multiple val datasets used)

Return type **Dict[str,Tensor]**

Returns Dict or OrderedDict - passed to validation_epoch_end(). If you defined validation_step_end() it will go to that first.

```python
# pseudocode of order
out = validation_step()
if defined('validation_step_end'):
    out = validation_step_end(out)
out = validation_epoch_end(out)
```

```python
# if you have one val dataloader:
def validation_step(self, batch, batch_idx):
# if you have multiple val dataloaders:
def validation_step(self, batch, batch_idx, dataloader_idx)
```

Examples

```python
# CASE 1: A single validation dataset
def validation_step(self, batch, batch_idx):
    x, y = batch

    # implement your own
    out = self(x)
    loss = self.loss(out, y)

    # log 6 example images
    # or generated text... or whatever
    sample_imgs = x[:6]
    grid = torchvision.utils.make_grid(sample_imgs)
    self.logger.experiment.add_image('example_images', grid, 0)

    # calculate acc
    labels_hat = torch.argmax(out, dim=1)
    val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)

    # all optional...
    # return whatever you need for the collation function validation_epoch_end
    output = OrderedDict({'val_loss': loss_val,
```
If you pass in multiple val datasets, validation_step will have an additional argument.

```python
# CASE 2: multiple validation datasets
def validation_step(self, batch, batch_idx, dataset_idx):
    # dataset_idx tells you which dataset this is.
```

Note: If you don’t need to validate you don’t need to implement this method.

Note: When the `validation_step()` is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of validation, the model goes back to training mode and gradients are enabled.

`validation_step_end(*args, **kwargs)`

Use this when validating with dp or ddp2 because `validation_step()` will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss.

Note: If you later switch to ddp or some other mode, this will still be called so that you don’t have to change your code.

```python
# pseudocode
sub_batches = split_batches_for_dp(batch)
batch_parts_outputs = [validation_step(sub_batch) for sub_batch in sub_batches]
validation_step_end(batch_parts_outputs)
```

Parameters

- **batch_parts_outputs** – What you return in `validation_step()` for each batch part.

Return type `Dict[str, Tensor]`

Returns Dict or OrderedDict - passed to the `validation_epoch_end()` method.

Examples

```python
# WITHOUT validation_step_end
# if used in DP or DDP2, this batch is 1/num_gpus large
def validation_step(self, batch, batch_idx):
    # batch is 1/num_gpus big
    x, y = batch

    out = self(x)
    loss = self.softmax(out)
    loss = nce_loss(loss)
```
```python
return {'loss': loss}

# --------------
# with validation_step_end to do softmax over the full batch
def validation_step(self, batch, batch_idx):
    # batch is 1/num_gpus big
    x, y = batch

    out = self(x)
    return {'out': out}

def validation_epoch_end(self, outputs):
    # this out is now the full size of the batch
    out = outputs['out']

    # this softmax now uses the full batch size
    loss = nce_loss(loss)
    return {'loss': loss}
```

See also:

See the Multi-GPU training guide for more details.

```python
 DEVICE = None
    device reference

 DTYPE = None
    Current dtype

current_epoch = None
    The current epoch

global_step = None
    Total training batches seen across all epochs

logger = None
    Pointer to the logger object

property on_gpu
    True if your model is currently running on GPUs. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

trainer = None
    Pointer to the trainer object

use_amp = None
    True if using amp

use_ddp = None
    True if using ddp

use_ddp2 = None
    True if using ddp2

use_dp = None
    True if using dp
```

```bash
pytorch_lightning.core.data_loader(fn)
    Decorator to make any fx with this use the lazy property.
```
Warning: This decorator deprecated in v0.7.0 and it will be removed v0.9.0.
CHAPTER SIX

LOGGERS

Lightning supports the most popular logging frameworks (TensorBoard, Comet, Weights and Biases, etc…). To use a logger, simply pass it into the `Trainer`. Lightning uses TensorBoard by default.

```python
from pytorch_lightning import Trainer
from pytorch_lightning import loggers

tb_logger = loggers.TensorBoardLogger('logs/)
trainer = Trainer(logger=tb_logger)
```

Choose from any of the others such as MLflow, Comet, Neptune, WandB, …

```python
comet_logger = loggers.CometLogger(save_dir='logs/
trainer = Trainer(logger=comet_logger)
```

To use multiple loggers, simply pass in a list or tuple of loggers...

```python
tb_logger = loggers.TensorBoardLogger('logs/
comet_logger = loggers.CometLogger(save_dir='logs/
trainer = Trainer(logger=[tb_logger, comet_logger])
```

Note: All loggers log by default to `os.getcwd()`. To change the path without creating a logger set

```python
Trainer(default_root_dir='/your/path/to/save/checkpoints')
```

6.1 Custom Logger

You can implement your own logger by writing a class that inherits from `LightningLoggerBase`. Use the `rank_zero_only()` decorator to make sure that only the first process in DDP training logs data.

```python
from pytorch_lightning.utilities import rank_zero_only
from pytorch_lightning.loggers import LightningLoggerBase

class MyLogger(LightningLoggerBase):
    @rank_zero_only
    def log_hyperparams(self, params):
        # params is an argparse.Namespace
        # your code to record hyperparameters goes here
        pass

    @rank_zero_only
    def log_metrics(self, metrics, step):
        # metrics is a dictionary of metric names and values
```

(continues on next page)
your code to record metrics goes here
pass

def save(self):
 # Optional. Any code necessary to save logger data goes here
 pass

@rank_zero_only
def finalize(self, status):
 # Optional. Any code that needs to be run after training
 # finishes goes here
 pass

If you write a logger that may be useful to others, please send a pull request to add it to Lightning!

6.2 Using loggers

Call the logger anywhere except __init__ in your LightningModule by doing:

```python
from pytorch_lightning import LightningModule
class LitModel(LightningModule):
    def training_step(self, batch, batch_idx):
        # example
        self.logger.experiment.whatever_method_summary_writer_supports(...)

        # example if logger is a tensorboard logger
        self.logger.experiment.add_image('images', grid, 0)
        self.logger.experiment.add_graph(model, images)

    def any_lightning_module_function_or_hook(self):
        self.logger.experiment.add_histogram(...)
```

Read more in the Experiment Logging use case.

6.3 Supported Loggers

The following are loggers we support

6.3.1 Comet

```python
class pytorch_lightning.loggers.comet.CometLogger(api_key=None, save_dir=None, workspace=None, project_name=None, rest_api_key=None, experiment_name=None, experiment_key=None, **kwargs)
Bases: pytorch_lightning.loggers.base.LightningLoggerBase
```

Log using Comet.ml. Install it with pip:
pip install comet-ml

Comet requires either an API Key (online mode) or a local directory path (offline mode).

ONLINE MODE

Example

```python
>>> import os
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.loggers import CometLogger

>>> # arguments made to CometLogger are passed on to the comet_ml.Experiment class
>>> comet_logger = CometLogger(
...    api_key=os.environ.get('COMET_API_KEY'),
...    workspace=os.environ.get('COMET_WORKSPACE'), # Optional
...    save_dir='.', # Optional
...    project_name='default_project', # Optional
...    rest_api_key=os.environ.get('COMET_REST_API_KEY'), # Optional
...    experiment_name='default' # Optional
...)

>>> trainer = Trainer(logger=comet_logger)
```

OFFLINE MODE

Example

```python
>>> from pytorch_lightning.loggers import CometLogger

>>> # arguments made to CometLogger are passed on to the comet_ml.Experiment class
>>> comet_logger = CometLogger(
...    save_dir='.',
...    workspace=os.environ.get('COMET_WORKSPACE'), # Optional
...    project_name='default_project', # Optional
...    rest_api_key=os.environ.get('COMET_REST_API_KEY'), # Optional
...    experiment_name='default' # Optional
...)

>>> trainer = Trainer(logger=comet_logger)
```

Parameters

- **api_key** (Optional[str]) – Required in online mode. API key, found on Comet.ml
- **save_dir** (Optional[str]) – Required in offline mode. The path for the directory to save local comet logs
- **workspace** (Optional[str]) – Optional. Name of workspace for this user
- **project_name** (Optional[str]) – Optional. Send your experiment to a specific project. Otherwise will be sent to Uncategorized Experiments. If the project name does not already exist, Comet.ml will create a new project.
- **rest_api_key** (Optional[str]) – Optional. Rest API key found in Comet.ml settings. This is used to determine version number
- **experiment_name** (Optional[str]) – Optional. String representing the name for this particular experiment on Comet.ml.
- **experiment_key** *(Optional[str])* – Optional. If set, restores from existing experiment.

finalize(status)

When calling `self.experiment.end()`, that experiment won’t log any more data to Comet. That’s why, if you need to log any more data, you need to create an `ExistingCometExperiment`. For example, to log data when testing your model after training, because when training is finalized `CometLogger.finalize()` is called.

This happens automatically in the `experiment()` property, when `self._experiment` is set to `None`, i.e. `self.reset_experiment()`.

Return type None

log_hyperparams(params)

Record hyperparameters.

Parameters

- **params** *(Union[Dict[str, Any], Namespace])* – Namespace containing the hyperparameters

Return type None

log_metrics(metrics, step=None)

Records metrics. This method logs metrics as soon as it received them. If you want to aggregate metrics for one specific step, use the `agg_and_log_metrics()` method.

Parameters

- **metrics** *(Dict[str, Union[Tensor, float]])* – Dictionary with metric names as keys and measured quantities as values

- **step** *(Optional[int])* – Step number at which the metrics should be recorded

Return type None

property experiment

Actual Comet object. To use Comet features in your `LightningModule` do the following.

Example:

```python
self.logger.experiment.some_comet_function()
```

Return type `BaseExperiment`

property name

Return the experiment name.

Return type `str`

property version

Return the experiment version.

Return type `str`
6.3.2 MLFlow

```python
class pytorch_lightning.loggers.mlflow.MLFlowLogger(experiment_name='default',
tracking_uri=None, tags=None,
save_dir=None)
```

Bases: `pytorch_lightning.loggers.base.LightningLoggerBase`

Log using MLflow. Install it with pip:

```
pip install mlflow
```

Example

```python
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.loggers import MLFlowLogger

mlf_logger = MLFlowLogger(
    experiment_name='default',
    tracking_uri='file:/ml-runs'
)

trainer = Trainer(logger=mlf_logger)
```

Use the logger anywhere in your `LightningModule` as follows:

```python
>>> from pytorch_lightning import LightningModule
>>> class LitModel(LightningModule):
...     def training_step(self, batch, batch_idx):
...         # example
...         self.logger.experiment.whatever_ml_flow_supports(...)
...     ...

...     def any_lightning_module_function_or_hook(self):
...         self.logger.experiment.whatever_ml_flow_supports(...)
```

Parameters

- `experiment_name` *(str)* – The name of the experiment
- `tracking_uri` *(Optional[str]*) – Address of local or remote tracking server. If not provided, defaults to the service set by `mlflow.tracking.set_tracking_uri`.
- `tags` *(Optional[Dict[str, Any]])* – A dictionary tags for the experiment.

finalize(`status='FINISHED'`)
Do any processing that is necessary to finalize an experiment.

Parameters

- `status` *(str)* – Status that the experiment finished with (e.g. success, failed, aborted)

Return type None

log_hyperparams *(params)*
Record hyperparameters.

Parameters

- `params` *(Union[Dict[str, Any], Namespace]*) – Namespace containing the hyperparameters

Return type None

log_metrics *(metrics, step=None)*
Records metrics. This method logs metrics as soon as it received them. If you want to aggregate metrics for one specific `step`, use the `agg_and_log_metrics()` method.
Parameters

- **metrics** *(Dict[str, float])* – Dictionary with metric names as keys and measured quantities as values
- **step** *(Optional[int])* – Step number at which the metrics should be recorded

Return type None

property experiment
Actual MLflow object. To use mlflow features in your *LightningModule* do the following.

Example:

```python
self.logger.experiment.some_mlflow_function()
```

Return type MlflowClient

property name
Return the experiment name.

Return type str

property version
Return the experiment version.

Return type str

6.3.3 Neptune

class pytorch_lightning.loggers.neptune.NeptuneLogger *(api_key=None, project_name=None, close_after_fit=True, offline_mode=False, experiment_name=None, upload_source_files=None, params=None, properties=None, tags=None, **kwargs)*

Bases: pytorch_lightning.loggers.base.LightningLoggerBase

Log using Neptune. Install it with pip:

```
pip install neptune-client
```

The Neptune logger can be used in the online mode or offline (silent) mode. To log experiment data in online mode, *NeptuneLogger* requires an API key. In offline mode, the logger does not connect to Neptune.

ONLINE MODE
Example

```python
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.loggers import NeptuneLogger

# arguments made to NeptuneLogger are passed on to the neptune.experiments.
→ Experiment class
# We are using an api_key for the anonymous user "neptuner" but you can use your own.
>>> neptune_logger = NeptuneLogger(
...    api_key='ANONYMOUS',
...    project_name='shared/pytorch-lightning-integration',
...    experiment_name='default', # Optional,
...    params={'max_epochs': 10}, # Optional,
...    tags=['pytorch-lightning', 'mlp'] # Optional,
...)
>>> trainer = Trainer(max_epochs=10, logger=neptune_logger)
```

OFFLINE MODE

Example

```python
>>> from pytorch_lightning.loggers import NeptuneLogger

# arguments made to NeptuneLogger are passed on to the neptune.experiments.
→ Experiment class
>>> neptune_logger = NeptuneLogger(
...    offline_mode=True,
...    project_name='USER_NAME/PROJECT_NAME',
...    experiment_name='default', # Optional,
...    params={'max_epochs': 10}, # Optional,
...    tags=['pytorch-lightning', 'mlp'] # Optional,
...)
>>> trainer = Trainer(max_epochs=10, logger=neptune_logger)
```

Use the logger anywhere in your `LightningModule` as follows:

```python
>>> from pytorch_lightning import LightningModule
>>> class LitModel(LightningModule):
...    def training_step(self, batch, batch_idx):
...        # log metrics
...        self.logger.experiment.log_metric('acc_train', ...)
...        # log images
...        self.logger.experiment.log_image('worse_predictions', ...)
...        # log model checkpoint
...        self.logger.experiment.log_artifact('model_checkpoint.pt', ...)
...        self.logger.experiment.whatever_neptune_supports(...)
...
...    def any_lightning_module_function_or_hook(self):
...        self.logger.experiment.log_metric('acc_train', ...)
...        self.logger.experiment.log_image('worse_predictions', ...)
...        self.logger.experiment.log_artifact('model_checkpoint.pt', ...)
...        self.logger.experiment.whatever_neptune_supports(...)
```

If you want to log objects after the training is finished use `close_after_fit=False`:

```python
neptune_logger = NeptuneLogger(
...)
```

(continues on next page)
close_after_fit=False,
...
)
trainer = Trainer(logger=neptune_logger)
trainer.fit()

Log test metrics
trainer.test(model)

Log additional metrics
from sklearn.metrics import accuracy_score
accuracy = accuracy_score(y_true, y_pred)
neptune_logger.experiment.log_metric('test_accuracy', accuracy)

Log charts
from scikitplot.metrics import plot_confusion_matrix
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(16, 12))
plot_confusion_matrix(y_true, y_pred, ax=ax)
neptune_logger.experiment.log_image('confusion_matrix', fig)

Save checkpoints folder
neptune_logger.experiment.log_artifact('my/checkpoints')

When you are done, stop the experiment
neptune_logger.experiment.stop()

See also:

- An Example experiment showing the UI of Neptune.
- Tutorial on how to use Pytorch Lightning with Neptune.

Parameters

- **api_key (Optional [str])** – Required in online mode. Neptune API token, found on https://neptune.ai. Read how to get your API key. It is recommended to keep it in the NEPTUNE_API_TOKEN environment variable and then you can leave api_key=None.

- **project_name (Optional [str])** – Required in online mode. Qualified name of a project in a form of “namespace/project_name” for example “tom/minst-classification”. If None, the value of NEPTUNE_PROJECT environment variable will be taken. You need to create the project in https://neptune.ai first.

- **offline_mode (bool)** – Optional default False. If True no logs will be sent to Neptune. Usually used for debug purposes.

- **close_after_fit (Optional [bool])** – Optional default True. If False the experiment will not be closed after training and additional metrics, images or artifacts can be logged. Also, remember to close the experiment explicitly by running neptune_logger.experiment.stop().

- **experiment_name (Optional [str])** – Optional. Editable name of the experiment. Name is displayed in the experiment’s Details (Metadata section) and in experiments view as a column.
• **upload_source_files** *(Optional[List[str]])* – Optional. List of source files to be uploaded. Must be list of str or single str. Uploaded sources are displayed in the experiment’s Source code tab. If `None` is passed, the Python file from which the experiment was created will be uploaded. Pass an empty list `[]` to upload no files. Unix style pathname pattern expansion is supported. For example, you can pass `'*\.py'` to upload all python source files from the current directory. For recursion lookup use `'**/*.*py'` (for Python 3.5 and later). For more information see `glob` library.

• **params** *(Optional[Dict[str, Any]])* – Optional. Parameters of the experiment. After experiment creation params are read-only. Parameters are displayed in the experiment’s Parameters section and each key-value pair can be viewed in the experiments view as a column.

• **properties** *(Optional[Dict[str, Any]])* – Optional. Default is `{}`. Properties of the experiment. They are editable after the experiment is created. Properties are displayed in the experiment’s Details section and each key-value pair can be viewed in the experiments view as a column.

• **tags** *(Optional[List[str]])* – Optional. Default is `[]`. Must be list of str. Tags of the experiment. They are editable after the experiment is created (see: `append_tag()` and `remove_tag()`). Tags are displayed in the experiment’s Details section and can be viewed in the experiments view as a column.

`append_tags` *(tags)*

Appends tags to the neptune experiment.

Parameters

* **tags** *(Union[str, Iterable[str]])* – Tags to add to the current experiment. If str is passed, a single tag is added. If multiple - comma separated - str are passed, all of them are added as tags. If list of str is passed, all elements of the list are added as tags.

Return type `None`

`finalize` *(status)*

Do any processing that is necessary to finalize an experiment.

Parameters

* **status** *(str)* – Status that the experiment finished with (e.g. success, failed, aborted)

Return type `None`

`log_artifact` *(artifact, destination=None)*

Save an artifact (file) in Neptune experiment storage.

Parameters

* **artifact** *(str)* – A path to the file in local filesystem.
* **destination** *(Optional[str]*) – Optional. Default is `None`. A destination path. If `None` is passed, an artifact file name will be used.

Return type `None`

`log_hyperparams` *(params)*

Record hyperparameters.

Parameters

* **params** *(Union[Dict[str, Any], Namespace])* – Namespace containing the hyperparameters

Return type `None`

`log_image` *(log_name, image, step=None)*

Log image data in Neptune experiment.

6.3. Supported Loggers
Parameters

- **log_name** *(str)* – The name of log, i.e. bboxes, visualisations, sample_images.

- **image** *(Union[str, Image, Any])* – The value of the log (data-point). Can be one of the following types: PIL image, matplotlib.figure.Figure, path to image file (str)

- **step** *(Optional[int])* – Step number at which the metrics should be recorded, must be strictly increasing

Return type: None

log_metric *(metric_name, metric_value, step=None)*

Log metrics (numeric values) in Neptune experiments.

Parameters

- **metric_name** *(str)* – The name of log, i.e. mse, loss, accuracy.

- **metric_value** *(Union[Tensor, float, str])* – The value of the log (data-point).

- **step** *(Optional[int])* – Step number at which the metrics should be recorded, must be strictly increasing

Return type: None

log_metrics *(metrics, step=None)*

Log metrics (numeric values) in Neptune experiments.

Parameters

- **metrics** *(Dict[str, Union[Tensor, float]])* – Dictionary with metric names as keys and measured quantities as values

- **step** *(Optional[int])* – Step number at which the metrics should be recorded, must be strictly increasing

Return type: None

log_text *(log_name, text, step=None)*

Log text data in Neptune experiments.

Parameters

- **log_name** *(str)* – The name of log, i.e. mse, my_text_data, timing_info.

- **text** *(str)* – The value of the log (data-point).

- **step** *(Optional[int])* – Step number at which the metrics should be recorded, must be strictly increasing

Return type: None

set_property *(key, value)*

Set key-value pair as Neptune experiment property.

Parameters

- **key** *(str)* – Property key.

- **value** *(Any)* – New value of a property.

Return type: None

property experiment

Actual Neptune object. To use neptune features in your LightningModule do the following.

Example:
```python
self.logger.experiment.some_neptune_function()
```

Return type Experiment

property name
Return the experiment name.

Return type str

property version
Return the experiment version.

Return type str

6.3.4 Tensorboard

```python
class pytorch_lightning.loggers.tensorboard.TensorBoardLogger(save_dir, name='default', version=None, **kwargs)
```

Bases: `pytorch_lightning.loggers.base.LightningLoggerBase`

Log to local file system in TensorBoard format. Implemented using `SummaryWriter`. Logs are saved to `os.path.join(save_dir, name, version)`. This is the default logger in Lightning, it comes preinstalled.

Example

```python
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.loggers import TensorBoardLogger
>>> logger = TensorBoardLogger("tb_logs", name="my_model")
>>> trainer = Trainer(logger=logger)
```

Parameters

- `save_dir` *(str)* – Save directory
- `name` *(Optional[str]*) – Experiment name. Defaults to 'default'. If it is the empty string then no per-experiment subdirectory is used.
- `version` *(Union[int, str, None]*) – Experiment version. If version is not specified the logger inspects the save directory for existing versions, then automatically assigns the next available version. If it is a string then it is used as the run-specific subdirectory name, otherwise 'version_${version}' is used.
- `**kwargs` – Other arguments are passed directly to the `SummaryWriter` constructor.

finalize(status)
Do any processing that is necessary to finalize an experiment.

Parameters

- `status` *(str)* – Status that the experiment finished with (e.g. success, failed, aborted)

Return type None

log_hyperparams(params, metrics=None)
Record hyperparameters.
Parameters `params` (Union[Dict[str, Any], Namespace]) – Namespace containing the hyperparameters

Return type None

`log_metrics(metrics, step=None)`
Records metrics. This method logs metrics as as soon as it received them. If you want to aggregate metrics for one specific `step`, use the `agg_and_log_metrics()` method.

Parameters

• `metrics` (Dict[str, float]) – Dictionary with metric names as keys and measured quantities as values
• `step` (Optional[int]) – Step number at which the metrics should be recorded

Return type None

`save()`
Save log data.

Return type None

`property experiment`
Actual tensorboard object. To use TensorBoard features in your `LightningModule` do the following.

Example:
```python
self.logger.experiment.some_tensorboard_function()
```

Return type SummaryWriter

`property log_dir`
The directory for this run’s tensorboard checkpoint. By default, it is named 'version_${self.version}' but it can be overridden by passing a string value for the constructor's version parameter instead of None or an int.

Return type str

`property name`
Return the experiment name.

Return type str

`property root_dir`
Parent directory for all tensorboard checkpoint subdirectories. If the experiment name parameter is None or the empty string, no experiment subdirectory is used and the checkpoint will be saved in “save_dir/version_dir”

Return type str

`property version`
Return the experiment version.

Return type int
6.3.5 Test-tube

```python
class pytorch_lightning.loggers.test_tube.TestTubeLogger(
    save_dir, name='default',
    description=None, debug=False,
    version=None, create_git_tag=False)
```

Bases: `pytorch_lightning.loggers.base.LightningLoggerBase`

Log to local file system in TensorBoard format but using a nicer folder structure (see full docs). Install it with pip:

```
pip install test_tube
```

Example

```python
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.loggers import TestTubeLogger
>>> logger = TestTubeLogger("tt_logs", name="my_exp_name")
>>> trainer = Trainer(logger=logger)
```

Use the logger anywhere in your `LightningModule` as follows:

```python
>>> from pytorch_lightning import LightningModule
>>> class LitModel(LightningModule):
...     def training_step(self, batch, batch_idx):
...         # example
...         self.logger.experiment.whatever_method_summary_writer_supports(...)
...     ...
...     def any_lightning_module_function_or_hook(self):
...         self.logger.experiment.add_histogram(...)
```

Parameters

- `save_dir (str)` – Save directory
- `name (str)` – Experiment name. Defaults to 'default'.
- `description (Optional[str])` – A short snippet about this experiment
- `debug (bool)` – If True, it doesn’t log anything.
- `version (Optional[int])` – Experiment version. If version is not specified the logger inspects the save directory for existing versions, then automatically assigns the next available version.
- `create_git_tag (bool)` – If True creates a git tag to save the code used in this experiment.

close

Do any cleanup that is necessary to close an experiment.

Return type None

finalize (status)

Do any processing that is necessary to finalize an experiment.

Parameters `status (str)` – Status that the experiment finished with (e.g. success, failed, aborted)
Return type None

log_hyperparams (params)
Record hyperparameters.

Parameters params (Union[Dict[str, Any], Namespace]) – Namespace containing the hyperparameters

Return type None

log_metrics (metrics, step=None)
Records metrics. This method logs metrics as soon as it received them. If you want to aggregate metrics for one specific step, use the agg_and_log_metrics() method.

Parameters

• metrics (Dict[str, float]) – Dictionary with metric names as keys and measured quantities as values
• step (Optional[int]) – Step number at which the metrics should be recorded

Return type None

save ()
Save log data.

Return type None

property experiment
Actual TestTube object. To use TestTube features in your LightningModule do the following.

Example:

self.logger.experiment.some_test_tube_function()

Return type Experiment

property name
Return the experiment name.

Return type str

property version
Return the experiment version.

Return type int

6.3.6 Trains

class pytorch_lightning.loggers.trains.TrainsLogger (project_name=None,
task_name=None,
task_type='training',
reuse_last_task_id=True,
output_uri=None,
auto_connect_arg_parser=True,
auto_connect_frameworks=True,
auto_resource_monitoring=True)

Bases: pytorch_lightning.loggers.base.LightningLoggerBase

Log using allegro.ai TRAINS. Install it with pip:
Example

```python
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.loggers import TrainsLogger
>>> trains_logger = TrainsLogger(
...    project_name='pytorch lightning',
...    task_name='default',
...    output_uri='.',
...)
TRAINS Task: ...
TRAINS results page: ...
>>> trainer = Trainer(logger=trains_logger)
```

Use the logger anywhere in your `LightningModule` as follows:

```python
>>> from pytorch_lightning import LightningModule
>>> class LitModel(LightningModule):
...    def training_step(self, batch, batch_idx):
...        # example
...        self.logger.experiment.whatever_trains_supports(...)
...    
...    def any_lightning_module_function_or_hook(self):
...        self.logger.experiment.whatever_trains_supports(...)
```

Parameters

- **project_name** ([`Optional[str]`]) – The name of the experiment’s project. Defaults to None.
- **task_name** ([`Optional[str]`]) – The name of the experiment. Defaults to None.
- **task_type** (`str`) – The name of the experiment. Defaults to 'training'.
- **reuse_last_task_id** (`bool`) – Start with the previously used task id. Defaults to True.
- **output_uri** ([`Optional[str]`]) – Default location for output models. Defaults to None.
- **auto_connect_arg_parser** (`bool`) – Automatically grab the `ArgumentParser` and connect it with the task. Defaults to True.
- **auto_connect_frameworks** (`bool`) – If True, automatically patch to trains back-end. Defaults to True.
- **auto_resource_monitoring** (`bool`) – If True, machine vitals will be sent along side the task scalars. Defaults to True.
Examples

```python
>>> logger = TrainsLogger("pytorch lightning", "default", output_url=".")
TRAINS Task: ...
TRAINS results page: ...
>>> logger.log_metrics({"val_loss": 1.23}, step=0)
>>> logger.log_text("sample test")
sample test
>>> import numpy as np
>>> logger.log_artifact("confusion matrix", np.ones((2, 3)))
>>> logger.log_image("passed", "Image 1", np.random.randint(0, 255, (200, 150, 3), dtype=np.uint8))
```

classmethod `bypass_mode`()

Returns the bypass mode state.

```
Note: `GITHUB_ACTIONS` env will automatically set bypass_mode to `True` unless overridden specifically with `TrainsLogger.set_bypass_mode(False)`.
```

Return type `bool`

Returns If True, all outside communication is skipped.

`finalize`(`status=None`)

Do any processing that is necessary to finalize an experiment.

Parameters

- `status` (`Optional[str]`) – Status that the experiment finished with (e.g. success, failed, aborted)

Return type `None`

`log_artifact`(`name`, `artifact`, `metadata=None`, `delete_after_upload=False`)

Save an artifact (file/object) in TRAINS experiment storage.

Parameters

- `name` (`str`) – Artifact name. Notice! it will override the previous artifact if the name already exists.
- `artifact` (`Union[str, Path, Dict[str, Any], ndarray, Image]`) – Artifact object to upload. Currently supports:
 - string / `pathlib.Path` are treated as path to artifact file to upload If a wildcard or a folder is passed, a zip file containing the local files will be created and uploaded.
 - dict will be stored as .json file and uploaded
 - `pandas.DataFrame` will be stored as .csv.gz (compressed CSV file) and uploaded
 - `numpy.ndarray` will be stored as .npz and uploaded
 - `PIL.Image.Image` will be stored to .png file and uploaded
- `metadata` (`Optional[Dict[str, Any]]`) – Simple key/value dictionary to store on the artifact. Defaults to None.
- `delete_after_upload` (`bool`) – If True, the local artifact will be deleted (only applies if artifact is a local file). Defaults to False.

Return type `None`
log_hyperparams (params)
Log hyperparameters (numeric values) in TRAINS experiments.

Parameters params (Union[Dict[str, Any], Namespace]) – The hyperparameters that passed through the model.

Return type None

log_image (title, series, image, step=None)
Log Debug image in TRAINS experiment

Parameters

• title (str) – The title of the debug image, i.e. “failed”, “passed”.
• series (str) – The series name of the debug image, i.e. “Image 0”, “Image 1”.
• image (Union[str, ndarray, Image, Tensor]) – Debug image to log. If numpy.ndarray or torch.Tensor, the image is assumed to be the following:
 – shape: CHW
 – color space: RGB
 – value range: [0., 1.] (float) or [0, 255] (uint8)
• step (Optional[int]) – Step number at which the metrics should be recorded. Defaults to None.

Return type None

log_metric (title, series, value, step=None)
Log metrics (numeric values) in TRAINS experiments. This method will be called by the users.

Parameters

• title (str) – The title of the graph to log, e.g. loss, accuracy.
• series (str) – The series name in the graph, e.g. classification, localization.
• value (float) – The value to log.
• step (Optional[int]) – Step number at which the metrics should be recorded. Defaults to None.

Return type None

log_metrics (metrics, step=None)
Log metrics (numeric values) in TRAINS experiments. This method will be called by Trainer.

Parameters

• metrics (Dict[str, float]) – The dictionary of the metrics. If the key contains “/”, it will be split by the delimiter, then the elements will be logged as “title” and “series” respectively.
• step (Optional[int]) – Step number at which the metrics should be recorded. Defaults to None.

Return type None

log_text (text)
Log console text data in TRAINS experiment.

Parameters text (str) – The value of the log (data-point).

Return type None
classmethod set_bypass_mode(bypass)

Will bypass all outside communication, and will drop all logs. Should only be used in “standalone mode”, when there is no access to the trains-server.

Parameters

- **bypass**(bool) – If True, all outside communication is skipped.

Return type None

classmethod set_credentials(api_host=None, web_host=None, files_host=None, key=None, secret=None)

Set new default TRAINS-server host and credentials. These configurations could be overridden by either OS environment variables or trains.conf configuration file.

Note: Credentials need to be set prior to Logger initialization.

Parameters

- **api_host**(Optional[str]) – Trains API server url, example: host='http://localhost:8008'
- **web_host**(Optional[str]) – Trains WEB server url, example: host='http://localhost:8080'
- **files_host**(Optional[str]) – Trains Files server url, example: host='http://localhost:8081'
- **key**(Optional[str]) – user key/secret pair, example: key='thisisakey123'
- **secret**(Optional[str]) – user key/secret pair, example: secret='thisisseceret123'

Return type None

property experiment

Actual TRAINS object. To use TRAINS features in your LightningModule do the following.

Example:

```python
self.logger.experiment.some_trains_function()
```

Return type Task

property id

ID is a uuid (string) representing this specific experiment in the entire system.

Return type Optional[str]

property name

Name is a human readable non-unique name (str) of the experiment.

Return type Optional[str]

property version

Return the experiment version.

Return type Optional[str]
This is a general package for PyTorch Metrics. These can also be used with regular non-lightning PyTorch code. Metrics are used to monitor model performance.

In this package we provide two major pieces of functionality.

1. A Metric class you can use to implement metrics with built-in distributed (ddp) support which are device agnostic.
2. A collection of ready to use popular metrics. There are two types of metrics: Class metrics and Functional metrics.
3. A interface to call sklearn's metrics

Example:

```python
from pytorch_lightning.metrics.functional import accuracy

pred = torch.tensor([0, 1, 2, 3])
target = torch.tensor([0, 1, 2, 2])

# calculates accuracy across all GPUs and all Nodes used in training
accuracy(pred, target)
```

Warning: The metrics package is still in development! If we’re missing a metric or you find a mistake, please send a PR! to a few metrics. Please feel free to create an issue/PR if you have a proposed metric or have found a bug.

7.1 Implement a metric

You can implement metrics as either a PyTorch metric or a Numpy metric (It is recommend to use PyTorch metrics when possible, since Numpy metrics slow down training).

Use `TensorMetric` to implement native PyTorch metrics. This class handles automated DDP syncing and converts all inputs and outputs to tensors.

Use `NumpyMetric` to implement numpy metrics. This class handles automated DDP syncing and converts all inputs and outputs to tensors.
Warning: Numpy metrics might slow down your training substantially, since every metric computation requires a GPU sync to convert tensors to numpy.

7.1.1 TensorMetric

Here’s an example showing how to implement a TensorMetric

class RMSE(TensorMetric):
 def forward(self, x, y):
 return torch.sqrt(torch.mean(torch.pow(x-y, 2.0)))

class pytorch_lightning.metrics.metric.TensorMetric(name, reduce_group=None, reduce_op=None)

Bases: pytorch_lightning.metrics.metric.Metric

Base class for metric implementation operating directly on tensors. All inputs and outputs will be casted to tensors if necessary. Already handles DDP sync and input/output conversions.

Parameters

• name (str) – the metric’s name
• reduce_group (Optional[Any]) – the process group for DDP reduces (only needed for DDP training). Defaults to all processes (world)
• reduce_op (Optional[Any]) – the operation to perform during reduction within DDP (only needed for DDP training). Defaults to sum.

__call__(*args, **kwargs)
Call self as a function.

Return type Tensor

7.1.2 NumpyMetric

Here’s an example showing how to implement a NumpyMetric

class RMSE(NumpyMetric):
 def forward(self, x, y):
 return np.sqrt(np.mean(np.power(x-y, 2.0)))

class pytorch_lightning.metrics.metric.NumpyMetric(name, reduce_group=None, reduce_op=None)

Bases: pytorch_lightning.metrics.metric.Metric

Base class for metric implementation operating on numpy arrays. All inputs will be casted to numpy if necessary and all outputs will be casted to tensors if necessary. Already handles DDP sync and input/output conversions.

Parameters

• name (str) – the metric’s name
• reduce_group (Optional[Any]) – the process group for DDP reduces (only needed for DDP training). Defaults to all processes (world)
• **reduce_op** *(Optional[**Any**]) – the operation to perform during reduction within DDP (only needed for DDP training). Defaults to sum.

```python
__call__(*args, **kwargs)
Call self as a function.
```

Return type *Tensor*

7.2 Class Metrics

Class metrics can be instantiated as part of a module definition (even with just plain PyTorch).

```python
from pytorch_lightning.metrics import Accuracy

# Plain PyTorch
class MyModule(Module):
    def __init__(self):
        super().__init__()
        self.metric = Accuracy()

    def forward(self, x, y):
        y_hat = ...
        acc = self.metric(y_hat, y)

# PyTorch Lightning
class MyModule(LightningModule):
    def __init__(self):
        super().__init__()
        self.metric = Accuracy()

    def training_step(self, batch, batch_idx):
        x, y = batch
        y_hat = ...
        acc = self.metric(y_hat, y)
```

These metrics even work when using distributed training:

```python
model = MyModule()
trainer = Trainer(gpus=8, num_nodes=2)

# any metric automatically reduces across GPUs (even the ones you implement using Lightning)
trainer.fit(model)
```

7.2.1 Accuracy

```python
class pytorch_lightning.metrics.classification.Accuracy(num_classes=None, reduction='elementwise_mean', reduce_group=None, reduce_op=None)
```

Bases: `pytorch_lightning.metrics.metric.TensorMetric`

Computes the accuracy classification score
Example

```python
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 2, 2])
>>> metric = Accuracy()
>>> metric(pred, target)
tensor(0.7500)
```

Parameters

- `num_classes` *(Optional)* - number of classes
- `reduction` *(str)* - a method for reducing accuracies over labels (default: takes the mean)
 Available reduction methods: - `elementwise_mean`: takes the mean - `none`: pass array - `sum`: add elements
- `reduce_group` *(Optional)* - the process group to reduce metric results from DDP
- `reduce_op` *(Optional)* - the operation to perform for ddp reduction

`forward(pred, target)`

Actual metric computation

Parameters

- `pred` *(Tensor)* - predicted labels
- `target` *(Tensor)* - ground truth labels

Return type *Tensor*

Returns A Tensor with the classification score.

7.2.2 AveragePrecision

```python
class pytorch_lightning.metrics.classification.AveragePrecision(pos_label=1, reduce_group=None, reduce_op=None)
```

Bases: `pytorch_lightning.metrics.metric.TensorMetric`

Computes the average precision score

Example

```python
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 2, 2])
>>> metric = AveragePrecision()
>>> metric(pred, target)
tensor(0.3333)
```

Parameters

- `pos_label` *(int)* - positive label indicator
7.2.3 AUROC

class pytorch_lightning.metrics.classification.AUROC(pos_label=1, reduce_group=None, reduce_op=None)

Bases: pytorch_lightning.metrics.metric.TensorMetric

Computes the area under curve (AUC) of the receiver operator characteristic (ROC)

Example

```python
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 2, 2])
>>> metric = AUROC()
>>> metric(pred, target)
tensor(0.3333)
```

Parameters

- **pos_label** (int) – positive label indicator
- **reduce_group** (Optional[Any]) – the process group to reduce metric results from DDP
- **reduce_op** (Optional[Any]) – the operation to perform for ddp reduction

forward (pred, target, sample_weight=None)

Actual metric computation

Parameters

- **pred** (Tensor) – predicted labels
- **target** (Tensor) – groundtruth labels
- **sample_weight** (Optional[Sequence]) – the weights per sample

Returns classification score

Return type torch.Tensor

7.2. Class Metrics
7.2.4 ConfusionMatrix

class `pytorch_lightning.metrics.classification.ConfusionMatrix` (normalize=False, reduce_group=None, reduce_op=None)

Bases: `pytorch_lightning.metrics.metric.TensorMetric`

Computes the confusion matrix where each entry \(C_{ij} \) is the number of observations in group \(i \) that were predicted in group \(j \).

Example

```python
>>> pred = torch.tensor([0, 1, 2, 2])
>>> target = torch.tensor([0, 1, 2, 2])
>>> metric = ConfusionMatrix()
>>> metric(pred, target)
tensor([[1., 0., 0.],
        [0., 1., 0.],
        [0., 0., 2.]])
```

Parameters

- `normalize` (bool) – whether to compute a normalized confusion matrix
- `reduce_group` (Optional[Any]) – the process group to reduce metric results from DDP
- `reduce_op` (Optional[Any]) – the operation to perform for ddp reduction

forward (pred, target)

Actual metric computation

Parameters

- `pred` (Tensor) – predicted labels
- `target` (Tensor) – ground truth labels

Return type Tensor

Returns A Tensor with the confusion matrix.

7.2.5 DiceCoefficient

class `pytorch_lightning.metrics.classification.DiceCoefficient` (include_background=False, nan_score=0.0, no_fg_score=0.0, reduction='elementwise_mean', reduce_group=None, reduce_op=None)

Bases: `pytorch_lightning.metrics.metric.TensorMetric`

Computes the dice coefficient
Example

```python
>>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05],
...                       [0.05, 0.85, 0.05, 0.05],
...                       [0.05, 0.05, 0.85, 0.05],
...                       [0.05, 0.05, 0.05, 0.85]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> metric = DiceCoefficient()
>>> metric(pred, target)
tensor(0.3333)
```

Parameters

- `include_background` (bool) – whether to also compute dice for the background
- `nan_score` (float) – score to return, if a NaN occurs during computation (denom zero)
- `no_fg_score` (float) – score to return, if no foreground pixel was found in target
- `reduction` (str) – a method for reducing accuracies over labels (default: takes the mean)
 - elementwise_mean: takes the mean
 - none: pass array
 - sum: add elements
- `reduce_group` (Optional[Any]) – the process group to reduce metric results from DDP
- `reduce_op` (Optional[Any]) – the operation to perform for ddp reduction

forward(pred, target)

Actual metric computation

Parameters

- `pred` (Tensor) – predicted probability for each label
- `target` (Tensor) – groundtruth labels

Returns the calculated dice coefficient

Return type torch.Tensor

7.2.6 F1

class pytorch_lightning.metrics.classification.F1(num_classes=None, reduction='elementwise_mean', reduce_group=None, reduce_op=None)

Bases: pytorch_lightning.metrics.metric.TensorMetric

Computes the F1 score, which is the harmonic mean of the precision and recall. It ranges between 1 and 0, where 1 is perfect and the worst value is 0.
```python
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 2, 2])
>>> metric = F1()
... metric(pred, target)
tensor(0.6667)
```

Parameters

- `num_classes (Optional[int])` – number of classes
- `reduction (str)` – a method for reducing accuracies over labels (default: takes the mean)
 Available reduction methods: 'elementwise_mean', takes the mean - 'none': pass array - 'sum': add elements
- `reduce_group (Optional[Any])` – the process group to reduce metric results from DDP
- `reduce_op (Optional[Any])` – the operation to perform for ddp reduction

```python
def forward(pred, target)
    Actual metric computation
        Parameters
            • `pred (Tensor)` – predicted labels
            • `target (Tensor)` – groundtruth labels
        Returns classification score
        Return type torch.Tensor
```

7.2.7 FBeta

```python
class pytorch_lightning.metrics.classification.FBeta(beta, num_classes=0, reduction='elementwise_mean', reduce_group=None, reduce_op=None)
```

Bases: `pytorch_lightning.metrics.metric.TensorMetric`

Computes the FBeta Score, which is the weighted harmonic mean of precision and recall. It ranges between 1 and 0, where 1 is perfect and the worst value is 0.

```python
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 2, 2])
>>> metric = FBeta(0.25)
... metric(pred, target)
tensor(0.7361)
```

Parameters

- `beta (float)` – determines the weight of recall in the combined score.
- `num_classes (Optional[int])` – number of classes
• **reduction**(str) – a method for reducing accuracies over labels (default: takes the mean)
 Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements

• **reduce_group** (Optional[Any]) – the process group to reduce metric results from DDP

• **reduce_op** (Optional[Any]) – the operation to perform for DDP reduction

forward(pred, target)
Actual metric computation

 Parameters
 • **pred**(Tensor) – predicted labels
 • **target**(Tensor) – groundtruth labels

Attributes

 Returns
classification score

Return type
torch.Tensor

7.2.8 PrecisionRecall

class pytorch_lightning.metrics.classification.PrecisionRecall(pos_label=1, reduce_group=None, reduce_op=None)

Bases: pytorch_lightning.metrics.metric.TensorCollectionMetric

Computes the precision recall curve

Example

```python
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 2, 2])
>>> metric = PrecisionRecall()
>>> prec, recall, thr = metric(pred, target)
>>> prec
  tensor([0.3333, 0.0000, 0.0000, 1.0000])
>>> recall
  tensor([1., 0., 0., 0.])
>>> thr
  tensor([1., 2., 3.])
```

Parameters

• **pos_label**(int) – positive label indicator

• **reduce_group** (Optional[Any]) – the process group to reduce metric results from DDP

• **reduce_op** (Optional[Any]) – the operation to perform for ddp reduction

forward(pred, target, sample_weight=None)
Actual metric computation

 Parameters
 • **pred**(Tensor) – predicted labels

7.2. Class Metrics 107
• **target** (Tensor) – ground truth labels
• **sample_weight** (Optional[Sequence]) – the weights per sample

Return type Tuple[Tensor, Tensor, Tensor]

Returns
• precision values
• recall values
• threshold values

7.2.9 Precision

class pytorch_lightning.metrics.classification.Precision (num_classes=None, reduction='elementwise_mean', reduce_group=None, reduce_op=None)

Bases: pytorch_lightning.metrics.metric.TensorMetric

Computes the precision score

Example

```
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 2, 2])
>>> metric = Precision(num_classes=4)
>>> metric(pred, target)
tensor(0.7500)
```

Parameters

• **num_classes** (Optional[int]) – number of classes
• **reduction** (str) – a method for reducing accuracies over labels (default: takes the mean)
 Available reduction methods:
 - elementwise_mean: takes the mean
 - none: pass array
 - sum: add elements
• **reduce_group** (Optional[Any]) – the process group to reduce metric results from DDP
• **reduce_op** (Optional[Any]) – the operation to perform for ddp reduction

forward (pred, target)

Actual metric computation

Parameters

• **pred** (Tensor) – predicted labels
• **target** (Tensor) – ground truth labels

Return type Tensor

Returns A Tensor with the classification score.
7.2.10 Recall

class pytorch_lightning.metrics.classification.Recall(num_classes=None, reduction='elementwise_mean', reduce_group=None, reduce_op=None)

Bases: pytorch_lightning.metrics.metric.TensorMetric

Computes the recall score

Example

```python
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 2, 2])
>>> metric = Recall()
>>> metric(pred, target)
tensor(0.6250)
```

Parameters

- **num_classes** *(Optional[int])* – number of classes
- **reduction** *(str)* – a method for reducing accuracies over labels (default: takes the mean)
 Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements
- **reduce_group** *(Optional[Any])* – the process group to reduce metric results from DDP
- **reduce_op** *(Optional[Any])* – the operation to perform for ddp reduction

forward(pred, target)

Actual metric computation

Parameters

- **pred** *(Tensor)* – predicted labels
- **target** *(Tensor)* – ground truth labels

Return type Tensor

Returns A Tensor with the classification score.

7.2.11 ROC

class pytorch_lightning.metrics.classification.ROC(pos_label=1, reduce_group=None, reduce_op=None)

Bases: pytorch_lightning.metrics.metric.TensorCollectionMetric

Computes the Receiver Operator Characteristic (ROC)
Example

```python
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 2, 2])
>>> metric = ROC()
>>> fps, tps, thresholds = metric(pred, target)
>>> fps
tensor([0.0000, 0.3333, 0.6667, 0.6667, 1.0000])
>>> tps
tensor([0., 0., 0., 1., 1.])
>>> thresholds
tensor([4., 3., 2., 1., 0.])
```

Parameters

- **pos_label (int)** – positive label indicator
- **reduce_group (Optional[Any])** – the process group to reduce metric results from DDP
- **reduce_op (Optional[Any])** – the operation to perform for ddp reduction

forward (pred, target, sample_weight=None)

Actual metric computation

Parameters

- **pred (Tensor)** – predicted labels
- **target (Tensor)** – groundtruth labels
- **sample_weight (Optional[Sequence])** – the weights per sample

Return type Tuple[Tensor, Tensor, Tensor]

Returns

- false positive rate
- true positive rate
- thresholds

7.2.12 MAE

```python
class pytorch_lightning.metrics.regression.MAE(reduction='elementwise_mean')
```

Bases: `pytorch_lightning.metrics.metric.Metric`

Computes the root mean absolute loss or L1-loss.

Parameters **reduction (str)** – a method for reducing mse over labels (default: takes the mean)

Available reduction methods:
- elementwise_mean: takes the mean
- none: pass array
- sum: add elements
Example

```python
>>> pred = torch.tensor([0., 1, 2, 3])
>>> target = torch.tensor([0., 1, 2, 2])
>>> metric = MAE()
>>> metric(pred, target)
tensor(0.2500)
```

```
forward (pred, target)
Actual metric computation

Parameters

• pred (Tensor) – predicted labels
• target (Tensor) – ground truth labels

Return type Tensor

Returns: A Tensor with the mae loss.
```

7.2.13 MSE

```python
class pytorch_lightning.metrics.regression.MSE (reduction='elementwise_mean')
Bases: pytorch_lightning.metrics.metric.Metric
```

Computes the mean squared loss.

Parameters

• reduction (str) – a method for reducing mse over labels (default: takes the mean)
 Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements

Example

```python
>>> pred = torch.tensor([0., 1, 2, 3])
>>> target = torch.tensor([0., 1, 2, 2])
>>> metric = MSE()
>>> metric(pred, target)
tensor(0.2500)
```

```
forward (pred, target)
Actual metric computation

Parameters

• pred (Tensor) – predicted labels
• target (Tensor) – ground truth labels

Return type Tensor

Returns: A Tensor with the mse loss.
```
7.2.14 MulticlassROC

class pytorch_lightning.metrics.classification.MulticlassROC(num_classes=None, reduce_group=None, reduce_op=None):

Bases: pytorch_lightning.metrics.metric.TensorCollectionMetric

Computes the multiclass ROC

Example

```python
>>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05],
  ... [0.05, 0.85, 0.05, 0.05],
  ... [0.05, 0.05, 0.85, 0.05],
  ... [0.05, 0.05, 0.05, 0.85]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> metric = MulticlassROC()
>>> classes_roc = metric(pred, target)
>>> metric(pred, target)
((tensor([0., 0., 1.]), tensor([0., 1., 1.]), tensor([1.8500, 0.8500, 0.0500]),
  (tensor([0., 0., 1.]), tensor([0., 1., 1.]), tensor([1.8500, 0.8500, 0.0500]),
  (tensor([0.0000, 0.3333, 1.0000]), tensor([0., 0., 1.]), tensor([1.8500, 0.8500, 0.0500])),
  (tensor([0.0000, 0.3333, 1.0000]), tensor([0., 0., 1.]), tensor([1.8500, 0.8500, 0.0500]))))
```

Parameters

- num_classes (Optional[int]) – number of classes
- reduce_group (Optional[Any]) – the process group to reduce metric results from DDP
- reduce_op (Optional[Any]) – the operation to perform for ddp reduction

forward(pred, target, sample_weight=None)

Actual metric computation

Parameters

- pred (Tensor) – predicted probability for each label
- target (Tensor) – groundtruth labels
- sample_weight (Optional[Sequence]) – Weights for each sample defining the sample’s impact on the score

Returns A tuple consisting of one tuple per class, holding false positive rate, true positive rate and thresholds

Return type tuple
7.2.15 MulticlassPrecisionRecall

class pytorch_lightning.metrics.classification.MulticlassPrecisionRecall(num_classes=None,
 reduce_group=None,
 reduce_op=None)

Bases: pytorch_lightning.metrics.metric.TensorCollectionMetric

Computes the multiclass PR Curve

Example

```python
>>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05], 
    ... [0.05, 0.85, 0.05, 0.05], 
    ... [0.05, 0.05, 0.85, 0.05], 
    ... [0.05, 0.05, 0.05, 0.85]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> metric = MulticlassPrecisionRecall()
>>> metric(pred, target)
((tensor([1.0000, 1.0000]), tensor([1.0000, 0.8500]), 
  tensor([0.2500, 0.0000, 1.0000]), tensor([1.0000, 0.0500, 0.8500])),
  (tensor([1.0000, 1.0000]), tensor([1.0000, 0.8500]), 
  tensor([0.2500, 0.0000, 1.0000]), tensor([1.0000, 0.0500, 0.8500])))
```

Parameters

- **num_classes** *(Optional[int]) – number of classes*
- **reduction** – a method for reducing accuracies over labels (default: takes the mean) Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements
- **reduce_group** *(Optional[Any]) – the process group to reduce metric results from DDP*
- **reduce_op** *(Optional[Any]) – the operation to perform for ddp reduction*

forward *(pred, target, sample_weight=None)*

Actual metric computation

Parameters

- **pred** *(Tensor) – predicted probability for each label*
- **target** *(Tensor) – groundtruth labels*
- **sample_weight** *(Optional[Sequence]) – Weights for each sample defining the sample’s impact on the score*

Returns A tuple consisting of one tuple per class, holding precision, recall and thresholds

Return type tuple
7.2.16 IoU

class pytorch_lightning.metrics.classification.IOU(remove_bg=False, reduction='elementwise_mean')

Bases: pytorch_lightning.metrics.metric.TensorMetric

Computes the intersection over union.

Example

```python
>>> pred = torch.tensor(
... [0, 0, 0, 0, 0, 0, 0, 0],
... [0, 1, 1, 1, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0, 0])
>>> target = torch.tensor(
... [0, 0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 1, 1, 1, 0, 0],
... [0, 0, 0, 0, 0, 0, 0, 0])
>>> metric = IoU()
>>> metric(pred, target)
tensor(0.7045)
```

Parameters

- **remove_bg** *(bool)* – Flag to state whether a background class has been included within input parameters. If true, will remove background class. If false, return IoU over all classes. Assumes that background is ‘0’ class in input tensor.

- **reduction** *(str)* – a method for reducing IoU over labels (default: takes the mean)

 Available reduction methods:
 - elementwise_mean: takes the mean
 - none: pass array
 - sum: add elements

forward(y_pred, y_true, sample_weight=None)

Actual metric calculation.

7.2.17 RMSE

class pytorch_lightning.metrics.regression.RMSE(reduction='elementwise_mean')

Bases: pytorch_lightning.metrics.metric.Metric

Computes the root mean squared loss.

Parameters **reduction** *(str)* – a method for reducing mse over labels (default: takes the mean)

Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements
Example

```python
>>> pred = torch.tensor([0., 1, 2, 3])
>>> target = torch.tensor([0., 1, 2, 2])
>>> metric = RMSE()
>>> metric(pred, target)
tensor(0.5000)
```

`forward(pred, target)`

Actual metric computation

Parameters

- `pred` *(Tensor)* – predicted labels
- `target` *(Tensor)* – ground truth labels

Return type Tensor

Returns A Tensor with the rmse loss.

7.2.18 RMSLE

```python
class pytorch_lightning.metrics.regression.RMSLE(reduction='elementwise_mean')
Bases: pytorch_lightning.metrics.metric.Metric
```

Computes the root mean squared log loss.

Parameters

- `reduction` *(str)* – a method for reducing mse over labels (default: takes the mean)

 Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements

Example

```python
>>> pred = torch.tensor([0., 1, 2, 3])
>>> target = torch.tensor([0., 1, 2, 2])
>>> metric = RMSLE()
>>> metric(pred, target)
tensor(0.0207)
```

`forward(pred, target)`

Actual metric computation

Parameters

- `pred` *(Tensor)* – predicted labels
- `target` *(Tensor)* – ground truth labels

Return type Tensor

Returns A Tensor with the rmsle loss.
7.3 Functional Metrics

Functional metrics can be called anywhere (even used with just plain PyTorch).

```python
from pytorch_lightning.metrics.functional import accuracy

pred = torch.tensor([0, 1, 2, 3])
target = torch.tensor([0, 1, 2, 2])

# calculates accuracy across all GPUs and all Nodes used in training
accuracy(pred, target)
```

These metrics even work when using distributed training:

```python
class MyModule(...):
    def forward(self, x, y):
        return accuracy(x, y)

model = MyModule()
trainer = Trainer(gpus=8, num_nodes=2)

# any metric automatically reduces across GPUs (even the ones you implement using Lightning)
trainer.fit(model)
```

7.3.1 accuracy (F)

`pytorch_lightning.metrics.functional.accuracy(pred, target, num_classes=None, reduction='elementwise_mean')`

Computes the accuracy classification score

Parameters

- `pred` (*Tensor*) – predicted labels
- `target` (*Tensor*) – ground truth labels
- `num_classes` (*Optional[int]*) – number of classes
- `reduction` – a method for reducing accuracies over labels (default: takes the mean) Available reduction methods:
 - `elementwise_mean`: takes the mean
 - `none`: pass array
 - `sum`: add elements

Return type *Tensor*

Returns A Tensor with the classification score.
Example

```python
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> accuracy(x, y)
tensor(0.7500)
```

7.3.2 auc (F)

`pytorch_lightning.metrics.functional.auc(x, y, reorder=True)`

Computes Area Under the Curve (AUC) using the trapezoidal rule

- **Parameters**
 - `x (Tensor)` – x-coordinates
 - `y (Tensor)` – y-coordinates
 - `reorder (bool)` – reorder coordinates, so they are increasing.

- **Return type** `Tensor`

- **Returns** Tensor containing AUC score (float)

Example

```python
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> auc(x, y)
tensor(4.)
```

7.3.3 auroc (F)

`pytorch_lightning.metrics.functional.auroc(pred, target, sample_weight=None, pos_label=1.0)`

Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores

- **Parameters**
 - `pred (Tensor)` – estimated probabilities
 - `target (Tensor)` – ground-truth labels
 - `sample_weight (Optional[Sequence])` – sample weights
 - `pos_label (int)` – the label for the positive class (default: 1.)
Example

```python
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> auroc(x, y)
tensor(0.3333)
```

Return type: Tensor

7.3.4 average_precision (F)

```python
pytorch_lightning.metrics.functional.average_precision(pred, target, sample_weight=None, pos_label=1.0)
```

Parameters
- `pred (Tensor)` – estimated probabilities
- `target (Tensor)` – ground-truth labels
- `sample_weight (Optional[Sequence])` – sample weights
- `pos_label (int)` – the label for the positive class (default: 1.)

Example

```python
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> average_precision(x, y)
tensor(0.3333)
```

Return type: Tensor

7.3.5 confusion_matrix (F)

```python
pytorch_lightning.metrics.functional.confusion_matrix(pred, target, normalize=False)
```

Computes the confusion matrix C where each entry $C_{i,j}$ is the number of observations in group i that were predicted in group j.

Parameters
- `pred (Tensor)` – estimated targets
- `target (Tensor)` – ground truth labels
- `normalize (bool)` – normalizes confusion matrix

Return type: Tensor

Returns: Tensor, confusion matrix C [num_classes, num_classes]
Example

```python
>>> x = torch.tensor([1, 2, 3])
>>> y = torch.tensor([0, 2, 3])
>>> confusion_matrix(x, y)
tensor([[0., 1., 0., 0.],
        [0., 0., 0., 0.],
        [0., 0., 1., 0.],
        [0., 0., 0., 1.]])
```

7.3.6 dice_score (F)

```python
pytorch_lightning.metrics.functional.dice_score(pred, target, bg=False, nan_score=0.0, no_fg_score=0.0, reduction='elementwise_mean')
```

Parameters

- **pred** (Tensor) – estimated probabilities
- **target** (Tensor) – ground-truth labels
- **bg** (bool) – whether to also compute dice for the background
- **nan_score** (float) – score to return, if a NaN occurs during computation (denom zero)
- **no_fg_score** (float) – score to return, if no foreground pixel was found in target
- **reduction** (str) – a method for reducing accuracies over labels (default: takes the mean)

 Available reduction methods:
 - `elementwise_mean`: takes the mean
 - `none`: pass array
 - `sum`: add elements

Example

```python
>>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05],
                      ... [0.05, 0.85, 0.05, 0.05],
                      ... [0.05, 0.05, 0.85, 0.05],
                      ... [0.05, 0.05, 0.05, 0.85]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> average_precision(pred, target)
tensor(0.2500)
```

Return type **Tensor**
7.3.7 f1_score (F)

`pytorch_lightning.metrics.functional.f1_score(pred, target, num_classes=None, reduction='elementwise_mean')`

Computes the F1-score (a.k.a F-measure), which is the harmonic mean of the precision and recall. It ranges between 1 and 0, where 1 is perfect and the worst value is 0.

Parameters

- `pred` *(Tensor)* – estimated probabilities
- `target` *(Tensor)* – ground-truth labels
- `num_classes` *(Optional[int]*) – number of classes
- `reduction` – method for reducing F1-score (default: takes the mean) Available reduction methods:
 - `elementwise_mean`: takes the mean
 - `none`: pass array
 - `sum`: add elements.

Return type `Tensor`

Returns Tensor containing F1-score

Example

```python
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> f1_score(x, y)
tensor(0.6667)
```

7.3.8 fbeta_score (F)

`pytorch_lightning.metrics.functional.fbeta_score(pred, target, beta, num_classes=None, reduction='elementwise_mean')`

Computes the F-beta score which is a weighted harmonic mean of precision and recall. It ranges between 1 and 0, where 1 is perfect and the worst value is 0.

Parameters

- `pred` *(Tensor)* – estimated probabilities
- `target` *(Tensor)* – ground-truth labels
- `beta` *(float)* – weights recall when combining the score. \(\beta < 1 \): more weight to precision. \(\beta > 1 \): more weight to recall \(\beta = 0 \): only precision \(\beta \to \infty \): only recall
- `num_classes` *(Optional[int]*) – number of classes
- `reduction` *(str)* – method for reducing F-score (default: takes the mean) Available reduction methods:
 - `elementwise_mean`: takes the mean
 - `none`: pass array
 - `sum`: add elements.
Return type **Tensor**

Returns Tensor with the value of F-score. It is a value between 0-1.

Example

```python
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> fbeta_score(x, y, 0.2)
tensor(0.7407)
```

7.3.9 multiclass_precision_recall_curve (F)

```python
pytorch_lightning.metrics.functional.multiclass_precision_recall_curve(pred, target, sample_weight=None, num_classes=None)
```

Computes precision-recall pairs for different thresholds given a multiclass scores.

Parameters

- **pred (Tensor)** – estimated probabilities
- **target (Tensor)** – ground-truth labels
- **sample_weight (Optional[Sequence])** – sample weight
- **num_classes (Optional[int])** – number of classes

Return type **Tuple[Tensor, Tensor, Tensor, Tensor]**

Returns number of classes, precision, recall, thresholds

Example

```python
def multiclass_precision_recall_curve(pred, target):
    nb_classes, precision, recall, thresholds = multiclass_precision_recall_curve(pred, target)
    return nb_classes, precision, recall, thresholds
```

```python
def multiclass_precision_recall_curve(pred, target):
    nb_classes, precision, recall, thresholds = multiclass_precision_recall_curve(pred, target)
    return nb_classes, precision, recall, thresholds
```

```python
def multiclass_precision_recall_curve(pred, target):
    nb_classes, precision, recall, thresholds = multiclass_precision_recall_curve(pred, target)
    return nb_classes, precision, recall, thresholds
```
7.3.10 multiclass_roc (F)

`pytorch_lightning.metrics.functional.multiclass_roc(pred, target, sample_weight=None, num_classes=None)`

Computes the Receiver Operating Characteristic (ROC) for multiclass predictors.

Parameters

- `pred` (Tensor) – estimated probabilities
- `target` (Tensor) – ground-truth labels
- `sample_weight` (Optional[Sequence]) – sample weights
- `num_classes` (Optional[int]) – number of classes (default: None, computes automatically from data)

Return type Tuple[Tuple[Tensor, Tensor, Tensor]]

Returns returns roc for each class. Number of classes, false-positive rate (fpr), true-positive rate (tpr), thresholds

Example

```python
>>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05],
                         [0.05, 0.85, 0.05, 0.05],
                         [0.05, 0.05, 0.85, 0.05],
                         [0.05, 0.05, 0.05, 0.85]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> multiclass_roc(pred, target)
(tensor([0., 0., 1.]), tensor([0., 1., 1.]), tensor([1.8500, 0.8500, 0.0500]),
 tensor([0., 0., 1.]), tensor([1.8500, 0.8500, 0.0500]),
 tensor([0.0000, 0.3333, 1.0000]), tensor([0., 0., 1.]), tensor([1.8500, 0.8500, 0.0500]),
 tensor([0.0000, 0.3333, 1.0000]), tensor([0., 0., 1.]), tensor([1.8500, 0.8500, 0.0500])))
```

7.3.11 precision (F)

`pytorch_lightning.metrics.functional.precision(pred, target, num_classes=None, reduction='elementwise_mean')`

Computes precision score.

Parameters

- `pred` (Tensor) – estimated probabilities
- `target` (Tensor) – ground-truth labels
- `num_classes` (Optional[int]) – number of classes
- `reduction` (str) – method for reducing precision values (default: takes the mean) Available reduction methods:
 - elementwise_mean: takes the mean
 - none: pass array
 - sum: add elements
Return type Tensor

Returns Tensor with precision.

Example

```python
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> precision(x, y)
tensor(0.7500)
```

7.3.12 precision_recall (F)

```python
pytorch_lightning.metrics.functional.precision_recall(pred, target, num_classes=None, reduction='elementwise_mean')
```

Computes precision and recall for different thresholds

Parameters

- `pred` (Tensor) – estimated probabilities
- `target` (Tensor) – ground-truth labels
- `num_classes` (Optional[int]) – number of classes
- `reduction` (str) – method for reducing precision-recall values (default: takes the mean)
 Available reduction methods:
 - elementwise_mean: takes the mean
 - none: pass array
 - sum: add elements

Return type Tuple[Tensor, Tensor]

Returns Tensor with precision and recall

Example

```python
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> precision_recall(x, y)
(tensor(0.7500), tensor(0.6250))
```

7.3.13 precision_recall_curve (F)

```python
pytorch_lightning.metrics.functional.precision_recall_curve(pred, target, sample_weight=None, pos_label=1.0)
```

Computes precision-recall pairs for different thresholds.

Parameters

- `pred` (Tensor) – estimated probabilities

7.3. Functional Metrics 123
• **target** (Tensor) – ground-truth labels
• **sample_weight** (Optional[Sequence]) – sample weights
• **pos_label** (int) – the label for the positive class (default: 1.)

Return type Tuple[Tensor, Tensor, Tensor]

Returns precision, recall, thresholds

Example

```python
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 2, 2])
>>> precision, recall, thresholds = precision_recall_curve(pred, target)
>>> precision
tensor([0.3333, 0.0000, 0.0000, 1.0000])
>>> recall
tensor([1., 0., 0., 0.])
>>> thresholds
tensor([1, 2, 3])
```

7.3.14 recall (F)

`pytorch_lightning.metrics.functional.recall(pred, target, num_classes=None, reduction='elementwise_mean')`

Computes recall score.

Parameters

- **pred** (Tensor) – estimated probabilities
- **target** (Tensor) – ground-truth labels
- **num_classes** (Optional[int]) – number of classes
- **reduction** (str) – method for reducing recall values (default: takes the mean) Available reduction methods:
 - elementwise_mean: takes the mean
 - none: pass array
 - sum: add elements

Return type Tensor

Returns Tensor with recall.

Example

```python
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> recall(x, y)
tensor(0.6250)
```
7.3.15 roc (F)

`pytorch_lightning.metrics.functional.roc(pred, target, sample_weight=None, pos_label=1.0)`

Computes the Receiver Operating Characteristic (ROC). It assumes classifier is binary.

Parameters

- `pred` (Tensor) – estimated probabilities
- `target` (Tensor) – ground-truth labels
- `sample_weight` (Optional[Sequence]) – sample weights
- `pos_label` (int) – the label for the positive class (default: 1)

Return type Tuple[Tensor, Tensor, Tensor]

Returns false-positive rate (fpr), true-positive rate (tpr), thresholds

Example

```python
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> fpr, tpr, thresholds = roc(x, y)
>>> fpr
tensor([0.0000, 0.3333, 0.6667, 0.6667, 1.0000])
>>> tpr
tensor([0., 0., 0., 1., 1.])
>>> thresholds
tensor([4, 3, 2, 1, 0])
```

7.3.16 stat_scores (F)

`pytorch_lightning.metrics.functional.stat_scores(pred, target, class_index, argmax_dim=1)`

Calculates the number of true positive, false positive, true negative and false negative for a specific class

Parameters

- `pred` (Tensor) – prediction tensor
- `target` (Tensor) – target tensor
- `class_index` (int) – class to calculate over
- `argmax_dim` (int) – if pred is a tensor of probabilities, this indicates the axis the argmax transformation will be applied over

Return type Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]

Returns True Positive, False Positive, True Negative, False Negative
Example

```python
>>> x = torch.tensor([1, 2, 3])
>>> y = torch.tensor([0, 2, 3])
>>> tp, fp, tn, fn, sup = stat_scores(x, y, class_index=1)
>>> tp, fp, tn, fn, sup
(tensor(0), tensor(1), tensor(2), tensor(0), tensor(0))
```

7.3.17 iou (F)

pytorch_lightning.metrics.functional.iou

Intersection over union, or Jaccard index calculation.

Parameters

- `pred` *(Tensor)*: Tensor containing predictions
- `target` *(Tensor)*: Tensor containing targets
- `num_classes` *(Optional[int]*) - Optionally specify the number of classes
- `remove_bg` *(bool)* - Flag to state whether a background class has been included within input parameters. If true, will remove background class. If false, return IoU over all classes. Assumes that background is ‘0’ class in input tensor
- `reduction` *(str)* - a method for reducing IoU over labels (default: takes the mean)
 Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements

Returns Tensor containing single value if reduction is ‘elementwise_mean’, or number of classes if reduction is ‘none’

Return type IoU score

Example

```python
>>> target = torch.randint(0, 1, (10, 25, 25))
>>> pred = torch.tensor(target)
>>> iou(pred, target)
tensor(0.4914)
```

7.3.18 stat_scores_multiple_classes (F)

pytorch_lightning.metrics.functional.stat_scores_multiple_classes

Calls the stat_scores function iteratively for all classes, thus calculating the number of true positive, false positive, true negative and false negative for each class

Parameters

- `pred` *(Tensor)* - prediction tensor
- `target` *(Tensor)* - target tensor
• **class_index** – class to calculate over

• **argmax_dim** (int) – if pred is a tensor of probabilities, this indicates the axis the argmax transformation will be applied over

Return type Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]

Returns True Positive, False Positive, True Negative, False Negative

Example

```python
>>> x = torch.tensor([1, 2, 3])
>>> y = torch.tensor([0, 2, 3])
>>> tps, fps, tns, fns, sups = stat_scores_multiple_classes(x, y)
>>> tps
tensor([0., 0., 1., 1.])
>>> fps
tensor([0., 1., 0., 0.])
>>> tns
tensor([2., 2., 2., 2.])
>>> fns
tensor([1., 0., 0., 0.])
>>> sups
tensor([1., 0., 1., 1.])
```

7.4 Metric pre-processing

7.4.1 to_categorical (F)

`pytorch_lightning.metrics.functional.to_categorical(tensor, argmax_dim=1)`

Converts a tensor of probabilities to a dense label tensor

Parameters

• **tensor** (Tensor) – probabilities to get the categorical label [N, d1, d2, ...]

• **argmax_dim** (int) – dimension to apply (default: 1)

Return type Tensor

Returns A tensor with categorical labels [N, d2, ...]

Example

```python
>>> x = torch.tensor([[0.2, 0.5], [0.9, 0.1]])
>>> to_categorical(x)
tensor([1, 0])
```
7.4.2 to_onehot (F)

`pytorch_lightning.metrics.functional.to_onehot(tensor, n_classes=None)`

Converts a dense label tensor to one-hot format

Parameters
- `tensor` (Tensor) – dense label tensor, with shape \([N, d1, d2, \ldots]\)
- `n_classes` (Optional[int]) – number of classes \(C\)

Output: A sparse label tensor with shape \([N, C, d1, d2, \ldots]\)

Example

```python
>>> x = torch.tensor([1, 2, 3])
>>> to_onehot(x)
tensor([[0, 1, 0, 0],
        [0, 0, 1, 0],
        [0, 0, 0, 1]])
```

Return type Tensor

7.5 Sklearn interface

Lightning supports sklearn metrics module as a backend for calculating metrics. Sklearns metrics are well tested and robust, but requires conversion between pytorch and numpy thus may slow down your computations.

To use the sklearn backend of metrics simply import as

```python
import pytorch_lightning.metrics.sklearns import plm
metric = plm.Accuracy(normalize=True)
val = metric(pred, target)
```

Each converted sklearn metric comes has the same interface as its originally counterpart (e.g. accuracy takes the additional `normalize` keyword). Like the native Lightning metrics these converted sklearn metrics also come with built-in distributed (ddp) support.

7.5.1 SklearnMetric (sk)

`pytorch_lightning.metrics.sklearns.SklearnMetric(metric_name,
 reduce_group=torch.distributed.group.WORLD,
 reduce_op=torch.distributed.ReduceOp.SUM,
 **kwargs)`

Bridge between PyTorch Lightning and scikit-learn metrics

Warning: Every metric call will cause a GPU synchronization, which may slow down your code
Note: The order of targets and predictions may be different from the order typically used in PyTorch

7.5.2 Accuracy (sk)

```
pytorch_lightning.metrics.sklearns.Accuracy(normalize=True, reduce_group=torch.distributed.group.WORLD, reduce_op=torch.distributed.ReduceOp.SUM)
```

Calculates the Accuracy Score

Warning: Every metric call will cause a GPU synchronization, which may slow down your code

Example

```python
>>> y_pred = torch.tensor([0, 1, 2, 3])
>>> y_true = torch.tensor([0, 1, 2, 2])
>>> metric = Accuracy()
>>> metric(y_pred, y_true)
tensor([0.7500])
```

7.5.3 AUC (sk)

```
pytorch_lightning.metrics.sklearns.AUC(reduce_group=torch.distributed.group.WORLD, reduce_op=torch.distributed.ReduceOp.SUM)
```

Calculates the Area Under the Curve using the trapoezoidal rule

Warning: Every metric call will cause a GPU synchronization, which may slow down your code

Example

```python
>>> y_pred = torch.tensor([0, 1, 2, 3])
>>> y_true = torch.tensor([0, 1, 2, 2])
>>> metric = AUC()
>>> metric(y_pred, y_true)
tensor([4.])
```

7.5.4 AveragePrecision (sk)

```
pytorch_lightning.metrics.sklearns.AveragePrecision(average='macro', reduce_group=torch.distributed.group.WORLD, reduce_op=torch.distributed.ReduceOp.SUM)
```

Calculates the average precision (AP) score.

7.5. Sklearn interface
7.5.5 ConfusionMatrix (sk)

Compute confusion matrix to evaluate the accuracy of a classification. By definition a confusion matrix C is such that $C_{i,j}$ is equal to the number of observations known to be in group i but predicted to be in group j.

Example

```python
>>> y_pred = torch.tensor([0, 1, 2, 1])
>>> y_true = torch.tensor([0, 1, 2, 2])
>>> metric = ConfusionMatrix()
>>> metric(y_pred, y_true)
tensor([[1., 0., 0.],
        [0., 1., 0.],
        [0., 1., 1.]])
```

7.5.6 F1 (sk)

Compute the F1 score, also known as balanced F-score or F-measure. The F1 score can be interpreted as a weighted average of the precision and recall, where an F1 score reaches its best value at 1 and worst score at 0. The relative contribution of precision and recall to the F1 score are equal. The formula for the F1 score is:

$$F_1 = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

In the multi-class and multi-label case, this is the weighted average of the F1 score of each class.

Example

```python
>>> y_pred = torch.tensor([0, 1, 2, 3])
>>> y_true = torch.tensor([0, 1, 2, 2])
>>> metric = F1()
>>> metric(y_pred, y_true)
tensor([0.6667])
```

References

- [1] Wikipedia entry for the F1-score
7.5.7 FBeta (sk)

```python
pytorch_lightning.metrics.sklearns.FBeta(beta, labels=None, pos_label=1, average='macro', reduce_group=torch.distributed.group.WORLD, reduce_op=torch.distributed.ReduceOp.SUM)
```

Compute the F-beta score. The `beta` parameter determines the weight of precision in the combined score. $\beta < 1$ lends more weight to precision, while $\beta > 1$ favors recall ($\beta \to 0$ considers only precision, $\beta \to \infty$ only recall).

Example

```python
>>> y_pred = torch.tensor([0, 1, 2, 3])
>>> y_true = torch.tensor([0, 1, 2, 2])
>>> metric = FBeta(beta=0.25)
>>> metric(y_pred, y_true)
tensor([0.7361])
```

References

7.5.8 Precision (sk)

```python
pytorch_lightning.metrics.sklearns.Precision(labels=None, pos_label=1, average='macro', reduce_group=torch.distributed.group.WORLD, reduce_op=torch.distributed.ReduceOp.SUM)
```

Compute the precision. The precision is the ratio $\frac{tp}{tp + fp}$ where tp is the number of true positives and fp the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The best value is 1 and the worst value is 0.

Example

```python
>>> y_pred = torch.tensor([0, 1, 2, 3])
>>> y_true = torch.tensor([0, 1, 2, 2])
>>> metric = Precision()
>>> metric(y_pred, y_true)
tensor([0.7500])
```
7.5.9 Recall (sk)

```python
pytorch_lightning.metrics.sklearns.Recall(labels=None, pos_label=1, average='macro', reduce_group=torch.distributed.group.WORLD, reduce_op=torch.distributed.ReduceOp.SUM)
```

Compute the recall. The recall is the ratio \(\frac{tp}{tp + fn} \) where \(tp \) is the number of true positives and \(fn \) the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The best value is 1 and the worst value is 0.

Example

```python
>>> y_pred = torch.tensor([0, 1, 2, 3])
>>> y_true = torch.tensor([0, 1, 2, 2])
>>> metric = Recall()
>>> metric(y_pred, y_true)
tensor([0.6250])
```

7.5.10 PrecisionRecallCurve (sk)

```python
pytorch_lightning.metrics.sklearns.PrecisionRecallCurve(pos_label=1, reduce_group=torch.distributed.group.WORLD, reduce_op=torch.distributed.ReduceOp.SUM)
```

Compute precision-recall pairs for different probability thresholds

Note: This implementation is restricted to the binary classification task.

The precision is the ratio \(\frac{tp}{tp + fp} \) where \(tp \) is the number of true positives and \(fp \) the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The recall is the ratio \(\frac{tp}{tp + fn} \) where \(tp \) is the number of true positives and \(fn \) the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The last precision and recall values are 1. and 0. respectively and do not have a corresponding threshold. This ensures that the graph starts on the x axis.

7.5.11 ROC (sk)

```python
pytorch_lightning.metrics.sklearns.ROC(pos_label=1, reduce_group=torch.distributed.group.WORLD, reduce_op=torch.distributed.ReduceOp.SUM)
```

Compute Receiver operating characteristic (ROC)

Note: this implementation is restricted to the binary classification task.
Example

```python
>>> y_pred = torch.tensor([0, 1, 2, 3])
>>> y_true = torch.tensor([0, 1, 2, 2])
>>> metric = ROC()
>>> fps, tps = metric(y_pred, y_true)
>>> fps
  tensor([0.0000, 0.3333, 0.6667, 0.6667, 1.0000])
>>> tps
  tensor([0., 0., 0., 1., 1.])
```

References

7.5.12 AUROC (sk)

```python
pytorch_lightning.metrics.sklearns.AUROC(average='macro', reduce_group=dist.WORLD, reduce_op=dist.ReduceOp.SUM)
```

Compute Area Under the Curve (AUC) from prediction scores

Note: this implementation is restricted to the binary classification task or multilabel classification task in label indicator format.
There are cases when you might want to do something different at different parts of the training/validation loop. To enable a hook, simply override the method in your LightningModule and the trainer will call it at the correct time.

Contributing If there’s a hook you’d like to add, simply:

1. Fork PyTorchLightning.
2. Add the hook to `pytorch_lightning.core.hooks.ModelHooks`.
3. Add it in the correct place in `pytorch_lightning.trainer` where it should be called.

8.1 Hooks lifecycle

8.1.1 Training set-up

- `init_ddp_connection()`
- `init_optimizers()`
- `configure_apex()`
- `configure_ddp()`
- `train_dataloader()`
- `test_dataloader()`
- `val_dataloader()`
- `summarize()`
- `restore_weights()`
8.1.2 Training loop

- `on_epoch_start()`
- `on_batch_start()`
- `tbptt_split_batch()`
- `training_step()`
- `training_step_end()` (optional)
- `on_before_zero_grad()`
- `backward()`
- `on_after_backward()`
- `optimizer.step()`
- `on_batch_end()`
- `training_epoch_end()`
- `on_epoch_end()`

8.1.3 Validation loop

- `model.zero_grad()`
- `model.eval()`
- `torch.set_grad_enabled(False)`
- `validation_step()`
- `validation_step_end()`
- `validation_epoch_end()`
- `model.train()`
- `torch.set_grad_enabled(True)`
- `on_post_performance_check()`

8.1.4 Test loop

- `model.zero_grad()`
- `model.eval()`
- `torch.set_grad_enabled(False)`
- `test_step()`
- `test_step_end()`
- `test_epoch_end()`
- `model.train()`
• torch.set_grad_enabled(True)
• on_post_performance_check()

8.2 General hooks

class pytorch_lightning.core.hooks.ModelHooks(*args, **kwargs)
Bases: torch.nn.Module

backward(trainer, loss, optimizer, optimizer_idx)
Override backward with your own implementation if you need to.

Parameters
• trainer – Pointer to the trainer
• loss (Tensor) – Loss is already scaled by accumulated grads
• optimizer (Optimizer) – Current optimizer being used
• optimizer_idx (int) – Index of the current optimizer being used

Called to perform backward step. Feel free to override as needed.
The loss passed in has already been scaled for accumulated gradients if requested.
Example:

def backward(self, use_amp, loss, optimizer):
 if use_amp:
 with amp.scale_loss(loss, optimizer) as scaled_loss:
 scaled_loss.backward()
 else:
 loss.backward()

Return type None

on_after_backward()
Called in the training loop after loss.backward() and before optimizers do anything. This is the ideal place to inspect or log gradient information.
Example:

def on_after_backward(self):
 # example to inspect gradient information in tensorboard
 if self.trainer.global_step % 25 == 0: # don't make the tf file huge
 params = self.state_dict()
 for k, v in params.items():
 grads = v
 name = k
 self.logger.experiment.add_histogram(tag=name, values=grads, global_step=self.trainer.global_step)

Return type None

on_batch_end()
Called in the training loop after the batch.
Return type None

on_batch_start (batch)
Called in the training loop before anything happens for that batch.
If you return -1 here, you will skip training for the rest of the current epoch.

Parameters batch (Any) – The batched data as it is returned by the training DataLoader.

Return type None

on_before_zero_grad (optimizer)
Called after optimizer.step() and before optimizer.zero_grad().
Called in the training loop after taking an optimizer step and before zeroing grads. Good place to inspect weight information with weights updated.

This is where it is called:

```
for optimizer in optimizers:
    optimizer.step()
model.on_before_zero_grad(optimizer) # < ---- called here
optimizer.zero_grad
```

Parameters optimizer (Optimizer) – The optimizer for which grads should be zeroed.

Return type None

on_epoch_end ()
Called in the training loop at the very end of the epoch.

Return type None

on_epoch_start ()
Called in the training loop at the very beginning of the epoch.

Return type None

on_fit_end ()
Called at the very end of fit. If on DDP it is called on every process

on_fit_start ()
Called at the very beginning of fit. If on DDP it is called on every process

on_post_performance_check ()
Called at the very end of the validation loop.

Return type None

on_pre_performance_check ()
Called at the very beginning of the validation loop.

Return type None

on_sanity_check_start ()
Called before starting evaluation.

Warning: Deprecated. Will be removed in v0.9.0.

on_train_end ()
Called at the end of training before logger experiment is closed.

Return type None
on_train_start()

Called at the beginning of training before sanity check.

Return type None

setup(stage)

Called at the beginning of fit and test. This is a good hook when you need to build models dynamically or adjust something about them. This hook is called on every process when using DDP.

Parameters stage *(str)* – either ‘fit’ or ‘test’

Example:

```python
class LitModel(...):
    def __init__(self):
        self.l1 = None

    def prepare_data(self):
        download_data()
        tokenize()

        # don't do this
        self.something = else

    def setup(step):
        data = Load_data(...)
        self.l1 = nn.Linear(28, data.num_classes)
```

teardown**(stage)**

Called at the end of fit and test.

Parameters stage *(str)* – either ‘fit’ or ‘test’

transfer_batch_to_device(batch, device)

Override this hook if your DataLoader returns tensors wrapped in a custom data structure.

The data types listed below (and any arbitrary nesting of them) are supported out of the box:

- torch.Tensor
- list
- dict
- tuple
- torchtext.data.Batch (COMING SOON)

For anything else, you need to define how the data is moved to the target device (CPU, GPU, TPU, ...).

Example:

```python
def transfer_batch_to_device(self, batch, device):
    if isinstance(batch, CustomBatch):
        # move all tensors in your custom data structure to the device
        batch.samples = batch.samples.to(device)
        batch.targets = batch.targets.to(device)
    else:
        batch = super().transfer_batch_to_device(data, device)
    return batch
```

8.2. General hooks
• **batch** (*Any*) – A batch of data that needs to be transferred to a new device.
• **device** (*device*) – The target device as defined in PyTorch.

Return type *Any*

Returns A reference to the data on the new device.

Note: This hook should only transfer the data and not modify it, nor should it move the data to any other device than the one passed in as argument (unless you know what you are doing). The Trainer already takes care of splitting the batch and determines the target devices.

See also:

• `move_data_to_device()`
• `apply_to_collection()`
Once you’ve organized your PyTorch code into a LightningModule, the Trainer automates everything else.

This abstraction achieves the following:

1. You maintain control over all aspects via PyTorch code without an added abstraction.
2. The trainer uses best practices embedded by contributors and users from top AI labs such as Facebook AI Research, NYU, MIT, Stanford, etc…
3. The trainer allows overriding any key part that you don’t want automated.
9.1 Basic use

This is the basic use of the trainer:

```python
model = MyLightningModule()
trainer = Trainer()
trainer.fit(model)
```

9.2 Best Practices

For cluster computing, it’s recommended you structure your main.py file this way:

```python
from argparse import ArgumentParser
def main(hparams):
    model = LightningModule()
    trainer = Trainer(gpus=hparams.gpus)
    trainer.fit(model)

if __name__ == '__main__':
    parser = ArgumentParser()
    parser.add_argument('--gpus', default=None)
    args = parser.parse_args()
    main(args)
```

So you can run it like so:

```
python main.py --gpus 2
```

Note: If you want to stop a training run early, you can press “Ctrl + C” on your keyboard. The trainer will catch the `KeyboardInterrupt` and attempt a graceful shutdown, including running callbacks such as `on_train_end`. The trainer object will also set an attribute `interrupted` to `True` in such cases. If you have a callback which shuts down compute resources, for example, you can conditionally run the shutdown logic for only uninterrupted runs.
9.3 Testing

Once you’re done training, feel free to run the test set! (Only right before publishing your paper or pushing to production)

```
trainer.test()
```

9.4 Deployment / prediction

You just trained a LightningModule which is also just a torch.nn.Module. Use it to do whatever!

```
# load model
pretrained_model = LightningModule.load_from_checkpoint(PATH)
pretrained_model.freeze()

# use it for finetuning
def forward(self, x):
    features = pretrained_model(x)
    classes = classifier(features)

# or for prediction
out = pretrained_model(x)
api_write({'response': out})
```

You may wish to run the model on a variety of devices. Instead of moving the data manually to the correct device, decorate the forward method (or any other method you use for inference) with `auto_move_data()` and Lightning will take care of the rest.

9.5 Reproducibility

To ensure full reproducibility from run to run you need to set seeds for pseudo-random generators, and set `deterministic` flag in `Trainer`.

Example:

```
from pytorch_lightning import Trainer, seed_everything

seed_everything(42)
# sets seeds for numpy, torch, python.random and PYTHONHASHSEED.
model = Model()
trainer = Trainer(deterministic=True)
```
9.6 Trainer flags

9.6.1 accumulate_grad_batches

Accumulates grads every k batches or as set up in the dict.

```python
# default used by the Trainer (no accumulation)
trainer = Trainer(accumulate_grad_batches=1)
```

Example:

```python
# accumulate every 4 batches (effective batch size is batch*4)
trainer = Trainer(accumulate_grad_batches=4)

# no accumulation for epochs 1-4. accumulate 3 for epochs 5-10. accumulate 20 after that
trainer = Trainer(accumulate_grad_batches={5: 3, 10: 20})
```

9.6.2 amp_level

The optimization level to use (O1, O2, etc...) for 16-bit GPU precision (using NVIDIA apex under the hood).

Check NVIDIA apex docs for level

Example:

```python
# default used by the Trainer
trainer = Trainer(amp_level='O1')
```

9.6.3 auto_scale_batch_size

Automatically tries to find the largest batch size that fits into memory, before any training.

```python
# default used by the Trainer (no scaling of batch size)
trainer = Trainer(auto_scale_batch_size=None)

# run batch size scaling, result overrides hparams.batch_size
trainer = Trainer(auto_scale_batch_size='binsearch')
```

9.6.4 auto_lr_find

Runs a learning rate finder algorithm (see this paper) before any training, to find optimal initial learning rate.

```python
# default used by the Trainer (no learning rate finder)
trainer = Trainer(auto_lr_find=False)
```

Example:

```python
# run learning rate finder, results override hparams.learning_rate
trainer = Trainer(auto_lr_find=True)

# run learning rate finder, results override hparams.my_lr_arg
trainer = Trainer(auto_lr_find='my_lr_arg')
```
Note: See the learning rate finder guide

9.6.5 benchmark

If true enables cudnn.benchmark. This flag is likely to increase the speed of your system if your input sizes don’t change. However, if it does, then it will likely make your system slower.

The speedup comes from allowing the cudnn auto-tuner to find the best algorithm for the hardware [see discussion here].

Example:

```python
# default used by the Trainer
trainer = Trainer(benchmark=False)
```

9.6.6 deterministic

If true enables cudnn.deterministic. Might make your system slower, but ensures reproducibility. Also sets $HOROVOD_FUSION_THRESHOLD=0.$

For more info check [pytorch docs].

Example:

```python
# default check [pytorch docs]
trainer = Trainer(deterministic=False)
```

9.6.7 callbacks

Add a list of user defined callbacks. These callbacks DO NOT replace the explicit callbacks (loggers, EarlyStopping or ModelCheckpoint).

Note: Only user defined callbacks (ie: Not EarlyStopping or ModelCheckpoint)

```python
# a list of callbacks
callbacks = [PrintCallback()]
trainer = Trainer(callbacks=callbacks)
```

Example:

```python
from pytorch_lightning.callbacks import Callback
class PrintCallback(Callback):
    def on_train_start(self, trainer, pl_module):
        print("Training is started!")
    def on_train_end(self, trainer, pl_module):
        print("Training is done.")
```

9.6. Trainer flags
9.6.8 check_val_every_n_epoch

Check val every n train epochs.

Example:

```python
# default used by the Trainer
trainer = Trainer(check_val_every_n_epoch=1)

# run val loop every 10 training epochs
trainer = Trainer(check_val_every_n_epoch=10)
```

9.6.9 checkpoint_callback

Callback for checkpointing.

```python
from pytorch_lightning.callbacks import ModelCheckpoint
trainer = Trainer(checkpoint_callback=ModelCheckpoint())
```

Example:

```python
from pytorch_lightning.callbacks import ModelCheckpoint

# default used by the Trainer
checkpoint_callback = ModelCheckpoint(
    filepath=os.getcwd(),
    save_top_k=True,
    verbose=True,
    monitor='val_loss',
    mode='min',
    prefix='',
)
```

9.6.10 default_root_dir

Default path for logs and weights when no logger or `pytorch_lightning.callbacks.ModelCheckpoint` callback passed. On certain clusters you might want to separate where logs and checkpoints are stored. If you don’t then use this method for convenience.

Example:

```python
# default used by the Trainer
trainer = Trainer(default_root_path=os.getcwd())
```

9.6.11 distributed_backend

The distributed backend to use.

- (`dp`) is DataParallel (split batch among GPUs of same machine)
- (`ddp`) is DistributedDataParallel (each gpu on each node trains, and syncs grads)
- (`ddp_cpu`) is DistributedDataParallel on CPU (same as `ddp`, but does not use GPUs. Useful for multi-node CPU training or single-node debugging. Note that this will not give a speedup on a single node, since Torch already makes efficient use of multiple CPUs on a single machine.)
• (`ddp2`) dp on node, ddp across nodes. Useful for things like increasing the number of negative samples

```python
# default used by the Trainer
trainer = Trainer(distributed_backend=None)
```

Example:

```python
# dp = DataParallel
trainer = Trainer(gpus=2, distributed_backend='dp')

# ddp = DistributedDataParallel
trainer = Trainer(gpus=2, num_nodes=2, distributed_backend='ddp')

# ddp2 = DistributedDataParallel + dp
trainer = Trainer(gpus=2, num_nodes=2, distributed_backend='ddp2')
```

Note: this option does not apply to TPU. TPUs use `ddp` by default (over each core)

See also:
• Multi-GPU training guide
• Multi-node (SLURM) guide

9.6.12 early_stop_callback

- **True**: A default callback monitoring `val_loss` is created. Will raise an error if `val_loss` is not found.
- **False**: Early stopping will be disabled.
- **None**: The default callback monitoring `val_loss` is created.
- **Default**: None.

```python
from pytorch_lightning.callbacks import EarlyStopping

# default used by the Trainer
early_stop = EarlyStopping(
    monitor='val_loss',
    patience=3,
    strict=False,
    verbose=False,
    mode='min'
)
trainer = Trainer(early_stop_callback=early_stop)
```

Note: If `val_loss` is not found will work as if early stopping is disabled.
9.6.13 fast_dev_run

Runs 1 batch of train, test and val to find any bugs (ie: a sort of unit test).

Under the hood the pseudocode looks like this:

```python
# loading
__init__()
prepare_data

# test training step
training_batch = next(train_dataloader)
training_step(training_batch)

# test val step
val_batch = next(val_dataloader)
out = validation_step(val_batch)
validation_epoch_end([out])

# default used by the Trainer
trainer = Trainer(fast_dev_run=False)

# runs 1 train, val, test batch and program ends
trainer = Trainer(fast_dev_run=True)
```

9.6.14 gpus

- Number of GPUs to train on
- or Which GPUs to train on
- can handle strings

```python
# default used by the Trainer (ie: train on CPU)
trainer = Trainer(gpus=None)
```

Example:

```python
# int: train on 2 gpus
trainer = Trainer(gpus=2)

# list: train on GPUs 1, 4 (by bus ordering)
trainer = Trainer(gpus=[1, 4])
trainer = Trainer(gpus='1, 4')  # equivalent

# -1: train on all gpus
trainer = Trainer(gpus=-1)
trainer = Trainer(gpus='-1')  # equivalent

# combine with num_nodes to train on multiple GPUs across nodes
# uses 8 gpus in total
trainer = Trainer(gpus=2, num_nodes=4)
```

See also:

- Multi-GPU training guide
9.6.15 gradient_clip_val

Gradient clipping value

- 0 means don’t clip.

```python
# default used by the Trainer
trainer = Trainer(gradient_clip_val=0.0)
```

9.6.16 limit_test_batches

How much of test dataset to check.

```python
# default used by the Trainer
trainer = Trainer(limit_test_batches=1.0)

# run through only 25% of the test set each epoch
trainer = Trainer(limit_test_batches=0.25)

# run for only 10 batches
trainer = Trainer(limit_test_batches=10)
```

9.6.17 limit_val_batches

How much of validation dataset to check. Useful when debugging or testing something that happens at the end of an epoch.

```python
# default used by the Trainer
trainer = Trainer(limit_val_batches=1.0)

# run through only 25% of the validation set each epoch
trainer = Trainer(limit_val_batches=0.25)

# run for only 10 batches
trainer = Trainer(limit_val_batches=10)
```

9.6.18 log_gpu_memory

Options:

- None
- ‘min_max’
- ‘all’

```python
# default used by the Trainer
trainer = Trainer(log_gpu_memory=\texttt{None})

# log all the GPUs (on master node only)
trainer = Trainer(log_gpu_memory=\texttt{\textquotesingle all\textquotesingle })

# log only the min and max memory on the master node
trainer = Trainer(log_gpu_memory=\texttt{\textquotesingle min\_max\textquotesingle })
```
Note: Might slow performance because it uses the output of nvidia-smi.

9.6.19 log_save_interval

Writes logs to disk this often.

```
# default used by the Trainer
trainer = Trainer(log_save_interval=100)
```

9.6.20 logger

Logger (or iterable collection of loggers) for experiment tracking.

```
from pytorch_lightning.loggers import TensorBoardLogger

# default logger used by trainer
logger = TensorBoardLogger(
    save_dir=os.getcwd(),
    version=1,
    name='lightning_logs'
)
trainer = Trainer(logger=logger)
```

9.6.21 max_epochs

Stop training once this number of epochs is reached

```
# default used by the Trainer
trainer = Trainer(max_epochs=1000)
```

9.6.22 min_epochs

Force training for at least these many epochs

```
# default used by the Trainer
trainer = Trainer(min_epochs=1)
```

9.6.23 max_steps

Stop training after this number of steps. Training will stop if max_steps or max_epochs have reached (earliest).

```
# Default (disabled)
trainer = Trainer(max_steps=None)

# Stop after 100 steps
trainer = Trainer(max_steps=100)
```
9.6.24 min_steps

Force training for at least these number of steps. Trainer will train model for at least min_steps or min_epochs (latest).

```python
# Default (disabled)
trainer = Trainer(min_steps=None)

# Run at least for 100 steps (disable min_epochs)
trainer = Trainer(min_steps=100, min_epochs=0)
```

9.6.25 num_nodes

Number of GPU nodes for distributed training.

```python
# default used by the Trainer
trainer = Trainer(num_nodes=1)

# to train on 8 nodes
trainer = Trainer(num_nodes=8)
```

9.6.26 numProcesses

Number of processes to train with. Automatically set to the number of GPUs when using `distributed_backend="ddp"`. Set to a number greater than 1 when using `distributed_backend="ddp_cpu"` to mimic distributed training on a machine without GPUs. This is useful for debugging, but will not provide any speedup, since single-process Torch already makes efficient use of multiple CPUs.

```python
# Simulate DDP for debugging on your GPU-less laptop
trainer = Trainer(distributed_backend="ddp_cpu", num_processes=2)
```

9.6.27 num_sanity_val_steps

Sanity check runs n batches of val before starting the training routine. This catches any bugs in your validation without having to wait for the first validation check. The Trainer uses 5 steps by default. Turn it off or modify it here.

```python
# default used by the Trainer
trainer = Trainer(num_sanity_val_steps=5)

# turn it off
trainer = Trainer(num_sanity_val_steps=0)
```

9.6.28 num_tpu_cores

Warning: Deprecated since version 0.7.6.

Use `tpu_cores` instead. Will remove 0.9.0.

Example:
```bash
python -m torch_xla.distributed.xla_dist
--tpu=${TPU_POD_NAME}
--conda-env=torch-xla-nightly
--env=XLA_USE_BF16=1
-- python your_trainer_file.py
```

9.6.29 prepare_data_per_node

If True will call `prepare_data()` on LOCAL_RANK=0 for every node. If False will only call from NODE_RANK=0, LOCAL_RANK=0

```
# default
Trainer(prepare_data_per_node=True)

# use only NODE_RANK=0, LOCAL_RANK=0
Trainer(prepare_data_per_node=False)
```

9.6.30 tpu_cores

- How many TPU cores to train on (1 or 8).
- Which TPU core to train on [1-8]

A single TPU v2 or v3 has 8 cores. A TPU pod has up to 2048 cores. A slice of a POD means you get as many cores as you request.

Your effective batch size is batch_size * total tpu cores.

Note: No need to add a DistributedDataSampler, Lightning automatically does it for you.

This parameter can be either 1 or 8.

```
# your_trainer_file.py

# default used by the Trainer (ie: train on CPU)
trainer = Trainer(tpu_cores=None)

# int: train on a single core
trainer = Trainer(tpu_cores=1)

# list: train on a single selected core
trainer = Trainer(tpu_cores=[1])

# int: train on all cores few cores
trainer = Trainer(tpu_cores=8)

# for 8+ cores must submit via xla script with a max of 8 cores specified. The XLA script will duplicate script onto each TPU in the POD
trainer = Trainer(tpu_cores=8)
```

To train on more than 8 cores (ie: a POD), submit this script using the xla_dist script.

Example:
python -m torch_xla.distributed.xla_dist
--tpu=$TPU_POD_NAME
--conda-env=torch-xla-nightly
--env=XLA_USE_BF16=1
-- python your_trainer_file.py

9.6.31 overfit_pct

Warning: Deprecated since version 0.8.0.

Use `overfit_batches`. Will remove 1.0.0.

9.6.32 overfit_batches

Uses this much data of the training set. If will use the same training set for validation and testing. If the training Dataloaders(shuffle=True), Lightning will automatically disable it.

Useful for quickly debugging or trying to overfit on purpose.

```python
# default used by the Trainer
trainer = Trainer(overfit_batches=0.0)

# use only 1% of the train set (and use the train set for val and test)
trainer = Trainer(overfit_batches=0.01)

# overfit on 10 of the same batches
trainer = Trainer(overfit_batches=10)
```

9.6.33 precision

Full precision (32), half precision (16). Can be used on CPU, GPU or TPs.

If used on TPU will use torch.bfloat16 but tensor printing will still show torch.float32.

```python
# default used by the Trainer
trainer = Trainer(precision=32)

# 16-bit precision
trainer = Trainer(precision=16)
```

Example:

```python
# one day
trainer = Trainer(precision=8|4|2)
```
9.6.34 print_nan_grads

Warning: Deprecated since version 0.7.2..
Has no effect. When detected, NaN grads will be printed automatically. Will remove 0.9.0.

9.6.35 process_position

Orders the progress bar. Useful when running multiple trainers on the same node.

```python
# default used by the Trainer
trainer = Trainer(process_position=0)
```

Note: This argument is ignored if a custom callback is passed to `callbacks`.

9.6.36 profiler

To profile individual steps during training and assist in identifying bottlenecks.

See the `profiler documentation` for more details.

```python
from pytorch_lightning.profiler import SimpleProfiler, AdvancedProfiler

# default used by the Trainer
trainer = Trainer(profiler=None)

# to profile standard training events
trainer = Trainer(profiler=True)

# equivalent to profiler=True
trainer = Trainer(profiler=SimpleProfiler())

# advanced profiler for function-level stats
trainer = Trainer(profiler=AdvancedProfiler())
```

9.6.37 progress_bar_refresh_rate

How often to refresh progress bar (in steps). In notebooks, faster refresh rates (lower number) is known to crash them because of their screen refresh rates, so raise it to 50 or more.

```python
# default used by the Trainer
trainer = Trainer(progress_bar_refresh_rate=1)

# disable progress bar
trainer = Trainer(progress_bar_refresh_rate=0)
```

Note: This argument is ignored if a custom callback is passed to `callbacks`.
9.6.38 reload_dataloaders_every_epoch

Set to True to reload dataloaders every epoch.

```python
# if False (default)
train_loader = model.train_dataloader()
for epoch in epochs:
    for batch in train_loader:
        ...

# if True
for epoch in epochs:
    train_loader = model.train_dataloader()
    for batch in train_loader:
```

9.6.39 replace_sampler_ddp

Enables auto adding of distributed sampler.

```python
# default used by the Trainer
trainer = Trainer(replace_sampler_ddp=True)
```

By setting to False, you have to add your own distributed sampler:

```python
# default used by the Trainer
sampler = torch.utils.data.distributed.DistributedSampler(dataset, shuffle=True)
dataloader = DataLoader(dataset, batch_size=32, sampler=sampler)
```

9.6.40 resume_from_checkpoint

To resume training from a specific checkpoint pass in the path here.

```python
# default used by the Trainer
trainer = Trainer(resume_from_checkpoint=None)

# resume from a specific checkpoint
trainer = Trainer(resume_from_checkpoint='some/path/to/my_checkpoint.ckpt')
```

9.6.41 row_log_interval

How often to add logging rows (does not write to disk)

```python
# default used by the Trainer
trainer = Trainer(row_log_interval=50)
```

Warning: Deprecated since version 0.7.0.

Use `precision` instead. Will remove 0.9.0.
9.6.42 show_progress_bar

Warning: Deprecated since version 0.7.2.
Set `progress_bar_refresh_rate` to 0 instead. Will remove 0.9.0.

9.6.43 val_percent_check

Warning: deprecated in v0.8.0 please use `limit_val_batches`. Will remove in 0.10.0

9.6.44 test_percent_check

Warning: deprecated in v0.8.0 please use `limit_test_batches`. Will remove in 0.10.0

9.6.45 train_percent_check

Warning: deprecated in v0.8.0 please use `limit_train_batches`. Will remove in 0.10.0

9.6.46 track_grad_norm

- no tracking (-1)
- Otherwise tracks that norm (2 for 2-norm)

```python
# default used by the Trainer
trainer = Trainer(track_grad_norm=-1)
```

```python
# track the 2-norm
trainer = Trainer(track_grad_norm=2)
```

9.6.47 limit_train_batches

How much of training dataset to check. Useful when debugging or testing something that happens at the end of an epoch.

```python
# default used by the Trainer
trainer = Trainer(limit_train_batches=1.0)
```

Example:

```python
# default used by the Trainer
trainer = Trainer(limit_train_batches=1.0)
```

```python
# run through only 25% of the training set each epoch
trainer = Trainer(limit_train_batches=0.25)
```
Truncated back prop breaks performs backprop every k steps of a much longer sequence. If this is enabled, your batches will automatically get truncated and the trainer will apply Truncated Backprop to it.

(Williams et al. “An efficient gradient-based algorithm for on-line training of recurrent network trajectories.”)

```
# default used by the Trainer (ie: disabled)
trainer = Trainer(truncated_bptt_steps=None)

# backprop every 5 steps in a batch
trainer = Trainer(truncated_bptt_steps=5)
```

Note: Make sure your batches have a sequence dimension.

Lightning takes care to split your batch along the time-dimension.

```
# we use the second as the time dimension
# (batch, time, ...)
sub_batch = batch[0, 0:t, ...]
```

Using this feature requires updating your LightningModule's `pytorch_lightning.core.LightningModule.training_step()` to include a `hiddens` arg with the hidden

```
# Truncated back-propagation through time
def training_step(self, batch, batch_idx, hiddens):
    # hiddens are the hiddens from the previous truncated backprop step
    out, hiddens = self.lstm(data, hiddens)

    return {
        "loss": ...,  
        "hiddens": hiddens  # remember to detach() this
    }
```

To modify how the batch is split, override `pytorch_lightning.core.LightningModule.tbptt_split_batch()`:

```
class LitMNIST(LightningModule):
    def tbptt_split_batch(self, batch, split_size):
        # do your own splitting on the batch
        return splits
```
9.6.49 val_check_interval

How often within one training epoch to check the validation set. Can specify as float or int.

- use (float) to check within a training epoch
- use (int) to check every n steps (batches)

```python
# default used by the Trainer
trainer = Trainer(val_check_interval=1.0)

# check validation set 4 times during a training epoch
trainer = Trainer(val_check_interval=0.25)

# check validation set every 1000 training batches
# use this when using iterableDataset and your dataset has no length
# (ie: production cases with streaming data)
# trainer = Trainer(val_check_interval=1000)
```

9.6.50 weights_save_path

Directory of where to save weights if specified.

```python
# default used by the Trainer
trainer = Trainer(weights_save_path=os.getcwd())

# save to your custom path
trainer = Trainer(weights_save_path='my/path')
```

Example:

```python
# if checkpoint callback used, then overrides the weights path
# **NOTE: this saves weights to some/path NOT my/path
checkpoint = ModelCheckpoint(filepath='some/path')
trainer = Trainer(
    checkpoint_callback=checkpoint,
    weights_save_path='my/path'
)
```

9.6.51 weights_summary

Prints a summary of the weights when training begins. Options: ‘full’, ‘top’, None.

```python
# default used by the Trainer (ie: print summary of top level modules)
trainer = Trainer(weights_summary='top')

# print full summary of all modules and submodules
trainer = Trainer(weights_summary='full')

# don't print a summary
trainer = Trainer(weights_summary=None)
```
9.7 Trainer class

```python
class pytorch_lightning.trainer.Trainer (logger=True, checkpoint_callback=True, early_stop_callback=False, callbacks=None, default_root_dir=None, gradient_clip_val=0, process_position=0, num_nodes=1, num_processes=1, gpus=None, auto_select_gpus=False, tpu_cores=None, log_gpu_memory=None, progress_bar_refresh_rate=1, overfit_batches=0.0, track_grad_norm=-1, check_val_every_n_epoch=1, fast_dev_run=False, accumulate_grad_batches=1, max_epochs=1000, min_epochs=1, max_steps=None, min_steps=None, limit_train_batches=1.0, limit_val_batches=1.0, limit_test_batches=1.0, val_check_interval=1.0, log_save_interval=100, row_log_interval=50, distributed_backend=None, precision=32, print_nan_grads=False, weights_summary='top', weights_save_path=None, num_sanity_val_steps=2, truncated_bptt_steps=None, resume_from_checkpoint=None, profiler=None, benchmark=False, deterministic=False, reload_dataloaders_every_epoch=False, auto_lr_find=False, replace_sampler_ddp=True, terminate_on_nan=False, auto_scale_batch_size=False, prepare_data_per_node=True, amp_level='O1', num_tpu_cores=None, use_amp=None, show_progress_bar=None, val_percent_check=None, test_percent_check=None, train_percent_check=None, overfit_pct=None)
```

Bases:
- pytorch_lightning.trainer.training_io.TrainerIOMixin
- pytorch_lightning.trainer.optimizers.TrainerOptimizersMixin
- pytorch_lightning.trainer.auto_mix_precision.TrainerAMPMixin
- pytorch_lightning.trainer.distrib_parts.TrainerDDPMixin
- pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin
- pytorch_lightning.trainer.logging.TrainerLoggingMixin
- pytorch_lightning.trainer.model_hooks.TrainerModelHooksMixin
- pytorch_lightning.trainer.training_tricks.TrainerTrainingTricksMixin
- pytorch_lightning.trainer.data_loading.TrainerDataLoadingMixin
- pytorch_lightning.trainer.evaluation_loop.TrainerEvaluationLoopMixin
- pytorch_lightning.trainer.callback_config.TrainerCallbackConfigMixin
- pytorch_lightning.trainer.callback_hook.TrainerCallbackHookMixin
- pytorch_lightning.trainer.lr_finder.TrainerLRFinderMixin
- pytorch_lightning.trainer.deprecated_api.TrainerDeprecatedAPITillVer0_9
- pytorch_lightning.trainer.deprecated_api.TrainerDeprecatedAPITillVer0_10

Customize every aspect of training via flags
Parameters

- **logger** *(Union[LightningLoggerBase, Iterable[LightningLoggerBase], bool])* – Logger (or iterable collection of loggers) for experiment tracking.

- **checkpoint_callback** *(Union[ModelCheckpoint, bool])* – Callback for checkpointing.

- **early_stop_callback** *(pytorch_lightning.callbacks.EarlyStopping)* –

- **callbacks** *(Optional[List[Callback]])* – Add a list of callbacks.

- **default_root_dir** *(Optional[str]*) – Default path for logs and weights when no logger/ckpt_callback passed

- **gradient_clip_val** *(float)* – 0 means don’t clip.

- **gradient_clip** –

 Warning: Deprecated since version 0.7.0.

 Use gradient_clip_val instead. Will remove 0.9.0.

- **process_position** *(int)* – orders the progress bar when running multiple models on same machine.

- **num_nodes** *(int)* – number of GPU nodes for distributed training.

- **nb_gpu_nodes** –

 Warning: Deprecated since version 0.7.0.

 Use num_nodes instead. Will remove 0.9.0.

- **gpus** *(Union[int, str, List[int], None])* – Which GPUs to train on.

- **auto_select_gpus** *(bool)* – If enabled and gpus is an integer, pick available gpus automatically. This is especially useful when GPUs are configured to be in “exclusive mode”, such that only one process at a time can access them.

- **tpu_cores** *(Union[List[int], int, None])* – How many TPU cores to train on (1 or 8) / Single TPU to train on [1]

- **num_tpu_cores** *(Optional[int])* – How many TPU cores to train on (1 or 8) .. warning:: .. deprecated::: 0.7.6. Will remove 0.9.0.

- **log_gpu_memory** *(Optional[str])* – None, ‘min_max’, ‘all’. Might slow performance

- **show_progress_bar** –

 Warning: Deprecated since version 0.7.2.

 Set progress_bar_refresh_rate to positive integer to enable. Will remove 0.9.0.

- **progress_bar_refresh_rate** *(int)* – How often to refresh progress bar (in steps).

 Value 0 disables progress bar. Ignored when a custom callback is passed to callbacks.
- **overfit_batches** *(Union[int, float])* – Overfit a percent of training data (float) or a set number of batches (int).

- **overfit_pct** *(Optional[float])* –

 Warning: Deprecated since version 0.8.0. Use `overfit_batches` instead. Will remove 0.10.0.

- **track_grad_norm** *(Union[int, float, str])* – No tracking. Otherwise tracks that p-norm. May be set to ‘inf’ infinity-norm.

- **check_val_every_n_epoch** *(int)* – Check val every n train epochs.

- **fast_dev_run** *(bool)* – Runs 1 batch of train, test and val to find any bugs (ie: a sort of unit test).

- **accumulate_grad_batches** *(Union[int, Dict[int, int], List[list]])* – Accumulates grads every k batches or as set up in the dict.

- **max_epochs** *(int)* – Stop training once this number of epochs is reached.

- **max_nb_epochs** –

 Warning: Deprecated since version 0.7.0. Use `max_epochs` instead. Will remove 0.9.0.

- **min_epochs** *(int)* – Force training for at least these many epochs

- **min_nb_epochs** –

 Warning: Deprecated since version 0.7.0. Use `min_epochs` instead. Will remove 0.9.0.

- **max_steps** *(Optional[int])* – Stop training after this number of steps. Disabled by default (None).

- **min_steps** *(Optional[int])* – Force training for at least these number of steps. Disabled by default (None).

- **limit_train_batches** *(Union[int, float])* – How much of training dataset to check.

- **limit_val_batches** *(Union[int, float])* – How much of validation dataset to check (floats = percent, int = num_batches)

- **limit_test_batches** *(Union[int, float])* – How much of test dataset to check (floats = percent, int = num_batches)

- **train_percent_check** *(Optional[float])* –

 Warning: Deprecated since version 0.8.0. Use `limit_train_batches` instead. Will remove v0.10.0.
• **val_percent_check**(Optional[float]) –

 Warning: Deprecated since version 0.8.0.
 Use `limit_val_batches` instead. Will remove v0.10.0.

• **test_percent_check**(Optional[float]) –

 Warning: Deprecated since version 0.8.0.
 Use `limit_test_batches` instead. Will remove v0.10.0.

• **val_check_interval**(Union[int, float]) – How often within one training epoch to check the validation set

• **log_save_interval**(int) – Writes logs to disk this often

• **row_log_interval**(int) – How often to add logging rows (does not write to disk)

• **add_row_log_interval** –

 Warning: Deprecated since version 0.7.0.
 Use `row_log_interval` instead. Will remove 0.9.0.

• **distributed_backend**(Optional[str]) – The distributed backend to use (dp, ddp, ddp2, ddp_spawn)

• **use_amp** –

 Warning: Deprecated since version 0.7.0.
 Use `precision` instead. Will remove 0.9.0.

• **precision**(int) – Full precision (32), half precision (16).

• **print_nan_grads**(bool) –

 Warning: Deprecated since version 0.7.2.
 Has no effect. When detected, NaN grads will be printed automatically. Will remove 0.9.0.

• **weights_summary**(Optional[str]) – Prints a summary of the weights when training begins.

• **weights_save_path**(Optional[str]) – Where to save weights if specified. Will override default_root_dir for checkpoints only. Use this if for whatever reason you need the checkpoints stored in a different place than the logs written in `default_root_dir`.

• **amp_level**(str) – The optimization level to use (O1, O2, etc…).

• **num_sanity_val_steps**(int) – Sanity check runs n batches of val before starting the training routine.
- **truncated_bptt_steps** *(Optional[int])* – Truncated back prop breaks performs backprop every k steps of

- **resume_from_checkpoint** *(Optional[str])* – To resume training from a specific checkpoint pass in the path here. This can be a URL.

- **profiler** *(Union[BaseProfiler, bool, None])* – To profile individual steps during training and assist in

- **reload_dataloaders_every_epoch** *(bool)* – Set to True to reload dataloaders every epoch

- **auto_lr_find** *(Union[bool, str])* – If set to True, will *initially* run a learning rate finder, trying to optimize initial learning for faster convergence. Sets learning rate in self.lr or self.learning_rate in the LightningModule. To use a different key, set a string instead of True with the key name.

- **replace_sampler_ddp** *(bool)* – Explicitly enables or disables sampler replacement. If not specified this will toggled automatically ddp is used

- **benchmark** *(bool)* – If true enables cudnn.benchmark.

- **deterministic** *(bool)* – If true enables cudnn.deterministic

- **terminate_on_nan** *(bool)* – If set to True, will terminate training (by raising a ValueError) at the end of each training batch, if any of the parameters or the loss are NaN or +/-inf.

- **auto_scale_batch_size** *(Union[str, bool])* – If set to True, will *initially* run a batch size finder trying to find the largest batch size that fits into memory. The result will be stored in self.batch_size in the LightningModule. Additionally, can be set to either power that estimates the batch size through a power search or binsearch that estimates the batch size through a binary search.

- **prepare_data_per_node** *(bool)* – If True, each LOCAL_RANK=0 will call prepare data. Otherwise only NODE_RANK=0, LOCAL_RANK=0 will prepare data

classmethod add_argparse_args(parent_parser)
Extends existing argparse by default Trainer attributes.

Parameters

parent_parser *(ArgumentParser)* – The custom cli arguments parser, which will be extended by the Trainer default arguments.

Only arguments of the allowed types (str, float, int, bool) will extend the *parent_parser*.

Examples

```python
>>> import argparse
>>> import pprint
>>> parser = argparse.ArgumentParser()
>>> parser = Trainer.add_argparse_args(parser)
>>> args = parser.parse_args([])
>>> pprint.pprint(vars(args))
...{
...   'check_val_every_n_epoch': 1,
...   'checkpoint_callback': True,
...   'default_root_dir': None,
...   'deterministic': False,
...   'distributed_backend': None,
...   'early_stop_callback': False,
... (continues on next page)```
...  
'logger': True,  
'max_epochs': 1000,  
'max_steps': None,  
'min_epochs': 1,  
'min_steps': None,  
...  
'profiler': None,  
'progress_bar_refresh_rate': 1,  
...}

Return type ArgumentParser

check_model_configuration(model)
Checks that the model is configured correctly before training or testing is started.

Parameters

model (LightningModule) – The model to check the configuration.

fit(model, train_dataloader=None, val_dataloaders=None)
Runs the full optimization routine.

Parameters

• model (LightningModule) – Model to fit.

• train_dataloader (Optional[DataLoader]) – A Pytorch DataLoader with training samples. If the model has a predefined train_dataloader method this will be skipped.

• val_dataloaders (Union[DataLoader, List[DataLoader], None]) – Either a single Pytorch Dataloader or a list of them, specifying validation samples. If the model has a predefined val_dataloaders method this will be skipped.

Example:

```python
Option 1,
Define the train_dataloader() and val_dataloader() fxs
in the lightningModule
RECOMMENDED FOR MOST RESEARCH AND APPLICATIONS TO MAINTAIN READABILITY
trainer = Trainer()
model = LightningModule()
trainer.fit(model)

Option 2
in production cases we might want to pass different datasets to the same...model
Recommended for PRODUCTION SYSTEMS
train, val = DataLoader(...), DataLoader(...)
trainer = Trainer()
model = LightningModule()
trainer.fit(model, train_dataloader=train, val_dataloaders=val)
```

classmethod from_argparse_args(args, **kwargs)
Create an instance from CLI arguments.

Parameters
• **args** (Union[Namespace, ArgumentParser]) – The parser or namespace to take arguments from. Only known arguments will be parsed and passed to the Trainer.

• ****kwargs – Additional keyword arguments that may override ones in the parser or namespace. These must be valid Trainer arguments.

Example

```python
>>> parser = ArgumentParser(add_help=False)
>>> parser = Trainer.add_argparse_args(parser)
>>> parser.add_argument('--my_custom_arg', default='something')
>>> args = Trainer.parse_argparse_args(parser.parse_args(''))
>>> trainer = Trainer.from_argparse_args(args, logger=False)
```

Return type **Trainer**

classmethod get_deprecated_arg_names()  
Returns a list with deprecated Trainer arguments.

Return type **List**

classmethod get_init_arguments_and_types()  
Scans the Trainer signature and returns argument names, types and default values.

Returns (argument name, set with argument types, argument default value).

Return type **List** with tuples of 3 values

Examples

```python
>>> args = Trainer.get_init_arguments_and_types()
>>> import pprint
>>> pprint.pprint(sorted(args))
[('accumulate_grad_batches', (typing.Dict[int, int], typing.List[list]), 1),
 ... ('callbacks', (typing.List[pytorch_lightning.callbacks.base.Callback], <class 'NoneType'>), None),
 ... ('check_val_every_n_epoch', (class 'int'), 1),
 ... ('max_epochs', (class 'int'), 1000),
 ... ('precision', (class 'int'), 32),
 ... ('prepare_data_per_node', (class 'bool'), True),
 ... ('print_nan_grads', (class 'bool'), False),
 ... ('process_position', (class 'int'), 0),
 ... ('profiler', (class 'pytorch_lightning.profilerprofilers.BaseProfiler'), None),
 ...]
```
```python
class CLIArguments:
 # static methods
 @staticmethod
def parse_argparser(arg_parser):
 """"""
 Parse CLI arguments, required for custom bool types.

 Return type Namespace
```

```python
def run_pretrain_routine(model):
 """"""
 Sanity check a few things before starting actual training.

 Parameters

 model (LightningModule) -- The model to run sanity test on.

 test (model=None, test_dataloaders=None, ckpt_path='best')
 Separates from fit to make sure you never run on your test set until you want to.

 Parameters

 • model (Optional[LightningModule]) -- The model to test.
 • test_dataloaders (Union[DataLoader, List[DataLoader], None]) -- Either a single Pytorch Dataloader or a list of them, specifying validation samples.
 • ckpt_path (Optional[str]) -- Either best or path to the checkpoint you wish to test. If None, use the weights from the last epoch to test. Default to best.

 Example:

 # Option 1
 # run test with the best checkpoint from `ModelCheckpoint` after fitting.
 test = DataLoader(...)
 trainer = Trainer()
 model = LightningModule()

 trainer.fit(model)
 trainer.test(test_dataloaders=test)

 # Option 2
 # run test with the specified checkpoint after fitting
 test = DataLoader(...)
 trainer = Trainer()
 model = LightningModule()

 trainer.fit(model)
 trainer.test(test_dataloaders=test, ckpt_path='path/to/checkpoint.ckpt')

 # Option 3
 # run test with the weights from the end of training after fitting
 test = DataLoader(...)
 trainer = Trainer()
 model = LightningModule()

 trainer.fit(model)
 trainer.test(test_dataloaders=test, ckpt_path=None)

 # Option 4
 # run test from a loaded model. `ckpt_path` is ignored in this case.
 test = DataLoader(...)
 model = LightningModule.load_from_checkpoint('path/to/checkpoint.ckpt')
 trainer = Trainer()
 trainer.test(model, test_dataloaders=test)
```

```python

```
Type Warning

**property num_gpus**
this is just empty shell for code implemented in other class.

Type Warning
Return type int

**property progress_bar_dict**
Read-only for progress bar metrics.

Return type dict

**property slurm_job_id**
this is just empty shell for code implemented in other class.

Type Warning
Return type Optional[int]

`pytorch_lightning.trainer.seed_everything(seed=None)`
Function that sets seed for pseudo-random number generators in: pytorch, numpy, python.random and sets PYTHONHASHSEED environment variable.

Return type int
Lightning offers 16-bit training for CPUs, GPUs and TPUs.

10.1 GPU 16-bit

16 bit precision can cut your memory footprint by half. If using volta architecture GPUs it can give a dramatic training speed-up as well.

**Note:** PyTorch 1.6+ is recommended for 16-bit

10.1.1 Native torch

When using PyTorch 1.6+ Lightning uses the native amp implementation to support 16-bit.

```python
turn on 16-bit
trainer = Trainer(precision=16)
```

10.1.2 Apex 16-bit

If you are using an earlier version of PyTorch Lightning uses Apex to support 16-bit.

Follow these instructions to install Apex. To use 16-bit precision, do two things:

1. Install Apex
2. Set the “precision” trainer flag.

```
$ git clone https://github.com/NVIDIA/apex
$ cd apex

OPTIONAL: on your cluster you might need to load cuda 10 or 9
depending on how you installed PyTorch

see available modules
module avail
```

(continues on next page)
Warning: NVIDIA Apex and DDP have instability problems. We recommend native 16-bit in PyTorch 1.6+

10.1.3 Enable 16-bit

```python
turn on 16-bit
trainer = Trainer(amp_level='O2', precision=16)
```

If you need to configure the apex init for your particular use case or want to use a different way of doing 16-bit training, override `pytorch_lightning.core.LightningModule.configure_apex()`.

10.2 TPU 16-bit

16-bit on TPUs is much simpler. To use 16-bit with TPUs set precision to 16 when using the tpu flag

```python
DEFAULT
trainer = Trainer(tpu_cores=8, precision=32)

turn on 16-bit
trainer = Trainer(tpu_cores=8, precision=16)
```
CHAPTER ELEVEN

COMPUTING CLUSTER (SLURM)

Lightning automates the details behind training on a SLURM-powered cluster.

11.1 Multi-node training

To train a model using multiple nodes, do the following:

1. Design your `LightningModule`.
2. Enable ddp in the trainer

```python
train on 32 GPUs across 4 nodes
trainer = Trainer(gpus=8, num_nodes=4, distributed_backend='ddp')
```

3. It’s a good idea to structure your training script like this:

```python
train.py

def main(hparams):
 model = LightningTemplateModel(hparams)
 trainer = pl.Trainer(
 gpus=8,
 num_nodes=4,
 distributed_backend='ddp'
)
 trainer.fit(model)

if __name__ == '__main__':
 root_dir = os.path.dirname(os.path.realpath(__file__))
 parent_parser = ArgumentParser(add_help=False)
 hyperparams = parser.parse_args()

 # TRAIN
 main(hyperparams)
```

4. Create the appropriate SLURM job:

```bash
#!/bin/bash -l
```

(continues on next page)
# SLURM SUBMIT SCRIPT
#SBATCH --nodes=4
#SBATCH --gres=gpu:8
#SBATCH --ntasks-per-node=8
#SBATCH --mem=0
#SBATCH --time=0-02:00:00

# activate conda env
source activate $1

# debugging flags (optional)
export NCCL_DEBUG=INFO
export PYTHONFAULTHANDLER=1

# on your cluster you might need these:
# set the network interface
# export NCCL_SOCKET_IFNAME=^docker0,lo

# might need the latest cuda
# module load NCCL/2.4.7-1-cuda.10.0

# run script from above
srun python3 train.py

5. If you want auto-resubmit (read below), add this line to the submit.sh script

```bash
#SBATCH --signal=SIGUSR1@90
```

6. Submit the SLURM job

```bash
sbatch submit.sh
```

**Note:** When running in DDP mode, any errors in your code will show up as an NCCL issue. Set the `NCCL_DEBUG=INFO` flag to see the ACTUAL error.

Normally now you would need to add a `DistributedSampler` to your dataset, however Lightning automates this for you. But if you still need to set a sampler set the Trainer flag `replace_sampler_ddp=False`.

Here’s an example of how to add your own sampler (again, not needed with Lightning).

```python
in your LightningModule
def train_dataloader(self):
 dataset = MyDataset()
 dist_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
 dataloader = DataLoader(dataset, sampler=dist_sampler)
 return dataloader

in your training script
trainer = Trainer(replace_sampler_ddp=False)
```
11.2 Wall time auto-resubmit

When you use Lightning in a SLURM cluster, it automatically detects when it is about to run into the wall time and does the following:

1. Saves a temporary checkpoint.
2. Requeues the job.
3. When the job starts, it loads the temporary checkpoint.

To get this behavior make sure to add the correct signal to your SLURM script

```
90 seconds before training ends
SBATCH --signal=SIGUSR1@90
```

11.3 Building SLURM scripts

Instead of manually building SLURM scripts, you can use the SlurmCluster object to do this for you. The SlurmCluster can also run a grid search if you pass in a HyperOptArgumentParser.

Here is an example where you run a grid search of 9 combinations of hyperparameters. See also the multi-node examples here.

```
grid search 3 values of learning rate and 3 values of number of layers for your net
this generates 9 experiments (lr=1e-3, layers=16), (lr=1e-3, layers=32),
(lr=1e-3, layers=64), ... (lr=1e-1, layers=64)
parser = HyperOptArgumentParser(strategy='grid_search', add_help=False)
parser.opt_list('--learning_rate', default=0.001, type=float,
 options=[1e-3, 1e-2, 1e-1], tunable=True)
parser.opt_list('--layers', default=1, type=float, options=[16, 32, 64], tunable=True)
hyperparams = parser.parse_args()

Slurm cluster submits 9 jobs, each with a set of hyperparams
cluster = SlurmCluster(
 hyperparam_optimiser=hyperparams,
 log_path='/some/path/to/save',
)

OPTIONAL FLAGS WHICH MAY BE CLUSTER DEPENDENT
which interface your nodes use for communication
cluster.add_command('export NCCL_SOCKET_IFNAME=^docker0,lo')

see output of the NCCL connection process
NCCL is how the nodes talk to each other
cluster.add_command('export NCCL_DEBUG=INFO')

setting a master port here is a good idea.
cluster.add_command('export MASTER_PORT=%r' % PORT)

*************** DON'T FORGET THIS *****************
MUST load the latest NCCL version
cluster.load_modules(['NCCL/2.4.7-1-cuda.10.0'])
```
# configure cluster
cluster.per_experiment_nb_nodes = 12
cluster.per_experiment_nb_gpus = 8
cluster.add_slurm_cmd(cmd='ntasks-per-node', value=8, comment='1 task per gpu')

# submit a script with 9 combinations of hyper params
# (lr=1e-3, layers=16), (lr=1e-3, layers=32), (lr=1e-3, layers=64), ... (lr=1e-1, layers=64)
cluster.optimize_parallel_cluster_gpu(
    main,
    nb_trials=9, # how many permutations of the grid search to run
    job_name='name_for_squeue'
)

The other option is that you generate scripts on your own via a bash command or use another library.

## 11.4 Self-balancing architecture (COMING SOON)

Here Lightning distributes parts of your module across available GPUs to optimize for speed and memory.
CHAPTER
TWELVE

CHILD MODULES

Research projects tend to test different approaches to the same dataset. This is very easy to do in Lightning with inheritance.

For example, imagine we now want to train an Autoencoder to use as a feature extractor for MNIST images. Recall that LitMNIST already defines all the dataloading etc. . . The only things that change in the Autoencoder model are the init, forward, training, validation and test step.

```python

class Encoder(torch.nn.Module):
 pass

class Decoder(torch.nn.Module):
 pass

class AutoEncoder(LitMNIST):

 def __init__(self):
 super().__init__()
 self.encoder = Encoder()
 self.decoder = Decoder()

 def forward(self, x):
 generated = self.decoder(x)

 def training_step(self, batch, batch_idx):
 x, _ = batch
 representation = self.encoder(x)
 x_hat = self(representation)
 loss = MSE(x, x_hat)
 return loss

 def validation_step(self, batch, batch_idx):
 return self._shared_eval(batch, batch_idx, 'val')

 def test_step(self, batch, batch_idx):
 return self._shared_eval(batch, batch_idx, 'test')

 def _shared_eval(self, batch, batch_idx, prefix):
 x, y = batch
 representation = self.encoder(x)
 x_hat = self(representation)
 loss = F.nll_loss(logits, y)

(continues on next page)
return {f'{prefix}_loss': loss}

and we can train this using the same trainer

```python
autoencoder = AutoEncoder()
trainer = Trainer()
trainer.fit(autoencoder)
```

And remember that the forward method is to define the practical use of a LightningModule. In this case, we want to use the `AutoEncoder` to extract image representations

```python
some_images = torch.Tensor(32, 1, 28, 28)
representations = autoencoder(some_images)
```
The following are flags that make debugging much easier.

13.1 fast_dev_run

This flag runs a “unit test” by running 1 training batch and 1 validation batch. The point is to detect any bugs in the training/validation loop without having to wait for a full epoch to crash.

(See: `fast_dev_run` argument of `Trainer`)

```python
trainer = Trainer(fast_dev_run=True)
```

13.2 Inspect gradient norms

Logs (to a logger), the norm of each weight matrix.

(See: `track_grad_norm` argument of `Trainer`)

```python
# the 2-norm
trainer = Trainer(track_grad_norm=2)
```

13.3 Log GPU usage

Logs (to a logger) the GPU usage for each GPU on the master machine.

(See: `log_gpu_memory` argument of `Trainer`)

```python
trainer = Trainer(log_gpu_memory=True)
```
13.4 Make model overfit on subset of data

A good debugging technique is to take a tiny portion of your data (say 2 samples per class), and try to get your model to overfit. If it can’t, it’s a sign it won’t work with large datasets.

(See: `overfit_batches` argument of `Trainer`)

```python
# use only 1% of training data (and use the same training Dataloader (with shuffle=True) in val and test)
trainer = Trainer(overfit_batches=0.01)

# or overfit a number of batches
trainer = Trainer(overfit_batches=0.01)
```

With this flag, the train, val, and test sets will all be the same train set. We will also replace the sampler in the training set to turn off shuffle for you.

13.5 Print a summary of your LightningModule

Whenever the `.fit()` function gets called, the Trainer will print the weights summary for the LightningModule. By default it only prints the top-level modules. If you want to show all submodules in your network, use the `full` option:

```python
trainer = Trainer(weights_summary='full')
```

You can also display the intermediate input- and output sizes of all your layers by setting the `example_input_array` attribute in your LightningModule. It will print a table like this

```
<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Params</th>
<th>In sizes</th>
<th>Out sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>net</td>
<td>Sequential</td>
<td>132 K</td>
<td>[10, 256]</td>
</tr>
<tr>
<td>1</td>
<td>net.0</td>
<td>Linear</td>
<td>131 K</td>
<td>[10, 256]</td>
</tr>
<tr>
<td>2</td>
<td>net.1</td>
<td>BatchNorm1d</td>
<td>1 K</td>
<td>[10, 512]</td>
</tr>
</tbody>
</table>
```

when you call `.fit()` on the Trainer. This can help you find bugs in the composition of your layers.

See Also:

- `weights_summary` Trainer argument
- `ModelSummary`

13.6 Shorten epochs

Sometimes it’s helpful to only use a percentage of your training, val or test data (or a set number of batches). For example, you can use 20% of the training set and 1% of the validation set.

On larger datasets like Imagenet, this can help you debug or test a few things faster than waiting for a full epoch.
13.7 Set the number of validation sanity steps

Lightning runs a few steps of validation in the beginning of training. This avoids crashing in the validation loop sometime deep into a lengthy training loop.

(See: `num_sanity_val_steps` argument of `Trainer`)

```python
# DEFAULT
trainer = Trainer(num_sanity_val_steps=5)
```
14.1 Comet.ml

Comet.ml is a third-party logger. To use `CometLogger` as your logger do the following. First, install the package:

```
pip install comet-ml
```

Then configure the logger and pass it to the `Trainer`:

```python
import os
from pytorch_lightning.loggers import CometLogger
comet_logger = CometLogger(
    api_key=os.environ.get('COMET_API_KEY'),
    workspace=os.environ.get('COMET_WORKSPACE'),  # Optional
    save_dir='.',  # Optional
    project_name='default_project',  # Optional
    rest_api_key=os.environ.get('COMET_REST_API_KEY'),  # Optional
    experiment_name='default'  # Optional
)
trainer = Trainer(logger=comet_logger)
```

The `CometLogger` is available anywhere except `__init__` in your `LightningModule`.

```python
class MyModule(LightningModule):
    def any_lightning_module_function_or_hook(self):
        some_img = fake_image()
        self.logger.experiment.add_image('generated_images', some_img, 0)
```

See also:

`CometLogger` docs.
14.2 MLflow

MLflow is a third-party logger. To use MLFlowLogger as your logger do the following. First, install the package:

```
pip install mlflow
```

Then configure the logger and pass it to the `Trainer`:

```python
from pytorch_lightning.loggers import MLFlowLogger
mlf_logger = MLFlowLogger(
    experiment_name="default",
    tracking_uri="file:./ml-runs"
)
trainer = Trainer(logger=mlf_logger)
```

See also:
MLFlowLogger docs.

14.3 Neptune.ai

Neptune.ai is a third-party logger. To use NeptuneLogger as your logger do the following. First, install the package:

```
pip install neptune-client
```

Then configure the logger and pass it to the `Trainer`:

```python
from pytorch_lightning.loggers import NeptuneLogger
neptune_logger = NeptuneLogger(
    api_key='ANONYMOUS',  # replace with your own
    project_name='shared/pytorch-lightning-integration',
    experiment_name='default',  # Optional,
    params={'max_epochs': 10},  # Optional,
    tags=['pytorch-lightning', 'mlp'],  # Optional,
)
trainer = Trainer(logger=neptune_logger)
```

The NeptuneLogger is available anywhere except `__init__` in your `LightningModule`.

```python
class MyModule(LightningModule):
    def any_lightning_module_function_or_hook(self):
        some_img = fake_image()
        self.logger.experiment.add_image('generated_images', some_img, 0)
```

See also:
NeptuneLogger docs.
14.4 allegro.ai TRAINS

allegro.ai is a third-party logger. To use `TrainsLogger` as your logger do the following. First, install the package:

```
pip install trains
```

Then configure the logger and pass it to the `Trainer`:

```
from pytorch_lightning.loggers import TrainsLogger
trains_logger = TrainsLogger(
    project_name='examples',
    task_name='pytorch lightning test',
)
trainer = Trainer(logger=trains_logger)
```

The `TrainsLogger` is available anywhere in your `LightningModule`.

```
class MyModule(LightningModule):
    def __init__(self):
        some_img = fake_image()
        self.logger.experiment.log_image('debug', 'generated_image_0', some_img, 0)
```

See also:

`TrainsLogger` docs.

14.5 Tensorboard

To use `TensorBoard` as your logger do the following.

```
from pytorch_lightning.loggers import TensorBoardLogger
logger = TensorBoardLogger('tb_logs', name='my_model')
trainer = Trainer(logger=logger)
```

The `TensorBoardLogger` is available anywhere except `__init__` in your `LightningModule`.

```
class MyModule(LightningModule):
    def any_lightning_module_function_or_hook(self):
        some_img = fake_image()
        self.logger.experiment.add_image('generated_images', some_img, 0)
```

See also:

`TensorBoardLogger` docs.
14.6 Test Tube

Test Tube is a TensorBoard logger but with nicer file structure. To use TestTubeLogger as your logger do the following. First, install the package:

```bash
pip install test_tube
```

Then configure the logger and pass it to the Trainer:

```python
from pytorch_lightning.loggers import TestTubeLogger
logger = TestTubeLogger('tb_logs', name='my_model')
trainer = Trainer(logger=logger)
```

The TestTubeLogger is available anywhere except `__init__` in your LightningModule.

```python
class MyModule(LightningModule):
    def any_lightning_module_function_or_hook(self):
        some_img = fake_image()
        self.logger.experiment.add_image('generated_images', some_img, 0)
```

See also:

TestTubeLogger docs.

14.7 Weights and Biases

Weights and Biases is a third-party logger. To use WandbLogger as your logger do the following. First, install the package:

```bash
pip install wandb
```

Then configure the logger and pass it to the Trainer:

```python
from pytorch_lightning.loggers import WandbLogger
wandb_logger = WandbLogger()
trainer = Trainer(logger=wandb_logger)
```

The WandbLogger is available anywhere except `__init__` in your LightningModule.

```python
class MyModule(LightningModule):
    def any_lightning_module_function_or_hook(self):
        some_img = fake_image()
        self.logger.experiment.log({
            "generated_images": [wandb.Image(some_img, caption="...")]
        })
```

See also:

WandbLogger docs.
14.8 Multiple Loggers

Lightning supports the use of multiple loggers, just pass a list to the `Trainer`.

```python
from pytorch_lightning.loggers import TensorBoardLogger, TestTubeLogger
logger1 = TensorBoardLogger('tb_logs', name='my_model')
logger2 = TestTubeLogger('tb_logs', name='my_model')
trainer = Trainer(logger=[logger1, logger2])
```

The loggers are available as a list anywhere except `__init__` in your `LightningModule`.

```python
class MyModule(LightningModule):
    def any_lightning_module_function_or_hook(self):
        some_img = fake_image()
        # Option 1
        self.logger.experiment[0].add_image('generated_images', some_img, 0)
        # Option 2
        self.logger[0].experiment.add_image('generated_images', some_img, 0)
```
Lightning supports many different experiment loggers. These loggers allow you to monitor losses, images, text, etc… as training progresses. They usually provide a GUI to visualize and can sometimes even snapshot hyperparameters used in each experiment.

15.1 Control logging frequency

It may slow training down to log every single batch. Trainer has an option to log every k batches instead.

```
k = 10
trainer = Trainer(row_log_interval=k)
```

15.2 Control log writing frequency

Writing to a logger can be expensive. In Lightning you can set the interval at which you want to log using this trainer flag.

See also:

`Trainer`

```
k = 100
trainer = Trainer(log_save_interval=k)
```

15.3 Log metrics

To plot metrics into whatever logger you passed in (tensorboard, comet, neptune, TRAINS, etc…)

1. `training_epoch_end`, `validation_epoch_end`, `test_epoch_end` will all log anything in the “log” key of the return dict.
```python
def training_epoch_end(self, outputs):
    loss = some_loss()
    ...
    logs = {'train_loss': loss}
    results = {'log': logs}
    return results
def validation_epoch_end(self, outputs):
    loss = some_loss()
    ...
    logs = {'val_loss': loss}
    results = {'log': logs}
    return results
def test_epoch_end(self, outputs):
    loss = some_loss()
    ...
    logs = {'test_loss': loss}
    results = {'log': logs}
    return results
```

2. In addition, you can also use any arbitrary functionality from a particular logger from within your LightningModule. For instance, here we log images using tensorboard.

```python
def training_step(self, batch, batch_idx):
    self.generated_imgs = self.decoder.generate()
    sample_imgs = self.generated_imgs[:6]
    grid = torchvision.utils.make_grid(sample_imgs)
    self.logger.experiment.add_image('generated_images', grid, 0)
    ...
    return results
```

15.4 Modify progress bar

Each return dict from the training_end, validation_end, testing_end and training_step also has a key called “progress_bar”.

Here we show the validation loss in the progress bar

```python
def validation_epoch_end(self, outputs):
    loss = some_loss()
    ...
    logs = {'val_loss': loss}
    results = {'progress_bar': logs}
    return results
```
15.5 Snapshot hyperparameters

When training a model, it’s useful to know what hyperparams went into that model. When Lightning creates a checkpoint, it stores a key “hparams” with the hyperparams.

```python
lightning_checkpoint = torch.load(filepath, map_location=lambda storage, loc: storage)
hyperparams = lightning_checkpoint['hparams']
```

Some loggers also allow logging the hyperparams used in the experiment. For instance, when using the TestTubeLogger or the TensorBoardLogger, all hyperparams will show in the `hparams` tab.

15.6 Snapshot code

Loggers also allow you to snapshot a copy of the code used in this experiment. For example, TestTubeLogger does this with a flag:

```python
from pytorch_lightning.loggers import TestTubeLogger
logger = TestTubeLogger('.', create_git_tag=True)
```
16.1 Stopping an epoch early

You can stop an epoch early by overriding `on_batch_start()` to return `-1` when some condition is met. If you do this repeatedly, for every epoch you had originally requested, then this will stop your entire run.

16.2 Default Epoch End Callback Behavior

By default early stopping will be enabled if `val_loss` is found in `validation_epoch_end()`’s return dict. Otherwise training will proceed with early stopping disabled.

16.3 Enable Early Stopping using the EarlyStopping Callback

The `EarlyStopping` callback can be used to monitor a validation metric and stop the training when no improvement is observed.

There are two ways to enable the EarlyStopping callback:

- Set `early_stop_callback=True`. The callback will look for `val_loss` in the dict returned by `validation_epoch_end()` and raise an error if `val_loss` is not present.

  ```python
  trainer = Trainer(early_stop_callback=True)
  ```

- Create the callback object and pass it to the trainer. This allows for further customization.

  ```python
  early_stop_callback = EarlyStopping(    
    monitor='val_accuracy',    
    min_delta=0.00,    
    patience=3,    
    verbose=False,    
    mode='max'
  )
  trainer = Trainer(early_stop_callback=early_stop_callback)
  ```

In case you need early stopping in a different part of training, subclass `EarlyStopping` and change where it is called:
class MyEarlyStopping(EarlyStopping):
 def on_validation_end(self, trainer, pl_module):
 # override this to disable early stopping at the end of val loop
 pass
 def on_train_end(self, trainer, pl_module):
 # instead, do it at the end of training loop
 self._run_early_stopping_check(trainer, pl_module)

Note: The EarlyStopping callback runs at the end of every validation epoch, which, under the default configuration, happen after every training epoch. However, the frequency of validation can be modified by setting various parameters on the Trainer, for example check_val_every_n_epoch and val_check_interval. It must be noted that the patience parameter counts the number of validation epochs with no improvement, and not the number of training epochs. Therefore, with parameters check_val_every_n_epoch=10 and patience=3, the trainer will perform at least 40 training epochs before being stopped.

See also:

- Trainer
- EarlyStopping

16.4 Disable Early Stopping with callbacks on epoch end

To disable early stopping pass False to the early_stop_callback. Note that None will not disable early stopping but will lead to the default behaviour.

See also:

- Trainer
- EarlyStopping
There are multiple options to speed up different parts of the training by choosing to train on a subset of data. This could be done for speed or debugging purposes.

17.1 Check validation every n epochs

If you have a small dataset you might want to check validation every n epochs

```python
# DEFAULT
trainer = Trainer(check_val_every_n_epoch=1)
```

17.2 Force training for min or max epochs

It can be useful to force training for a minimum number of epochs or limit to a max number.

See also:

Trainer

```python
# DEFAULT
trainer = Trainer(min_epochs=1, max_epochs=1000)
```

17.3 Set validation check frequency within 1 training epoch

For large datasets it’s often desirable to check validation multiple times within a training loop. Pass in a float to check that often within 1 training epoch. Pass in an int k to check every k training batches. Must use an int if using an IterableDataset.

```python
# DEFAULT
trainer = Trainer(val_check_interval=0.95)

# check every .25 of an epoch
trainer = Trainer(val_check_interval=0.25)
```

(continues on next page)
check every 100 train batches (ie: for IterableDatasets or fixed frequency)
trainer = Trainer(val_check_interval=100)

17.4 Use data subset for training, validation and test

If you don’t want to check 100% of the training/validation/test set (for debugging or if it’s huge), set these flags.

```python
# DEFAULT
trainer = Trainer(
    limit_train_batches=1.0,
    limit_val_batches=1.0,
    limit_test_batches=1.0
)

# check 10%, 20%, 30% only, respectively for training, validation and test set
trainer = Trainer(
    limit_train_batches=0.1,
    limit_val_batches=0.2,
    limit_test_batches=0.3
)
```

Note: `limit_train_batches`, `limit_val_batches` and `limit_test_batches` will be overwritten by `overfit_batches` if `overfit_batches > 0`. `limit_val_batches` will be ignored if `fast_dev_run=True`.

Note: If you set `limit_val_batches=0`, validation will be disabled.
Lightning has utilities to interact seamlessly with the command line `ArgumentParser` and plays well with the hyperparameter optimization framework of your choice.

18.1 ArgumentParser

Lightning is designed to augment a lot of the functionality of the built-in Python `ArgumentParser`:

```python
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument('--layer_1_dim', type=int, default=128)
args = parser.parse_args()
```

This allows you to call your program like so:

```
python trainer.py --layer_1_dim 64
```

18.2 ArgumentParser Best Practices

It is best practice to layer your arguments in three sections:

1. Trainer args (gpus, num_nodes, etc.)
2. Model specific arguments (layer_dim, num_layers, learning_rate, etc.)
3. Program specific arguments (data_path, cluster_email, etc.)

We can do this as follows. First, in your `LitModel`, define the arguments specific to that module. Remember that data splits or data paths may also be specific to a module (ie: if your project has a model that trains on Imagenet and another on CIFAR-10).

```python
class LitModel(LightningModule):
    @staticmethod
def add_model_specific_args(parent_parser):
        parser = ArgumentParser(allow_abbrev=False)
        parser.add_argument('--encoder_layers', type=int, default=12)
        parser.add_argument('--data_path', type=str, default='/some/path')
        return parser
```
Now in your main trainer file, add the Trainer args, the program args, and add the model args

```python
# ----------------
# trainer_main.py
# ----------------
from argparse import ArgumentParser
parser = ArgumentParser()

# add PROGRAM level args
parser.add_argument('--conda_env', type=str, default='some_name')
parser.add_argument('--notification_email', type=str, default='will@email.com')

# add model specific args
parser = LitModel.add_model_specific_args(parser)

# add all the available trainer options to argparse
# ie: now --gpus --num_nodes ... --fast_dev_run all work in the cli
parser = Trainer.add_argparse_args(parser)

args = parser.parse_args()
```

Now you can call run your program like so

```bash
python trainer_main.py --gpus 2 --num_nodes 2 --conda_env 'my_env' --encoder_layers 12
```

Finally, make sure to start the training like so:

```python
# init the trainer like this
trainer = Trainer.from_argparse_args(args, early_stopping_callback=...)

# NOT like this
trainer = Trainer(gpus=hparams.gpus, ...)

# init the model with Namespace directly
model = LitModel(args)

# or init the model with all the key-value pairs
dict_args = vars(args)
model = LitModel(**dict_args)
```

18.3 LightningModule hyperparameters

Often times we train many versions of a model. You might share that model or come back to it a few months later at which point it is very useful to know how that model was trained (ie: what learning_rate, neural network, etc...).

Lightning has a few ways of saving that information for you in checkpoints and yaml files. The goal here is to improve readability and reproducibility

1. The first way is to ask lightning to save the values anything in the `__init__` for you to the checkpoint. This also makes those values available via `self.hparams`.

```python
class LitMNIST(LightningModule):
    def __init__(self, layer_1_dim=128, learning_rate=1e-2, **kwargs):
        (continues on next page)
```
2. Sometimes your init might have objects or other parameters you might not want to save. In that case, choose only a few.

```python
class LitMNIST(LightningModule):
    def __init__(self, loss_fx, generator_network, layer_1_dim=128 **kwargs):
        super().__init__()
        self.layer_1_dim = layer_1_dim
        self.loss_fx = loss_fx

        # call this to save (layer_1_dim=128) to the checkpoint
        self.save_hyperparameters(['layer_1_dim'])

        # to load specify the other args
        model = LitMNIST.load_from_checkpoint(PATH, loss_fx=torch.nn.SomeOtherLoss, generator_network=MyGenerator())
```

3. Assign to `self.hparams`. Anything assigned to `self.hparams` will also be saved automatically.

```python
# using a argparse.Namespace
class LitMNIST(LightningModule):
    def __init__(self, hparams, *args, **kwargs):
        super().__init__()
        self.hparams = hparams

        # equivalent
        self.save_hyperparameters(hparams)
```

4. You can also save full objects such as `dict` or `Namespace` to the checkpoint.

```python
# using a argparse.Namespace
class LitMNIST(LightningModule):
    def __init__(self, conf, *args, **kwargs):
        super().__init__()
        self.hparams = conf

        # equivalent
        self.save_hyperparameters(conf)
```

18.3. LightningModule hyperparameters
self.layer_1 = torch.nn.Linear(28 * 28, self.hparams.layer_1_dim)
self.layer_2 = torch.nn.Linear(self.hparams.layer_1_dim, self.hparams.layer_2_dim)
self.layer_3 = torch.nn.Linear(self.hparams.layer_2_dim, 10)

conf = OmegaConf.create(...)
model = LitMNIST(conf)

this works
model.hparams.anything

18.4 Trainer args

To recap, add ALL possible trainer flags to the argparser and init the Trainer this way

```python
parser = ArgumentParser()
parser = Trainer.add_argparse_args(parser)
hparams = parser.parse_args()

trainer = Trainer.from_argparse_args(hparams)

# or if you need to pass in callbacks
trainer = Trainer.from_argparse_args(hparams, checkpoint_callback=..., callbacks=[...])
```

18.5 Multiple Lightning Modules

We often have multiple Lightning Modules where each one has different arguments. Instead of polluting the main.py file, the LightningModule lets you define arguments for each one.

```python
class LitMNIST(LightningModule):
    def __init__(self, layer_1_dim, **kwargs):
        super().__init__()
        self.layer_1 = torch.nn.Linear(28 * 28, layer_1_dim)

    @staticmethod
    def add_model_specific_args(parent_parser):
        parser = ArgumentParser(parents=[parent_parser], add_help=False)
        parser.add_argument('--layer_1_dim', type=int, default=128)
        return parser

class GoodGAN(LightningModule):
    def __init__(self, encoder_layers, **kwargs):
        super().__init__()
        self.encoder = Encoder(layers=encoder_layers)
```

(continues on next page)
@staticmethod
def add_model_specific_args(parent_parser):
 parser = ArgumentParser(parents=[parent_parser], add_help=False)
 parser.add_argument('--encoder_layers', type=int, default=12)
 return parser

Now we can allow each model to inject the arguments it needs in the main.py

def main(args):
 dict_args = vars(args)

 # pick model
 if args.model_name == 'gan':
 model = GoodGAN(**dict_args)
 elif args.model_name == 'mnist':
 model = LitMNIST(**dict_args)

 trainer = Trainer.from_argparse_args(args)
 trainer.fit(model)

if __name__ == '__main__':
 parser = ArgumentParser()
 parser = Trainer.add_argparse_args(parser)
 # figure out which model to use
 parser.add_argument('--model_name', type=str, default='gan', help='gan or mnist')

 # THIS LINE IS KEY TO PULL THE MODEL NAME
 temp_args, _ = parser.parse_known_args()

 # let the model add what it wants
 if temp_args.model_name == 'gan':
 parser = GoodGAN.add_model_specific_args(parser)
 elif temp_args.model_name == 'mnist':
 parser = LitMNIST.add_model_specific_args(parser)

 args = parser.parse_args()

 # train
 main(args)

and now we can train MNIST or the GAN using the command line interface!

$ python main.py --model_name gan --encoder_layers 24
$ python main.py --model_name mnist --layer_1_dim 128
18.6 Hyperparameter Optimization

Lightning is fully compatible with the hyperparameter optimization libraries! Here are some useful ones:

- Hydra
- Optuna
LEARNING RATE FINDER

For training deep neural networks, selecting a good learning rate is essential for both better performance and faster convergence. Even optimizers such as Adam that are self-adjusting the learning rate can benefit from more optimal choices.

To reduce the amount of guesswork concerning choosing a good initial learning rate, a learning rate finder can be used. As described in this paper a learning rate finder does a small run where the learning rate is increased after each processed batch and the corresponding loss is logged. The result of this is a lr vs. loss plot that can be used as guidance for choosing an optimal initial lr.

Warning: For the moment, this feature only works with models having a single optimizer. LR support for DDP is not implemented yet, it is coming soon.

19.1 Using Lightning’s built-in LR finder

In the most basic use case, this feature can be enabled during trainer construction with Trainer(auto_lr_find=True). When .fit(model) is called, the LR finder will automatically run before any training is done. The lr that is found and used will be written to the console and logged together with all other hyperparameters of the model.

default: no automatic learning rate finder
trainer = Trainer(auto_lr_find=False)

This flag sets your learning rate which can be accessed via self.lr or self.learning_rate.

class LitModel(LightningModule):
 def __init__(self, learning_rate):
 self.learning_rate = learning_rate

 def configure_optimizers(self):
 return Adam(self.parameters(), lr=(self.lr or self.learning_rate))

finds learning rate automatically
sets hparams.lr or hparams.learning_rate to that learning rate
trainer = Trainer(auto_lr_find=True)

To use an arbitrary value set it as auto_lr_find
to set to your own hparams.my_value
trainer = Trainer(auto_lr_find='my_value')

Under the hood, when you call fit it runs the learning rate finder before actually calling fit.

when you call .fit() this happens
1. find learning rate
2. actually run fit
trainer.fit(model)

If you want to inspect the results of the learning rate finder before doing any actual training or just play around with the parameters of the algorithm, this can be done by invoking the lr_find method of the trainer. A typical example of this would look like

```python
model = MyModelClass(hparams)
trainer = Trainer()

# Run learning rate finder
lr_finder = trainer.lr_find(model)

# Results can be found in
lr_finder.results

# Plot with
fig = lr_finder.plot(suggest=True)
fig.show()

# Pick point based on plot, or get suggestion
new_lr = lr_finder.suggestion()

# update hparams of the model
model.hparams.lr = new_lr

# Fit model
trainer.fit(model)
```

The figure produced by lr_finder.plot() should look something like the figure below. It is recommended to not pick the learning rate that achieves the lowest loss, but instead something in the middle of the sharpest downward slope (red point). This is the point returned by lr_finder.suggestion().

The parameters of the algorithm can be seen below.

```python
class pytorch_lightning.trainer.lr_finder.TrainerLRFinderMixin
    Bases: abc.ABC

    _run_lr_finder_internally(model)
        Call lr finder internally during Trainer.fit()

    abstract fit(*args)
        Warning: this is just empty shell for code implemented in other class.

    abstract init_optimizers(*args)
        Warning: this is just empty shell for code implemented in other class.

    Return type Tuple[List,List,List]

    lr_find(model, train_dataloader=None, val_dataloader=None, min_lr=1e-08,
            max_lr=1, num_training=100, mode='exponential', early_stop_threshold=4.0,
            num_accumulation_steps=None)
        lr_find enables the user to do a range test of good initial learning rates, to reduce the amount of guesswork
```
19.1. Using Lightning's built-in LR finder
in picking a good starting learning rate.

Parameters

- `model (LightningModule)` – Model to do range testing for
- `train_dataloader (Optional[DataLoader])` – A PyTorch DataLoader with training samples. If the model has a predefined train_dataloader method this will be skipped.
- `min_lr (float)` – minimum learning rate to investigate
- `max_lr (float)` – maximum learning rate to investigate
- `num_training (int)` – number of learning rates to test
- `mode (str)` – search strategy, either ‘linear’ or ‘exponential’. If set to ‘linear’ the learning rate will be searched by linearly increasing after each batch. If set to ‘exponential’, will increase learning rate exponentially.
- `early_stop_threshold (float)` – threshold for stopping the search. If the loss at any point is larger than early_stop_threshold*best_loss then the search is stopped. To disable, set to None.
- `num_accumulation_steps` – deprepecated, number of batches to calculate loss over. Set trainer argument accumulate_grad_batches instead.

Example:

```python
# Setup model and trainer
model = MyModelClass(hparams)
trainer = pl.Trainer()

# Run lr finder
lr_finder = trainer.lr_find(model, ...)

# Inspect results
fig = lr_finder.plot(); fig.show()
suggested_lr = lr_finder.suggestion()

# Overwrite lr and create new model
hparams.lr = suggested_lr
model = MyModelClass(hparams)

# Ready to train with new learning rate
trainer.fit(model)
```

abstract restore (*args)

Warning: this is just empty shell for code implemented in other class.

abstract save_checkpoint (*args)

Warning: this is just empty shell for code implemented in other class.
Lightning supports multiple ways of doing distributed training.

20.1 Preparing your code

To train on CPU/GPU/TPU without changing your code, we need to build a few good habits :)

20.1.1 Delete `.cuda()` or `.to()` calls

Delete any calls to `.cuda()` or `.to(device)`.

```python
# before lightning
def forward(self, x):
    x = x.cuda(0)
    layer_1.cuda(0)
    x_hat = layer_1(x)

# after lightning
def forward(self, x):
    x_hat = layer_1(x)
```

20.1.2 Init tensors using `type_as`

When you need to create a new tensor, use `type_as`. This will make your code scale to any arbitrary number of GPUs or TPUs with Lightning.

```python
# before lightning
def forward(self, x):
    z = torch.Tensor(2, 3)
    z = z.cuda(0)

# with lightning
def forward(self, x):
    z = torch.Tensor(2, 3)
    z = z.type_as(x, device=self.device)
```

The LightningModule knows what device it is on. You can access the reference via `self.device`.
20.1.3 Remove samplers

In PyTorch, you must use `torch.nn.DistributedSampler` for multi-node or TPU training in PyTorch. The sampler makes sure each GPU sees the appropriate part of your data.

```python
# without lightning
def train_dataloader(self):
    dataset = MNIST(...)
    sampler = None
    if self.on_tpu:
        sampler = DistributedSampler(dataset)
    return DataLoader(dataset, sampler=sampler)
```

Lightning adds the correct samplers when needed, so no need to explicitly add samplers.

```python
# with lightning
def train_dataloader(self):
    dataset = MNIST(...)
    return DataLoader(dataset)
```

Note: You can disable this behavior with `Trainer(replace_sampler_ddp=False)`

Note: For iterable datasets, we don’t do this automatically.

20.1.4 Make models pickleable

It’s very likely your code is already pickleable, in that case no change in necessary. However, if you run a distributed model and get the following error:

```
self._launch(process_obj)
File "/net/software/local/python/3.6.5/lib/python3.6/multiprocessing/popen_spawn_posix.py", line 47,
in _launch reduction.dump(process_obj, fp)
File "/net/software/local/python/3.6.5/lib/python3.6/multiprocessing/reduction.py", line 60,
in dump
ForkingPickler(file, protocol).dump(obj)
_attribute lookup <lambda> on __main__ failed
```

This means something in your model definition, transforms, optimizer, dataloader or callbacks cannot be pickled, and the following code will fail:

```python
import pickle
pickle.dump(some_object)
```

This is a limitation of using multiple processes for distributed training within PyTorch. To fix this issue, find your piece of code that cannot be pickled. The end of the stacktrace is usually helpful. i.e: in the stacktrace example here, there seems to be a lambda function somewhere in the code which cannot be pickled.
You can select the GPU devices using ranges, a list of indices or a string containing a comma separated list of GPU ids:

```python
# DEFAULT (int) specifies how many GPUs to use
Trainer(gpus=k)

# Above is equivalent to
Trainer(gpus=list(range(k)))

# Specify which GPUs to use (don’t use when running on cluster)
Trainer(gpus=[0, 1])

# Equivalent using a string
Trainer(gpus='0, 1')

# To use all available GPUs put -1 or ‘-1’
# equivalent to list(range(torch.cuda.available_devices()))
Trainer(gpus=-1)
```

The table below lists examples of possible input formats and how they are interpreted by Lightning. Note in particular the difference between `gpus=0`, `gpus=[0]` and `gpus="0"`.

<table>
<thead>
<tr>
<th>gpus</th>
<th>Type</th>
<th>Parsed</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>NoneType</td>
<td>None</td>
<td>CPU</td>
</tr>
<tr>
<td>0</td>
<td>int</td>
<td>None</td>
<td>CPU</td>
</tr>
<tr>
<td>3</td>
<td>int</td>
<td>[0, 1, 2]</td>
<td>first 3 GPUs</td>
</tr>
<tr>
<td>-1</td>
<td>int</td>
<td>[0, 1, 2, ...]</td>
<td>all available GPUs</td>
</tr>
<tr>
<td>[0]</td>
<td>list</td>
<td>[0]</td>
<td>GPU 0</td>
</tr>
<tr>
<td>[1, 3]</td>
<td>list</td>
<td>[1, 3]</td>
<td>GPUs 1 and 3</td>
</tr>
<tr>
<td>"0"</td>
<td>str</td>
<td>[0]</td>
<td>GPU 0</td>
</tr>
<tr>
<td>"3"</td>
<td>str</td>
<td>[3]</td>
<td>GPU 3</td>
</tr>
<tr>
<td>"1, 3"</td>
<td>str</td>
<td>[1, 3]</td>
<td>GPUs 1 and 3</td>
</tr>
<tr>
<td>"-1"</td>
<td>str</td>
<td>[0, 1, 2, ...]</td>
<td>all available GPUs</td>
</tr>
</tbody>
</table>
20.2.1 Remove CUDA flags

CUDA flags make certain GPUs visible to your script. Lightning sets these for you automatically, there’s NO NEED to do this yourself.

```python
# lightning will set according to what you give the trainer
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
```

However, when using a cluster, Lightning will NOT set these flags (and you should not either). SLURM will set these for you. For more details see the SLURM cluster guide.

20.3 Distributed modes

Lightning allows multiple ways of training

- Data Parallel (distributed_backend='dp') (multiple-gpus, 1 machine)
- DistributedDataParallel (distributed_backend='ddp') (multiple-gpus across many machines (python script based)).
- DistributedDataParallel (distributed_backend='ddp_spawn') (multiple-gpus across many machines (spawn based)).
- DistributedDataParallel 2 (distributed_backend='ddp2') (DP in a machine, DDP across machines).
- Horovod (distributed_backend='horovod') (multi-machine, multi-gpu, configured at runtime)
- TPUs (tpu_cores=8|x) (tpu or TPU pod)

Note: If you request multiple GPUs or nodes without setting a mode, DDP will be automatically used.

For a deeper understanding of what Lightning is doing, feel free to read this guide.

20.3.1 Data Parallel

DataParallel (DP) splits a batch across k GPUs. That is, if you have a batch of 32 and use DP with 2 gpus, each GPU will process 16 samples, after which the root node will aggregate the results.

Warning: DP use is discouraged by PyTorch and Lightning. Use DDP which is more stable and at least 3x faster

```python
# train on 2 GPUs (using DP mode)
trainer = Trainer(gpus=2, distributed_backend='dp')
```
20.3.2 Distributed Data Parallel

DistributedDataParallel (DDP) works as follows:

1. Each GPU across each node gets its own process.
2. Each GPU gets visibility into a subset of the overall dataset. It will only ever see that subset.
3. Each process inits the model.

Note: Make sure to set the random seed so that each model initializes with the same weights.

4. Each process performs a full forward and backward pass in parallel.
5. The gradients are synced and averaged across all processes.
6. Each process updates its optimizer.

```python
# train on 8 GPUs (same machine (ie: node))
trainer = Trainer(gpus=8, distributed_backend='ddp')

# train on 32 GPUs (4 nodes)
trainer = Trainer(gpus=8, distributed_backend='ddp', num_nodes=4)
```

This Lightning implementation of DDP calls your script under the hood multiple times with the correct environment variables. If your code does not support this (ie: jupyter notebook, colab, or a nested script without a root package), use `dp` or `ddp_spawn`.

```bash
# example for 3 GPUs DDP
MASTER_ADDR=localhost MASTER_PORT=random() WORLD_SIZE=3 NODE_RANK=0 LOCAL_RANK=0
   --python my_file.py --gpus 3 --etc
MASTER_ADDR=localhost MASTER_PORT=random() WORLD_SIZE=3 NODE_RANK=1 LOCAL_RANK=0
   --python my_file.py --gpus 3 --etc
MASTER_ADDR=localhost MASTER_PORT=random() WORLD_SIZE=3 NODE_RANK=2 LOCAL_RANK=0
   --python my_file.py --gpus 3 --etc
```

We use DDP this way because `ddp_spawn` has a few limitations (due to Python and PyTorch):

1. Since `.spawn()` trains the model in subprocesses, the model on the main process does not get updated.
2. Dataloader(num_workers=N), where N is large, bottlenecks training with DDP... ie: it will be VERY slow or won’t work at all. This is a PyTorch limitation.
3. Forces everything to be pickleable.

However, if you don’t mind these limitations, you can use `ddp_spawn`.

20.3.3 Distributed Data Parallel 2

In certain cases, it’s advantageous to use all batches on the same machine instead of a subset. For instance, you might want to compute a NCE loss where it pays to have more negative samples.

In this case, we can use DDP2 which behaves like DP in a machine and DDP across nodes. DDP2 does the following:

1. Copies a subset of the data to each node.
2. Inits a model on each node.
3. Runs a forward and backward pass using DP.
4. Syncs gradients across nodes.
5. Applies the optimizer updates.

```python
# train on 32 GPUs (4 nodes)
trainer = Trainer(gpus=8, distributed_backend='ddp2', num_nodes=4)
```

20.3.4 Distributed Data Parallel Spawn

`ddp_spawn` is exactly like `ddp` except that it uses `.spawn` to start the training processes.

Warning: It is STRONGLY recommended to use DDP for speed and performance.

```python
mp.spawn(self.ddp_train, nprocs=self.num_processes, args=(model, ))
```

If your script does not support being called from the command line (ie: it is nested without a root project module) you can use the following method:

```python
# train on 8 GPUs (same machine (ie: node))
trainer = Trainer(gpus=8, distributed_backend='ddp')
```

We STRONGLY discourage this use because it has limitations (due to Python and PyTorch):

1. The model you pass in will not update. Please save a checkpoint and restore from there.
2. Set Dataloader(num_workers=0) or it will bottleneck training.

`ddp` is MUCH faster than `ddp_spawn`. We recommend you

1. Install a top-level module for your project using setup.py

```python
# setup.py
#!/usr/bin/env python

from setuptools import setup, find_packages

setup(name='src',
      version='0.0.1',
      description='Describe Your Cool Project',
      author='',
      author_email='',
      url='https://github.com/YourSeed',  # REPLACE WITH YOUR OWN GITHUB PROJECT LINK
      install_requires=[
                        'pytorch-lightning',
                      ],
      packages=find_packages()
)
```

2. Setup your project like so:

```
/project
   /src
      some_file.py
    /or_a_folder
      setup.py
```
3. Install as a root-level package

```bash
cd /project
pip install -e .
```

You can then call your scripts anywhere

```bash
cd /project/src
python some_file.py --distributed_backend 'ddp' --gpus 8
```

20.3.5 Horovod

Horovod allows the same training script to be used for single-GPU, multi-GPU, and multi-node training.

Like Distributed Data Parallel, every process in Horovod operates on a single GPU with a fixed subset of the data. Gradients are averaged across all GPUs in parallel during the backward pass, then synchronously applied before beginning the next step.

The number of worker processes is configured by a driver application (*horovodrun* or *mpirun*). In the training script, Horovod will detect the number of workers from the environment, and automatically scale the learning rate to compensate for the increased total batch size.

Horovod can be configured in the training script to run with any number of GPUs / processes as follows:

```python
# train Horovod on GPU (number of GPUs / machines provided on command-line)
trainer = Trainer(distributed_backend='horovod', gpus=1)

# train Horovod on CPU (number of processes / machines provided on command-line)
trainer = Trainer(distributed_backend='horovod')
```

When starting the training job, the driver application will then be used to specify the total number of worker processes:

```bash
# run training with 4 GPUs on a single machine
horovodrun -np 4 python train.py

# run training with 8 GPUs on two machines (4 GPUs each)
horovodrun -np 8 -H hostname1:4,hostname2:4 python train.py
```

See the official [Horovod documentation](https://horovod.readthedocs.io/en/latest/) for details on installation and performance tuning.

20.3.6 DP/DDP2 caveats

In DP and DDP2 each GPU within a machine sees a portion of a batch. DP and ddp2 roughly do the following:

```python
def distributed_forward(batch, model):
    batch = torch.Tensor(32, 8)
    gpu_0_batch = batch[:8]
    gpu_1_batch = batch[8:16]
    gpu_2_batch = batch[16:24]
    gpu_3_batch = batch[24:]

    y_0 = model_copy_gpu_0(gpu_0_batch)
    y_1 = model_copy_gpu_1(gpu_1_batch)
    y_2 = model_copy_gpu_2(gpu_2_batch)
    y_3 = model_copy_gpu_3(gpu_3_batch)
```

(continues on next page)
return [y_0, y_1, y_2, y_3]

So, when Lightning calls any of the `training_step`, `validation_step`, `test_step` you will only be operating on one of those pieces.

```python
# the batch here is a portion of the FULL batch
def training_step(self, batch, batch_idx):
    y_0 = batch
```

For most metrics, this doesn’t really matter. However, if you want to add something to your computational graph (like softmax) using all batch parts you can use the `training_step_end` step.

```python
def training_step_end(self, outputs):
    # only use when on dp
    outputs = torch.cat(outputs, dim=1)
    softmax = softmax(outputs, dim=1)
    out = softmax.mean()
    return out
```

In pseudocode, the full sequence is:

```python
# get data
batch = next(dataloader)

# copy model and data to each gpu
batch_splits = split_batch(batch, num_gpus)
models = copy_model_to_gpus(model)

# in parallel, operate on each batch chunk
all_results = []
for gpu_num in gpus:
    batch_split = batch_splits[gpu_num]
    gpu_model = models[gpu_num]
    out = gpu_model(batch_split)
    all_results.append(out)

# use the full batch for something like softmax
full_out = model.training_step_end(all_results)
```

To illustrate why this is needed, let’s look at DataParallel

```python
def training_step(self, batch, batch_idx):
    x, y = batch
    y_hat = self(batch)

    # on dp or ddp2 if we did softmax now it would be wrong
    # because batch is actually a piece of the full batch
    return y_hat

def training_step_end(self, batch_parts_outputs):
    # batch_parts_outputs has outputs of each part of the batch

    # do softmax here
    outputs = torch.cat(outputs, dim=1)
    softmax = softmax(outputs, dim=1)
```

(continues on next page)
out = softmax.mean()
return out

If `training_step_end` is defined it will be called regardless of TPU, DP, DDP, etc… which means it will behave the same regardless of the backend.

Validation and test step have the same option when using DP.

```python
def validation_step_end(self, batch_parts_outputs):
    ...

def test_step_end(self, batch_parts_outputs):
    ...
```

20.3.7 Distributed and 16-bit precision

Due to an issue with Apex and DataParallel (PyTorch and NVIDIA issue), Lightning does not allow 16-bit and DP training. We tried to get this to work, but it’s an issue on their end.

Below are the possible configurations we support.

<table>
<thead>
<tr>
<th>1 GPU</th>
<th>1+ GPUs</th>
<th>DP</th>
<th>DDP</th>
<th>16-bit</th>
<th>command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Trainer(gpus=1)</td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Trainer(gpus=1, use_amp=True)</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td>Trainer(gpus=k, distributed_backend='dp')</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
<td>Trainer(gpus=k, distributed_backend='ddp')</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>Trainer(gpus=k, distributed_backend='ddp', use_amp=True)</td>
</tr>
</tbody>
</table>

20.3.8 Implement Your Own Distributed (DDP) training

If you need your own way to init PyTorch DDP you can override `pytorch_lightning.core.LightningModule()`.

If you also need to use your own DDP implementation, override: `pytorch_lightning.core.LightningModule.configure_ddp()`.

20.4 Batch size

When using distributed training make sure to modify your learning rate according to your effective batch size.

Let’s say you have a batch size of 7 in your dataloader.

```python
class LitModel(LightningModule):
    def train_dataloader(self):
        return Dataset(..., batch_size=7)
```

In (DDP, Horovod) your effective batch size will be $7 \times \text{gpus} \times \text{num_nodes}$.

20.4. Batch size
effective batch size = 7 * 8
Trainer(gpus=8, distributed_backend='ddp|horovod')

effective batch size = 7 * 8 * 10
Trainer(gpus=8, num_nodes=10, distributed_backend='ddp|horovod')

In DDP2, your effective batch size will be 7 * num_nodes. The reason is that the full batch is visible to all GPUs on
the node when using DDP2.

effective batch size = 7
Trainer(gpus=8, distributed_backend='ddp2')

effective batch size = 7 * 10
Trainer(gpus=8, num_nodes=10, distributed_backend='ddp2')

Note: Huge batch sizes are actually really bad for convergence. Check out: Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour

20.5 PytorchElastic

Lightning supports the use of PytorchElastic to enable fault-tolerent and elastic distributed job scheduling. To use it,
specify the ‘ddp’ or ‘ddp2’ backend and the number of gpus you want to use in the trainer.

Trainer(gpus=8, distributed_backend='ddp')

Following the PytorchElastic Quickstart documentation, you then need to start a single-node etcd server on one of the
hosts:

```
etcd --enable-v2
   --listen-client-urls http://0.0.0.0:2379,http://127.0.0.1:4001
   --advertise-client-urls PUBLIC_HOSTNAME:2379
```

And then launch the elastic job with:

```
python -m torchelastic.distributed.launch
   --nnodes=MIN_SIZE:MAX_SIZE
   --nproc_per_node=TRAINERS_PER_NODE
   --rdzv_id=JOB_ID
   --rdzv_backend=etcd
   --rdzv_endpoint=ETCD_HOST:ETCD_PORT
   YOUR_LIGHTNING_TRAINING_SCRIPT.py (--arg1 ... train script args...)
```

See the official PytorchElastic documentation for details on installation and more use cases.
20.6 Jupyter Notebooks

Unfortunately any `ddp_` is not supported in jupyter notebooks. Please use `dp` for multiple GPUs. This is a known Jupyter issue. If you feel like taking a stab at adding this support, feel free to submit a PR!

20.7 Pickle Errors

Multi-GPU training sometimes requires your model to be pickled. If you run into an issue with pickling try the following to figure out the issue

```python
import pickle

model = YourModel()
pickle.dumps(model)
```

However, if you use `ddp` the pickling requirement is not there and you should be fine. If you use `ddp_spawn` the pickling requirement remains. This is a limitation of Python.
Lightning supports multiple dataloaders in a few ways.

1. Create a dataloader that iterates both datasets under the hood.

2. In the validation and test loop you also have the option to return multiple dataloaders which lightning will call sequentially.

21.1 Multiple training dataloaders

For training, the best way to use multiple-dataloaders is to create a Dataloader class which wraps both your dataloaders. (This of course also works for testing and validation dataloaders).

```python
class ConcatDataset(torch.utils.data.Dataset):
    def __init__(self, *datasets):
        self.datasets = datasets

    def __getitem__(self, i):
        return tuple(d[i] for d in self.datasets)

    def __len__(self):
        return min(len(d) for d in self.datasets)

class LitModel(LightningModule):
    def train_dataloader(self):
        concat_dataset = ConcatDataset(
            datasets.ImageFolder(traindir_A),
            datasets.ImageFolder(traindir_B)
        )

        loader = torch.utils.data.DataLoader(
            concat_dataset,
            batch_size=args.batch_size,
            shuffle=True,
            num_workers=args.workers,
            pin_memory=True
        )

        return loader
```

(continues on next page)
def val_dataloader(self):
 # SAME
 ...

def test_dataloader(self):
 # SAME
 ...

21.2 Test/Val dataloaders

For validation, test dataloaders lightning also gives you the additional option of passing in multiple dataloaders back from each call.

See the following for more details:

- val_dataloader()
- test_dataloader()

```python
def val_dataloader(self):
    loader_1 = Dataloader()
    loader_2 = Dataloader()
    return [loader_1, loader_2]
```
SAVING AND LOADING WEIGHTS

Lightning can automate saving and loading checkpoints.

22.1 Checkpoint saving

A Lightning checkpoint has everything needed to restore a training session including:

- 16-bit scaling factor (apex)
- Current epoch
- Global step
- Model state_dict
- State of all optimizers
- State of all learningRate schedulers
- State of all callbacks
- The hyperparameters used for that model if passed in as hparams (Argparse.Namespace)

22.1.1 Automatic saving

Checkpointing is enabled by default to the current working directory. To change the checkpoint path pass in:

```python
trainer = Trainer(default_root_dir='your/path/to/save/checkpoints')
```

To modify the behavior of checkpointing pass in your own callback.

```python
from pytorch_lightning.callbacks import ModelCheckpoint

# DEFAULTS used by the Trainer
checkpoint_callback = ModelCheckpoint(
    filepath=os.getcwd(),
    save_top_k=True,
    verbose=True,
    monitor='val_loss',
    mode='min',
    prefix='',
)

trainer = Trainer(checkpoint_callback=checkpoint_callback)
```
Or disable it by passing

```python
trainer = Trainer(checkpoint_callback=False)
```

The Lightning checkpoint also saves the arguments passed into the LightningModule init under the `module_arguments` key in the checkpoint.

```python
class MyLightningModule(LightningModule):
    def __init__(self, learning_rate, *args, **kwargs):
        super().__init__()
        # all init args were saved to the checkpoint
    checkpoint = torch.load(CKPT_PATH)
    print(checkpoint['module_arguments'])
    # {'learning_rate': the_value}
```

22.1.2 Manual saving

You can manually save checkpoints and restore your model from the checkpointed state.

```python
model = MyLightningModule(hparams)
trainer.fit(model)
trainer.save_checkpoint("example.ckpt")
n_model = MyModel.load_from_checkpoint(checkpoint_path="example.ckpt")
```

22.2 Checkpoint Loading

To load a model along with its weights, biases and `module_arguments` use following method.

```python
model = MyLightningModule.load_from_checkpoint(PATH)

print(model.learning_rate)
# prints the learning_rate you used in this checkpoint
model.eval()
y_hat = model(x)
```

But if you don’t want to use the values saved in the checkpoint, pass in your own here

```python
class LitModel(LightningModule):
    def __init__(self, in_dim, out_dim):
        super().__init__()
        self.in_dim = in_dim
        self.out_dim = out_dim
        self.l1 = nn.Linear(self.in_dim, self.out_dim)
```

you can restore the model like this

```python
# if you train and save the model like this it will use these values when loading
# the weights. But you can overwrite this
LitModel(in_dim=32, out_dim=10)
```

(continues on next page)
uses in_dim=32, out_dim=10
model = LitModel.load_from_checkpoint(PATH)

uses in_dim=128, out_dim=10
model = LitModel.load_from_checkpoint(PATH, in_dim=128, out_dim=10)

22.3 Restoring Training State

If you don’t just want to load weights, but instead restore the full training, do the following:

```python
model = LitModel()
trainer = Trainer(resume_from_checkpoint='some/path/to/my_checkpoint.ckpt')

# automatically restores model, epoch, step, LR schedulers, apex, etc...
trainer.fit(model)
```
23.1 Learning rate scheduling

Every optimizer you use can be paired with any LearningRateScheduler.

```python
# no LR scheduler
def configure_optimizers(self):
    return Adam(...)

# Adam + LR scheduler
def configure_optimizers(self):
    optimizer = Adam(...)
    scheduler = ReduceLROnPlateau(optimizer, ...)
    return [optimizer], [scheduler]

# Two optimizers each with a scheduler
def configure_optimizers(self):
    optimizer1 = Adam(...)
    optimizer2 = SGD(...)
    scheduler1 = ReduceLROnPlateau(optimizer1, ...)
    scheduler2 = LambdaLR(optimizer2, ...)
    return [optimizer1, optimizer2], [scheduler1, scheduler2]

# Same as above with additional params passed to the first scheduler
def configure_optimizers(self):
    optimizers = [Adam(...), SGD(...)]
    schedulers = [
        
    
    ],
    LambdaLR(optimizers[1], ...)
    
    return optimizers, schedulers
```
23.2 Use multiple optimizers (like GANs)

To use multiple optimizers return > 1 optimizers from `pytorch_lightning.core.LightningModule.configure_optimizers()`.

```python
# one optimizer
def configure_optimizers(self):
    return Adam(...)

# two optimizers, no schedulers
def configure_optimizers(self):
    return Adam(...), SGD(...)

# Two optimizers, one scheduler for adam only
def configure_optimizers(self):
    return [Adam(...), SGD(...)], [ReduceLROnPlateau()]
```

Lightning will call each optimizer sequentially:

```python
for epoch in epochs:
    for batch in data:
        for opt in optimizers:
            train_step(opt)
            opt.step()

    for scheduler in scheduler:
        scheduler.step()
```

23.3 Step optimizers at arbitrary intervals

To do more interesting things with your optimizers such as learning rate warm-up or odd scheduling, override the `optimizer_step()` function.

For example, here step optimizer A every 2 batches and optimizer B every 4 batches.

```python
def optimizer_step(self, current_epoch, batch_nb, optimizer, optimizer_i, second_order_closure=None):
    optimizer.step()
    optimizer.zero_grad()

# Alternating schedule for optimizer steps (ie: GANs)
def optimizer_step(self, current_epoch, batch_nb, optimizer, optimizer_i, second_order_closure=None):
    # update generator opt every 2 steps
    if optimizer_i == 0:
        if batch_nb % 2 == 0:
            optimizer.step()
            optimizer.zero_grad()

    # update discriminator opt every 4 steps
    if optimizer_i == 1:
        if batch_nb % 4 == 0:
            optimizer.step()
```

(continues on next page)
Here we add a learning-rate warm up

```python
# learning rate warm-up
def optimizer_step(self, current_epoch, batch_nb, optimizer, optimizer_i, second_order_closure=None):
    # warm up lr
    if self.trainer.global_step < 500:
        lr_scale = min(1., float(self.trainer.global_step + 1) / 500.)
        for pg in optimizer.param_groups:
            pg['lr'] = lr_scale * self.hparams.learning_rate

    # update params
    optimizer.step()
    optimizer.zero_grad()
```
Performance and Bottleneck Profiler

Profiling your training run can help you understand if there are any bottlenecks in your code.

24.1 Built-in checks

PyTorch Lightning supports profiling standard actions in the training loop out of the box, including:

- on_epoch_start
- on_epoch_end
- on_batch_start
- tbptt_split_batch
- model_forward
- model_backward
- on_after_backward
- optimizer_step
- on_batch_end
- training_step_end
- on_training_end

24.2 Enable simple profiling

If you only wish to profile the standard actions, you can set `profiler=True` when constructing your `Trainer` object.

```python
trainer = Trainer(..., profiler=True)
```

The profiler’s results will be printed at the completion of a training `fit()`.

<p>| Profiler Report |
|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Action</th>
<th>Mean duration (s)</th>
<th>Total time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>on_epoch_start</td>
<td>5.993e-06</td>
<td>5.993e-06</td>
</tr>
<tr>
<td>get_train_batch</td>
<td>0.0087412</td>
<td>16.398</td>
</tr>
<tr>
<td>on_batch_start</td>
<td>5.0865e-06</td>
<td>0.095372</td>
</tr>
</tbody>
</table>

(continues on next page)
24.3 Advanced Profiling

If you want more information on the functions called during each event, you can use the `AdvancedProfiler`. This option uses Python’s `cProfiler` to provide a report of time spent on each function called within your code.

```python
profiler = AdvancedProfiler()
trainer = Trainer(..., profiler=profiler)
```

The profiler’s results will be printed at the completion of a training `fit()`. This profiler report can be quite long, so you can also specify an `output_filename` to save the report instead of logging it to the output in your terminal. The output below shows the profiling for the action `get_train_batch`.

<table>
<thead>
<tr>
<th>ncalls</th>
<th>tottime</th>
<th>percall</th>
<th>cumtime</th>
<th>percall</th>
<th>filename:lineno(function)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3752/1876</td>
<td>0.011</td>
<td>0.000</td>
<td>18.887</td>
<td>0.010</td>
<td>{built-in method builtins.next}</td>
</tr>
<tr>
<td>1876</td>
<td>0.008</td>
<td>0.000</td>
<td>18.877</td>
<td>0.010</td>
<td>dataloader.py:344(next)</td>
</tr>
<tr>
<td>1875</td>
<td>0.074</td>
<td>0.000</td>
<td>18.869</td>
<td>0.010</td>
<td>dataloader.py:383(_next_data)</td>
</tr>
<tr>
<td>1875</td>
<td>0.012</td>
<td>0.000</td>
<td>18.721</td>
<td>0.010</td>
<td>fetch.py:42(fetch)</td>
</tr>
<tr>
<td>1875</td>
<td>0.084</td>
<td>0.000</td>
<td>18.290</td>
<td>0.010</td>
<td>fetch.py:44(<listcomp>)</td>
</tr>
<tr>
<td>60000</td>
<td>1.759</td>
<td>0.000</td>
<td>18.206</td>
<td>0.000</td>
<td>mnist.py:80(getitem)</td>
</tr>
<tr>
<td>60000</td>
<td>0.267</td>
<td>0.000</td>
<td>13.022</td>
<td>0.000</td>
<td>transforms.py:68(call)</td>
</tr>
<tr>
<td>60000</td>
<td>0.182</td>
<td>0.000</td>
<td>7.020</td>
<td>0.000</td>
<td>transforms.py:93(call)</td>
</tr>
<tr>
<td>60000</td>
<td>1.651</td>
<td>0.000</td>
<td>6.839</td>
<td>0.000</td>
<td>functional.py:42(to_tensor)</td>
</tr>
<tr>
<td>60000</td>
<td>0.260</td>
<td>0.000</td>
<td>5.734</td>
<td>0.000</td>
<td>transforms.py:167(call)</td>
</tr>
</tbody>
</table>

You can also reference this profiler in your LightningModule to profile specific actions of interest. If you don’t want to always have the profiler turned on, you can optionally pass a `PassThroughProfiler` which will allow you to skip profiling without having to make any code changes. Each profiler has a method `profile()` which returns a context handler. Simply pass in the name of your action that you want to track and the profiler will record performance for code executed within this context.

```python
from pytorch_lightning.profiler import Profiler, PassThroughProfiler

class MyModel(LightningModule):
    def __init__(self, profiler=None):
        self.profiler = profiler or PassThroughProfiler()

    def custom_processing_step(self, data):
        with self.profiler.profile('my_custom_action '):
            # custom processing step
```

(continues on next page)
```python
return data

profiler = Profiler()
model = MyModel(profiler)
trainer = Trainer(profiler=profiler, max_epochs=1)
```

```python
class pytorch_lightning.profiler.BaseProfiler(output_streams=None)
    Bases: abc.ABC

    If you wish to write a custom profiler, you should inherit from this class.

    Parameters:
    stream_out: callable

    describe()  # Logs a profile report after the conclusion of the training run.
    Return type: None

    profile(action_name)  # Yields a context manager to encapsulate the scope of a profiled action.
    Example:
    *with self.profile('load training data'):
    # load training data code

    The profiler will start once you’ve entered the context and will automatically stop once you exit the code block.
    Return type: None

    abstract start(action_name)  # Defines how to start recording an action.
    Return type: None

    abstract stop(action_name)  # Defines how to record the duration once an action is complete.
    Return type: None

    abstract summary()  # Create profiler summary in text format.
    Return type: str

class pytorch_lightning.profiler.SimpleProfiler(output_filename=None)
    Bases: pytorch_lightning.profiler.profilers.BaseProfiler

    This profiler simply records the duration of actions (in seconds) and reports the mean duration of each action and the total time spent over the entire training run.

    Parameters:
    output_filename: optionally save profile results to file instead of printing to std out when training is finished.

    describe()  # Logs a profile report after the conclusion of the training run.

    start(action_name)  # Defines how to start recording an action.
```

24.3. Advanced Profiling
Return type: None

stop *(action_name)*
Defines how to record the duration once an action is complete.

Return type: None

summary*()
Create profiler summary in text format.

Return type: str

AdvancedProfiler

class `pytorch_lightning.profiler.**AdvancedProfiler**` *(output_filename=None, line_count_restriction=1.0)*

Bases: `pytorch_lightning.profiler.profilers.**BaseProfiler**`

This profiler uses Python’s cProfiler to record more detailed information about time spent in each function call recorded during a given action. The output is quite verbose and you should only use this if you want very detailed reports.

Parameters

- **output_filename** *(Optional[str])* – optionally save profile results to file instead of printing to std out when training is finished.

- **line_count_restriction** *(float)* – this can be used to limit the number of functions reported for each action. either an integer (to select a count of lines), or a decimal fraction between 0.0 and 1.0 inclusive (to select a percentage of lines)

describe*()
Logs a profile report after the conclusion of the training run.

start *(action_name)*
Defines how to start recording an action.

Return type: None

stop *(action_name)*
Defines how to record the duration once an action is complete.

Return type: None

summary*()
Create profiler summary in text format.

Return type: str

PassThroughProfiler

class `pytorch_lightning.profiler.**PassThroughProfiler**`

Bases: `pytorch_lightning.profiler.profilers.**BaseProfiler**`

This class should be used when you don’t want the (small) overhead of profiling. The Trainer uses this class by default.

Params: stream_out: callable

start *(action_name)*
Defines how to start recording an action.

Return type: None

stop *(action_name)*
Defines how to record the duration once an action is complete.

Return type: None
summary()
Create profiler summary in text format.

Return type str
Make sure you are running on a machine that has at least one GPU. Lightning handles all the NVIDIA flags for you, there’s no need to set them yourself.

```python
# train on 1 GPU (using dp mode)
trainer = Trainer(gpus=1)
```
Lightning has built in support for dealing with sequential data.

26.1 Packed sequences as inputs

When using PackedSequence, do 2 things:

1. return either a padded tensor in dataset or a list of variable length tensors in the dataloader collate_fn (example above shows the list implementation).

2. Pack the sequence in forward or training and validation steps depending on use case.

```python
# For use in dataloader
def collate_fn(batch):
    x = [item[0] for item in batch]
    y = [item[1] for item in batch]
    return x, y

# In module
def training_step(self, batch, batch_nb):
    x = rnn.pack_sequence(batch[0], enforce_sorted=False)
    y = rnn.pack_sequence(batch[1], enforce_sorted=False)
```

26.2 Truncated Backpropagation Through Time

There are times when multiple backwards passes are needed for each batch. For example, it may save memory to use Truncated Backpropagation Through Time when training RNNs.

Lightning can handle TBTT automatically via this flag.

```python
# DEFAULT (single backwards pass per batch)
trainer = Trainer(truncated_bptt_steps=None)

# (split batch into sequences of size 2)
trainer = Trainer(truncated_bptt_steps=2)
```
Note: If you need to modify how the batch is split, override \texttt{pytorch_lightning.core.LightningModule.tbptt_split_batch()}.

Note: Using this feature requires updating your LightningModule's \texttt{pytorch_lightning.core.LightningModule.training_step()} to include a \texttt{hiddens} arg.

26.3 Iterable Datasets

Lightning supports using IterableDatasets as well as map-style Datasets. IterableDatasets provide a more natural option when using sequential data.

Note: When using an IterableDataset you must set the \texttt{val_check_interval} to 1.0 (the default) or to an int (specifying the number of training batches to run before validation) when initializing the Trainer. This is due to the fact that the IterableDataset does not have a \texttt{__len__} and Lightning requires this to calculate the validation interval when \texttt{val_check_interval} is less than one.

```python
# IterableDataset
class CustomDataset(IterableDataset):
    def __init__(self, data):
        self.data_source = data
    def __iter__(self):
        return iter(self.data_source)

# Setup DataLoader
def train_dataloader(self):
    seq_data = ['A', 'long', 'time', 'ago', 'in', 'a', 'galaxy', 'far', 'far', 'away']
    iterable_dataset = CustomDataset(seq_data)
    dataloader = DataLoader(dataset=iterable_dataset, batch_size=5)
    return dataloader

# Set val\_check\_interval
trainer = Trainer(val_check_interval=100)
```
Lightning implements various tricks to help during training

27.1 Accumulate gradients

Accumulated gradients runs K small batches of size N before doing a backwards pass. The effect is a large effective batch size of size $K \times N$.

See also:

```python
# DEFAULT (ie: no accumulated grads)
trainer = Trainer(accumulate_grad_batches=1)
```

27.2 Gradient Clipping

Gradient clipping may be enabled to avoid exploding gradients. Specifically, this will clip the gradient norm computed over all model parameters together.

See also:

```python
# DEFAULT (ie: don't clip)
trainer = Trainer(gradient_clip_val=0)

# clip gradients with norm above 0.5
trainer = Trainer(gradient_clip_val=0.5)
```
27.3 Auto scaling of batch size

Auto scaling of batch size may be enabled to find the largest batch size that fits into memory. Larger batch size often yields better estimates of gradients, but may also result in longer training time. Inspired by https://github.com/BlackHC/toma.

See also:

```python
Trainer

# DEFAULT (ie: don't scale batch size automatically)
trainer = Trainer(auto_scale_batch_size=None)

# Autoscale batch size
trainer = Trainer(auto_scale_batch_size=None|'power'|'binsearch')
```

Currently, this feature supports two modes 'power' scaling and 'binsearch' scaling. In 'power' scaling, starting from a batch size of 1 keeps doubling the batch size until an out-of-memory (OOM) error is encountered. Setting the argument to 'binsearch' continues to finetune the batch size by performing a binary search.

Note: This feature expects that a `batch_size` field in the `hparams` of your model, i.e., `model.hparams.batch_size` should exist and will be overridden by the results of this algorithm. Additionally, your `train_dataloader()` method should depend on this field for this feature to work i.e.

```python
def train_dataloader(self):
    return DataLoader(train_dataset, batch_size=self.batch_size)
```

Warning: Due to these constraints, this feature does *NOT* work when passing dataloaders directly to `.fit()`.

The scaling algorithm has a number of parameters that the user can control by invoking the trainer method `.scale_batch_size` themself (see description below).

```python
# Use default in trainer construction
trainer = Trainer()

# Invoke method
new_batch_size = trainer.scale_batch_size(model, ...)

# Override old batch size
model.hparams.batch_size = new_batch_size

# Fit as normal
trainer.fit(model)
```

The algorithm in short works by:

1. Dumping the current state of the model and trainer
2. Iteratively until convergence or maximum number of tries `max_trials` (default 25) has been reached:
 - Call `fit()` method of trainer. This evaluates `steps_per_trial` (default 3) number of training steps. Each training step can trigger an OOM error if the tensors (training batch, weights, gradients ect.) allocated during the steps have a too large memory footprint.
• If an OOM error is encountered, decrease batch size else increase it. How much the batch size is increased/decreased is determined by the choosen stratgy.

3. The found batch size is saved to `model.hparams.batch_size`

4. Restore the initial state of model and trainer

```python
class pytorch_lightning.trainer.training_tricks.TrainerTrainingTricksMixin
Bases: abc.ABC

abstract fit(*args)
    Warning: this is just empty shell for code implemented in other class.

abstract get_model()
    Warning: this is just empty shell for code implemented in other class.

    Return type LightningModule

abstract restore(*args)
    Warning: this is just empty shell for code implemented in other class.

abstract save_checkpoint(*args)
    Warning: this is just empty shell for code implemented in other class.

scale_batch_size(model, mode='power', steps_per_trial=3, init_val=2, max_trials=25, batch_arg_name='batch_size')
    Will iteratively try to find the largest batch size for a given model that does not give an out of memory (OOM) error.

Parameters

• model (LightningModule) – Model to fit.
• mode (str) – string setting the search mode. Either power or binsearch. If mode is power we keep multiplying the batch size by 2, until we get an OOM error. If mode is ‘binsearch’, we will initially also keep multiplying by 2 and after encountering an OOM error do a binary search between the last successful batch size and the batch size that failed.
• steps_per_trial (int) – number of steps to run with a given batch size. Ideally 1 should be enough to test if a OOM error occurs, however in practise a few are needed
• init_val (int) – initial batch size to start the search with
• max_trials (int) – max number of increase in batch size done before algorithm is terminated
```

Warning: Batch size finder is not supported for DDP yet, it is coming soon.
28.1 Using Pretrained Models

Sometimes we want to use a LightningModule as a pretrained model. This is fine because a LightningModule is just a `torch.nn.Module`!

Note: Remember that a LightningModule is EXACTLY a torch.nn.Module but with more capabilities.

Let's use the `AutoEncoder` as a feature extractor in a separate model.

```python
class Encoder(torch.nn.Module):
    ...

class AutoEncoder(LightningModule):
    def __init__(self):
        self.encoder = Encoder()
        self.decoder = Decoder()

class CIFAR10Classifier(LightningModule):
    def __init__(self):
        # init the pretrained LightningModule
        self.feature_extractor = AutoEncoder.load_from_checkpoint(PATH)
        self.feature_extractor.freeze()

        # the autoencoder outputs a 100-dim representation and CIFAR-10 has 10 classes
        self.classifier = nn.Linear(100, 10)

    def forward(self, x):
        representations = self.feature_extractor(x)
        x = self.classifier(representations)
        ...
```

We used our pretrained Autoencoder (a LightningModule) for transfer learning!
28.2 Example: Imagenet (computer Vision)

```python
import torchvision.models as models

class ImagenetTransferLearning(LightningModule):
    def __init__(self):
        # init a pretrained resnet
        num_target_classes = 10
        self.feature_extractor = models.resnet50(
            pretrained=True,
            num_classes=num_target_classes)
        self.feature_extractor.eval()

        # use the pretrained model to classify cifar-10 (10 image classes)
        self.classifier = nn.Linear(2048, num_target_classes)

    def forward(self, x):
        representations = self.feature_extractor(x)
        x = self.classifier(representations)
```

Finetune

```python
model = ImagenetTransferLearning()
trainer = Trainer()
trainer.fit(model)
```

And use it to predict your data of interest

```python
model = ImagenetTransferLearning.load_from_checkpoint(PATH)
model.freeze()

x = some_images_from_cifar10()
predictions = model(x)
```

We used a pretrained model on imagenet, finetuned on CIFAR-10 to predict on CIFAR-10. In the non-academic world we would finetune on a tiny dataset you have and predict on your dataset.

28.3 Example: BERT (NLP)

Lightning is completely agnostic to what’s used for transfer learning so long as it is a `torch.nn.Module` subclass.

Here’s a model that uses Huggingface transformers.

```python
class BertMNLIFinetuner(LightningModule):
    def __init__(self):
        super().__init__()

        self.bert = BertModel.from_pretrained('bert-base-cased', output_attentions=True)
        self.W = nn.Linear(bert.config.hidden_size, 3)
        self.num_classes = 3
```

(continues on next page)
def forward(self, input_ids, attention_mask, token_type_ids):
 h, _, attn = self.bert(input_ids=input_ids,
 attention_mask=attention_mask,
 token_type_ids=token_type_ids)

 h_cls = h[:, 0]
 logits = self.W(h_cls)
 return logits, attn
Lightning supports running on TPUs. At this moment, TPUs are available on Google Cloud (GCP), Google Colab and Kaggle Environments. For more information on TPUs watch this video.

29.1 Live demo

Check out this Google Colab to see how to train MNIST on TPUs.

29.2 TPU Terminology

A TPU is a Tensor processing unit. Each TPU has 8 cores where each core is optimized for 128x128 matrix multiplies. In general, a single TPU is about as fast as 5 V100 GPUs!

A TPU pod hosts many TPUs on it. Currently, TPU pod v2 has 2048 cores! You can request a full pod from Google cloud or a “slice” which gives you some subset of those 2048 cores.

29.3 How to access TPUs

To access TPUs there are two main ways.

1. Using google colab.
29.4 Colab TPUs

Colab is like a jupyter notebook with a free GPU or TPU hosted on GCP.

To get a TPU on colab, follow these steps:

2. Click “new notebook” (bottom right of pop-up).
3. Click runtime > change runtime settings. Select Python 3, and hardware accelerator “TPU”. This will give you a TPU with 8 cores.
4. Next, insert this code into the first cell and execute. This will install the xla library that interfaces between PyTorch and the TPU.

```bash
!python pytorch-xla-env-setup.py --version nightly --apt-packages libomp5
libopenblas-dev
```

5. Once the above is done, install PyTorch Lightning (v 0.7.0+).

```bash
!pip install pytorch-lightning
```

6. Then set up your LightningModule as normal.

29.5 DistributedSamplers

Lightning automatically inserts the correct samplers - no need to do this yourself!

Usually, with TPUs (and DDP), you would need to define a DistributedSampler to move the right chunk of data to the appropriate TPU. As mentioned, this is not needed in Lightning

Note: Don’t add distributedSamplers. Lightning does this automatically.

If for some reason you still need to, this is how to construct the sampler for TPU use

```python
import torch_xla.core.xla_model as xm

def train_dataloader(self):
    dataset = MNIST(
        os.getcwd(),
        train=True,
        download=True,
        transform=transforms.ToTensor()
    )

    # required for TPU support
    sampler = None
    if use_tpu:
        sampler = torch.utils.data.distributed.DistributedSampler(
            dataset,
            (continues on next page)
num_replicas=xm.xrt_world_size(),
    rank=xm.get_ordinal(),
    shuffle=True
)

loader = DataLoader(
    dataset,
    sampler=sampler,
    batch_size=32
)

    return loader

Configure the number of TPU cores in the trainer. You can only choose 1 or 8. To use a full TPU pod skip to the TPU pod section.

```python
import pytorch_lightning as pl
my_model = MyLightningModule()
trainer = pl.Trainer(tpu_cores=8)
trainer.fit(my_model)
```

That’s it! Your model will train on all 8 TPU cores.

## 29.6 Single TPU core training

Lightning supports training on a single TPU core. Just pass the TPU core ID [1-8] in a list.

```python
trainer = pl.Trainer(tpu_cores=[1])
```

## 29.7 Distributed Backend with TPU

The `distributed_backend` option used for GPUs does not apply to TPUs. TPUs work in DDP mode by default (distributing over each core)

## 29.8 TPU Pod

To train on more than 8 cores, your code actually doesn’t change! All you need to do is submit the following command:

```bash
$ python -m torch_xla.distributed.xla_dist
--tpu=$TPU_POD_NAME
--conda-env=torch-xla-nightly
-- python /usr/share/torch-xla-0.5/pytorch/xla/test/test_train_imagenet.py --fake_data
```
29.9 16 bit precision

Lightning also supports training in 16-bit precision with TPUs. By default, TPU training will use 32-bit precision. To enable 16-bit, also set the 16-bit flag.

```python
import pytorch_lightning as pl

my_model = MyLightningModule()
trainer = pl.Trainer(tpu_cores=8, precision=16)
trainer.fit(my_model)
```

Under the hood the xla library will use the bfloat16 type.

---

29.10 About XLA

XLA is the library that interfaces PyTorch with the TPUs. For more information check out XLA.

Guide for troubleshooting XLA
Lightning forces the user to run the test set separately to make sure it isn’t evaluated by mistake.

### 30.1 Test after fit

To run the test set after training completes, use this method.

```python
run full training
trainer.fit(model)

(1) load the best checkpoint automatically (lightning tracks this for you)
trainer.test()

(2) don't load a checkpoint, instead use the model with the latest weights
trainer.test(ckpt_path=None)

(3) test using a specific checkpoint
trainer.test(ckpt_path='/path/to/my_checkpoint.ckpt')

(4) test with an explicit model (will use this model and not load a checkpoint)
trainer.test(model)
```

### 30.2 Test multiple models

You can run the test set on multiple models using the same trainer instance.

```python
model1 = LitModel()
model2 = GANModel()

trainer = Trainer()
trainer.test(model1)
trainer.test(model2)
```
30.3 Test pre-trained model

To run the test set on a pre-trained model, use this method.

```python
model = MyLightningModule.load_from_checkpoint(
 checkpoint_path='/path/to/pytorch_checkpoint.ckpt',
 hparams_file='/path/to/test_tube/experiment/version/hparams.yaml',
 map_location=None
)

init trainer with whatever options
trainer = Trainer(...)

test (pass in the model)
trainer.test(model)
```

In this case, the options you pass to trainer will be used when running the test set (ie: 16-bit, dp, ddp, etc...)

30.4 Test with additional data loaders

You can still run inference on a test set even if the `test_dataloader` method hasn’t been defined within your `LightningModule` instance. This would be the case when your test data is not available at the time your model was declared.

```python
setup your data loader
test = DataLoader(...)

test (pass in the loader)
trainer.test(test_dataloaders=test)
```

You can either pass in a single dataloader or a list of them. This optional named parameter can be used in conjunction with any of the above use cases.
CONTRIBUTOR COVENANT CODE OF CONDUCT

31.1 Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation.

31.2 Our Standards

Examples of behavior that contributes to creating a positive environment include:

- Using welcoming and inclusive language
- Being respectful of differing viewpoints and experiences
- Gracefully accepting constructive criticism
- Focusing on what is best for the community
- Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

- The use of sexualized language or imagery and unwelcome sexual attention or advances
- Trolling, insulting/derogatory comments, and personal or political attacks
- Public or private harassment
- Publishing others’ private information, such as a physical or electronic address, without explicit permission
- Other conduct which could reasonably be considered inappropriate in a professional setting

31.3 Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.
31.4 Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers.

31.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at waf2107@columbia.edu. All complaints will be reviewed and investigated and will result in a response that is deemed necessary and appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project’s leadership.

31.6 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see https://www.contributor-covenant.org/faq
Welcome to the PyTorch Lightning community! We’re building the most advanced research platform on the planet to implement the latest, best practices that the amazing PyTorch team rolls out!

### 32.1 Main Core Value: One less thing to remember

Simplify the API as much as possible from the user perspective. Any additions or improvements should minimize the things the user needs to remember.

For example: One benefit of the validation_step is that the user doesn’t have to remember to set the model to .eval(). This helps users avoid all sorts of subtle errors.

### 32.2 Lightning Design Principles

We encourage all sorts of contributions you’re interested in adding! When coding for lightning, please follow these principles.

#### 32.2.1 No PyTorch Interference

We don’t want to add any abstractions on top of pure PyTorch. This gives researchers all the control they need without having to learn yet another framework.

#### 32.2.2 Simple Internal Code

It’s useful for users to look at the code and understand very quickly what’s happening. Many users won’t be engineers. Thus we need to value clear, simple code over condensed ninja moves. While that’s super cool, this isn’t the project for that :)


32.2.3 Force User Decisions To Best Practices

There are 1,000 ways to do something. However, eventually one popular solution becomes standard practice, and everyone follows. We try to find the best way to solve a particular problem, and then force our users to use it for readability and simplicity. A good example is accumulated gradients. There are many different ways to implement it, we just pick one and force users to use it. A bad forced decision would be to make users use a specific library to do something.

When something becomes a best practice, we add it to the framework. This is usually something like bits of code in utils or in the model file that everyone keeps adding over and over again across projects. When this happens, bring that code inside the trainer and add a flag for it.

32.2.4 Simple External API

What makes sense to you may not make sense to others. When creating an issue with an API change suggestion, please validate that it makes sense for others. Treat code changes the way you treat a startup: validate that it’s a needed feature, then add if it makes sense for many people.

32.2.5 Backward-compatible API

We all hate updating our deep learning packages because we don’t want to refactor a bunch of stuff. In Lightning, we make sure every change we make which could break an API is backwards compatible with good deprecation warnings.

You shouldn’t be afraid to upgrade Lightning :)

32.2.6 Gain User Trust

As a researcher you can’t have any part of your code going wrong. So, make thorough tests to ensure that every implementation of a new trick or subtle change is correct.

32.2.7 Interoperability

Have a favorite feature from other libraries like fast.ai or transformers? Those should just work with lightning as well. Grab your favorite model or learning rate scheduler from your favorite library and run it in Lightning.

32.3 Contribution Types

We are currently looking for help implementing new features or adding bug fixes.

A lot of good work has already been done in project mechanics (requirements/base.txt, setup.py, pep8, badges, ci, etc…) so we’re in a good state there thanks to all the early contributors (even pre-beta release)!
32.3.1 Bug Fixes:

1. Submit a github issue - try to describe what happened so others can reproduce it too (config, code samples, expected vs. actual behaviour). Note, that the sample code shall be minimal and if needed with publicly available data.

2. Try to fix it or recommend a solution… We highly recommend to use test driven approach
   • convert your minimal code example to a unit/integration test with assert on expected results
   • start with debugging the issue… you can run just this particular test in your IDE and draft a fix
   • verify that your test case fails on the master branch and only passes with the fix applied

3. Submit a PR!

   Note, even if you do not find the solution, sending a PR with a test covering the issue is a valid contribution and we can help you or finish it with you :]

32.3.2 New Features:

1. Submit a github issue - describe what is the motivation of such feature (adding the use case or an example is helpful).

2. Let’s discuss to determine the feature scope.

3. Submit a PR! (with updated docs and tests).

32.4 Guidelines

32.4.1 Original code

All added or edited code shall be the own original work of the particular contributor. If you use some third-party implementation, all such blocks/functions/modules shall be properly referred and if possible also agreed by code’s author. For example - This code is inspired from http://... In case you adding new dependencies, make sure that they are compatible with the actual PyTorch Lightning license (ie. dependencies should be at least as permissive as the PyTorch Lightning license).

32.4.2 Coding Style

1. Use f-strings for output formation (except logging when we stay with lazy logging.info("Hello %s!", name);

2. Black code formatter is used using pre-commit hook.
32.4.3 Documentation

We are using Sphinx with Napoleon extension. Moreover we set Google style to follow with type convention.

- Napoleon formatting with Google style
- ReStructured Text (reST)
- Paragraph-level markup

See following short example of a sample function taking one position string and optional

```python
from typing import Optional

def my_func(param_a: int, param_b: Optional[float] = None) -> str:
 """Sample function.
 Args:
 param_a: first parameter
 param_b: second parameter
 Return:
 sum of both numbers
 Example:
 Sample doctest example...
 >>> my_func(1, 2)
 3
 .. note:: If you want to add something.
 """
 p = param_b if param_b else 0
 return str(param_a + p)
```

When updating the docs make sure to build them first locally and visually inspect the html files (in the browser) for formatting errors. In certain cases, a missing blank line or a wrong indent can lead to a broken layout. Run these commands

```
pip install -r requirements/docs.txt
cd docs
make html
```

and open `docs/build/html/index.html` in your browser.

Notes:

- You need to have LaTeX installed for rendering math equations. You can for example install TeXLive by doing one of the following:
  - on Ubuntu (Linux) run `apt-get install texlive` or otherwise follow the instructions on the TeXLive website
  - use the RTD docker image
- with PL used class meta you need to use python 3.7 or higher

When you send a PR the continuous integration will run tests and build the docs. You can access a preview of the html pages in the Artifacts tab in CircleCI when you click on the task named `ci/circleci: Build-Docs` at the bottom of the PR page.
## 32.4.4 Testing

Testing your work locally will help you speed up the process since it allows you to focus on particular (failing) test-cases. To setup a local development environment, install both local and test dependencies:

```
python -m pip install -r requirements/devel.txt
python -m pip install -r requirements/examples.txt
python -m pip pre-commit install
```

You can run the full test-case in your terminal via this bash script:

```
bash .run_local_tests.sh
```

Note: if your computer does not have multi-GPU nor TPU these tests are skipped.

For convenience, you can also use your own CircleCI building which will be triggered with each commit. This is useful if you do not test against all required dependency versions. To do so, login to CircleCI and enable your forked project in the dashboard. It will just work after that.

## 32.4.5 Pull Request

We welcome any useful contribution! For your convenience here’s a recommended workflow:

1. Think about what you want to do - fix a bug, repair docs, etc.
2. Start your work locally (usually until you need our CI testing)
   • create a branch and prepare your changes
   • hint: do not work with your master directly, it may become complicated when you need to rebase
   • hint: give your PR a good name! it will be useful later when you may work on multiple tasks/PRs
3. Create a “Draft PR” which is clearly marked, to let us know you don’t need feedback yet.
4. When you feel ready for integrating your work, mark your PR “Ready for review”.
5. Use tags in PR name for following cases:
   • [blocked by #] if you work is depending on others changes
   • [wip] when you start to re-edit your work, mark it so no one will accidentally merge it in meantime

## 32.4.6 Question & Answer

1. **How can I help/contribute?**
   
   All help is very welcome - reporting bugs, solving issues and preparing bug fixes. To solve some issues you can start with label *good first issue* or chose something close to your domain with label *help wanted*. Before you start to implement anything check that the issue description that it is clear and self-assign the task to you (if it is not possible, just comment that you take it and we assign it to you…).

2. **Is there a recommendation for branch names?**
   
   We do not rely on the name convention so far you are working with your own fork. Anyway it would be nice to follow this convention `<type>/<issue-id>_<short-name>` where the types are: *bugfix, feature, docs, tests,*...
3. **How to rebase my PR?**

We recommend creating a PR in separate branch other than `master`, especially if you plan submitting several changes and do not want to wait until the first one is resolved (we can work on them in parallel). Update your master with upstream (assuming you have already set `upstream`)

```bash
git fetch --all --prune
git checkout master
git merge upstream/master
```

Checkout your feature branch

```bash
git checkout my-PR-branch
git rebase master
follow git instructions to resolve conflicts
git push -f
```
Thanks for your interest in joining the Lightning team! We’re a rapidly growing project which is poised to become the go-to framework for DL researchers! We’re currently recruiting for a team of 5 core maintainers.

As a core maintainer you will have a strong say in the direction of the project. Big changes will require a majority of maintainers to agree.

### 33.1 Code of conduct

First and foremost, you’ll be evaluated against these core values. Any code we commit or feature we add needs to align with those core values.

### 33.2 The bar for joining the team

Lightning is being used to solve really hard problems at the top AI labs in the world. As such, the bar for adding team members is extremely high. Candidates must have solid engineering skills, have a good eye for user experience, and must be a power user of Lightning and PyTorch.

With that said, the Lightning team will be diverse and a reflection of an inclusive AI community. You don’t have to be an engineer to contribute! Scientists with great usability intuition and PyTorch ninja skills are welcomed!

### 33.3 Responsibilities:

The responsibilities mainly revolve around 3 things.

#### 33.3.1 Github issues

- Here we want to help users have an amazing experience. These range from questions from new people getting into DL to questions from researchers about doing something esoteric with Lightning Often, these issues require some sort of bug fix, document clarification or new functionality to be scoped out.
- To become a core member you must resolve at least 10 Github issues which align with the API design goals for Lightning. By the end of these 10 issues I should feel comfortable in the way you answer user questions Pleasant/helpful tone.
- Can abstract from that issue or bug into functionality that might solve other related issues or makes the platform more flexible.
• Don’t make users feel like they don’t know what they’re doing. We’re here to help and to make everyone’s experience delightful.

33.3.2 Pull requests

• Here we need to ensure the code that enters Lightning is high quality. For each PR we need to:
  • Make sure code coverage does not decrease
  • Documents are updated
  • Code is elegant and simple
  • Code is NOT overly engineered or hard to read
  • Ask yourself, could a non-engineer understand what’s happening here?
  • Make sure new tests are written
  • Is this NECESSARY for Lightning? There are some PRs which are just purely about adding engineering complexity which have no place in Lightning. Guidance
  • Some other PRs are for people who are wanting to get involved and add something unnecessary. We do want their help though! So don’t approve the PR, but direct them to a Github issue that they might be interested in helping with instead!
  • To be considered for core contributor, please review 10 PRs and help the authors land it on master. Once you’ve finished the review, ping me for a sanity check. At the end of 10 PRs if your PR reviews are inline with expectations described above, then you can merge PRs on your own going forward, otherwise we’ll do a few more until we’re both comfortable :)

33.3.3 Project directions

There are some big decisions which the project must make. For these I expect core contributors to have something meaningful to add if it’s their area of expertise.

33.3.4 Diversity

Lightning should reflect the broader community it serves. As such we should have scientists/researchers from different fields contributing!

The first 5 core contributors will fit this profile. Thus if you overlap strongly with experiences and expertise as someone else on the team, you might have to wait until the next set of contributors are added.

33.3.5 Summary: Requirements to apply

• Solve 10 Github issues. The goal is to be inline with expectations for solving issues by the last one so you can do them on your own. If not, I might ask you to solve a few more specific ones.

• Do 10 PR reviews. The goal is to be inline with expectations for solving issues by the last one so you can do them on your own. If not, I might ask you to solve a few more specific ones.

If you want to be considered, ping me on gitter and start tracking your progress here.
CHAPTER

THIRTYFOUR

WHAT DOES THIS PR DO?

Fixes # (issue)
BEFORE SUBMITTING

• [ ] Was this discussed/approved via a Github issue? (no need for typos and docs improvements)
• [ ] Did you read the contributor guideline, Pull Request section?
• [ ] Did you make sure your PR does only one thing, instead of bundling different changes together? Otherwise, we ask you create a separate PR for every change.
• [ ] Did you make sure to update the documentation with your changes?
• [ ] Did you write any new necessary tests?
• [ ] Did you verify new and existing tests pass locally with your changes?
• [ ] If you made a notable change (that affects users), did you update the CHANGELOG?

35.1 PR review

Anyone in the community is free to review the PR once the tests have passed. If we didn’t discuss your PR in Github issues there’s a high chance it will not be merged.

35.2 Did you have fun?

Make sure you had fun coding
36.1 Leads

- William Falcon (williamFalcon) (Lightning founder)
- Jirka Borovec (Borda)
- Ethan Harris (ethanwharris) (Torchbearer founder)
- Matthew Painter (MattPainter01) (Torchbearer founder)
- Justus Schock (justusschock) (Former Core Member PyTorch Ignite)

36.2 Core Maintainers

- Nic Eggert (neggert)
- Jeff Ling (jeffling)
- Jeremy Jordan (jeremyjordan)
- Tullie Murrell (tullie)
- Adrian Wälchli (awaelchli)
- Nicki Skafe (skaftenicki)
37.1 pytorch_lightning.core package

A LightningModule organizes your PyTorch code into the following sections:

Notice a few things.

1. It’s the SAME code.

2. The PyTorch code IS NOT abstracted - just organized.

3. All the other code that’s not in the LightningModule has been automated for you by the trainer.

```python
net = Net()
trainer = Trainer()
trainer.fit(net)
```

4. There are no .cuda() or .to() calls... Lightning does these for you.

```python
don't do in lightning
x = torch.Tensor(2, 3)
x = x.cuda()
x = x.to(device)

do this instead
x = x # leave it alone!

or to init a new tensor
new_x = torch.Tensor(2, 3)
new_x = new_x.type_as(x.type())
```

5. There are no samplers for distributed, Lightning also does this for you.

```python
Don't do in Lightning...
data = MNIST(...)
sampler = DistributedSampler(data)
DataLoader(data, sampler=sampler)

do this instead
```

(continues on next page)
```python
model
class Net(nn.Module):
 def __init__(self):
 self.layer_1 = torch.nn.Linear(28 * 28, 120)
 self.layer_2 = torch.nn.Linear(120, 10)

 def forward(self, x):
 x = x.view(-1, 28 * 28)
 x = self.layer_1(x)
 x = F.relu(x)
 x = self.layer_2(x)
 return x

train loader
mnist_train = MNIST(os.getcwd(), train=True, download=True,
 transform=transforms.ToTensor())
mnist_train = DataLoader(mnist_train, batch_size=64)

net = Net()

optimizer + scheduler
optimizer = torch.optim.Adam(net.parameters(), lr=1e-3)
scheduler = StepLR(optimizer, step_size=1)

train
for epoch in range(1, 100):
 model.train()
 for batch_idx, (data, target) in enumerate(train_loader):
 data, target = data.to(device), target.to(device)
 optimizer.zero_grad()

 output = model(data)
 loss = F.nll_loss(output, target)

 loss.backward()
 optimizer.step()
 if batch_idx % args.log_interval == 0:
 print('Train Epoch: {} [{}/{} ({:.0f}%)]
 Loss: {:.6f}'.format(
 epoch, batch_idx * len(data), len(train_loader.dataset),
 100. * batch_idx / len(train_loader), loss.item()))
```

```python
model
class Net(LightningModule):
 def __init__(self):
 self.layer_1 = torch.nn.Linear(28 * 28, 120)
 self.layer_2 = torch.nn.Linear(120, 10)

 def forward(self, x):
 x = x.view(-1, 28 * 28)
 x = self.layer_1(x)
 x = F.relu(x)
 x = self.layer_2(x)
 return x

train_data_loader(self):
 mnist_train = MNIST(os.getcwd(), train=True, download=True,
 transform=transforms.ToTensor())
 return DataLoader(mnist_train, batch_size=64)

configure_optimizers(self):
 optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
 scheduler = StepLR(optimizer, step_size=1)
 return optimizer, scheduler

training_step(self, batch, batch_idx):
 data, target = batch
 output = self.forward(data)
 loss = F.nll_loss(output, target)
 return {'loss': loss}
```

Chapter 37. Indices and tables
6. A `LightningModule` is a `torch.nn.Module` but with added functionality. Use it as such!

```python
net = Net.load_from_checkpoint(PATH)
net.freeze()
out = net(x)
```

Thus, to use Lightning, you just need to organize your code which takes about 30 minutes, (and let’s be real, you probably should do anyhow).

### 37.1.1 Minimal Example

Here are the only required methods.

```python
>>> import pytorch_lightning as pl
>>> class LitModel(pl.LightningModule):
... def __init__(self):
... super().__init__()
... self.l1 = torch.nn.Linear(28 * 28, 10)
... def forward(self, x):
... return torch.relu(self.l1(x.view(x.size(0), -1)))
... def training_step(self, batch, batch_idx):
... x, y = batch
... y_hat = self(x)
... return {'loss': F.cross_entropy(y_hat, y)}
... def train_dataloader(self):
... return DataLoader(MNIST(os.getcwd(), train=True, download=True,
... transform=transforms.ToTensor()), batch_size=32)
... def configure_optimizers(self):
... return torch.optim.Adam(self.parameters(), lr=0.02)
```

Which you can train by doing:

```python
trainer = pl.Trainer()
model = LitModel()
trainer.fit(model)
```
37.1.2 Training loop structure

The general pattern is that each loop (training, validation, test loop) has 3 methods:

- ___step
- ___step_end
- ___epoch_end

To show how Lightning calls these, let's use the validation loop as an example:

```python
val_outs = []
for val_batch in val_data:
 # do something with each batch
 out = validation_step(val_batch)
 val_outs.append(out)

do something with the outputs for all batches
like calculate validation set accuracy or loss
validation_epoch_end(val_outs)
```

If we use dp or ddp2 mode, we can also define the ___step_end method to operate on all parts of the batch:

```python
val_outs = []
for val_batch in val_data:
 batches = split_batch(val_batch)
 dp_outs = []
 for sub_batch in batches:
 dp_out = validation_step(sub_batch)
 dp_outs.append(dp_out)
 out = validation_step_end(dp_outs)
 val_outs.append(out)

do something with the outputs for all batches
like calculate validation set accuracy or loss
validation_epoch_end(val_outs)
```

Add validation loop

Thus, if we wanted to add a validation loop you would add this to your `LightningModule`:

```python
>>> class LitModel(pl.LightningModule):
... def validation_step(self, batch, batch_idx):
... x, y = batch
... y_hat = self(x)
... return {'val_loss': F.cross_entropy(y_hat, y)}
...
... def validation_epoch_end(self, outputs):
... val_loss_mean = torch.stack([x['val_loss'] for x in outputs]).mean()
... return {'val_loss': val_loss_mean}
...
... def val_dataloader(self):
... # can also return a list of val dataloaders
... return DataLoader(...)
```
Add test loop

```python
>>> class LitModel(pl.LightningModule):
... def test_step(self, batch, batch_idx):
... x, y = batch
... y_hat = self(x)
... return {'test_loss': F.cross_entropy(y_hat, y)}
...
... def test_epoch_end(self, outputs):
... test_loss_mean = torch.stack([x['test_loss'] for x in outputs]).mean()
... return {'test_loss': test_loss_mean}
...
... def test_dataloader(self):
... # can also return a list of test dataloaders
... return DataLoader(...)
```

However, the test loop won’t ever be called automatically to make sure you don’t run your test data by accident. Instead you have to explicitly call:

```python
call after training
trainer = Trainer()
trainer.fit(model)
trainer.test()

or call with pretrained model
model = MyLightningModule.load_from_checkpoint(PATH)
trainer = Trainer()
trainer.test(model)
```

### 37.1.3 Training_step_end method

When using `LightningDataParallel` or `LightningDistributedDataParallel`, the `training_step()` will be operating on a portion of the batch. This is normally ok but in special cases like calculating NCE loss using negative samples, we might want to perform a softmax across all samples in the batch.

For these types of situations, each loop has an additional `__step_end` method which allows you to operate on the pieces of the batch:

```python
training_outs = []
for train_batch in train_data:
 # dp, ddp2 splits the batch
 sub_batches = split_batches_for_dp(batch)

 # run training_step on each piece of the batch
 batch_parts_outputs = [training_step(sub_batch) for sub_batch in sub_batches]

 # do softmax with all pieces
 out = training_step_end(batch_parts_outputs)
 training_outs.append(out)

do something with the outputs for all batches
like calculate validation set accuracy or loss
training_epoch_end(val_outs)
```
37.1.4 Remove cuda calls

In a LightningModule, all calls to .cuda() and .to(device) should be removed. Lightning will do these automatically. This will allow your code to work on CPUs, TPUs and GPUs.

When you init a new tensor in your code, just use type_as():

```python
def training_step(self, batch, batch_idx):
 x, y = batch

 # put the z on the appropriate gpu or tpu core
 z = sample_noise()
 z = z.type_as(x)
```

37.1.5 Data preparation

Data preparation in PyTorch follows 5 steps:

1. Download
2. Clean and (maybe) save to disk
3. Load inside Dataset
4. Apply transforms (rotate, tokenize, etc...)
5. Wrap inside a DataLoader

When working in distributed settings, steps 1 and 2 have to be done from a single GPU, otherwise you will overwrite these files from every GPU. The LightningModule has the prepare_data method to allow for this:

```python
>>> class LitModel(pl.LightningModule):
... def prepare_data(self):
... # download
... MNIST(os.getcwd(), train=True, download=True, transform=transforms.ToTensor())
... MNIST(os.getcwd(), train=False, download=True, transform=transforms.ToTensor())
... # train/val split
... mnist_train, mnist_val = random_split(mnist_train, [55000, 5000])
... # assign to use in dataloaders
... self.train_dataset = mnist_train
... self.val_dataset = mnist_val
... self.test_dataset = mnist_test
... def train_dataloader(self):
... return DataLoader(self.train_dataset, batch_size=64)
... def val_dataloader(self):
... return DataLoader(self.mnist_val, batch_size=64)
```
... def test_dataloader(self):
...     return DataLoader(self.mnist_test, batch_size=64)

Note: prepare_data() is called once.

Note: Do anything with data that needs to happen ONLY once here, like download, tokenize, etc...

37.1.6 Lifecycle

The methods in the LightningModule are called in this order:

1. __init__()
2. prepare_data()
3. configure_optimizers()
4. train_dataloader()

If you define a validation loop then

5. val_dataloader()

And if you define a test loop:

6. test_dataloader()

Note: test_dataloader() is only called with .test()

In every epoch, the loop methods are called in this frequency:

1. validation_step() called every batch
2. validation_epoch_end() called every epoch

37.1.7 Live demo

Check out this COLAB for a live demo.

37.1.8 LightningModule Class

class pytorch_lightning.core.LightningModule(*args, **kwargs)

.LightningModule__get_hparams_assignment_variable() looks at the code of the class to figure out what the user named self.hparams this only happens when the user explicitly sets self.hparams
classmethod `_auto_collect_arguments`(frame=None)

Collect all module arguments in the current constructor and all child constructors. The child constructors are all the `__init__` methods that reach the current class through (chained) `super().__init__()` calls.

**Parameters**
- `frame` – instance frame

**Returns**
arguments dictionary of the first instance parents' arguments: arguments dictionary of the parent’s instances

**Return type**
self_arguments

`_init_slurm_connection()`

Sets up environment variables necessary for pytorch distributed communications based on slurm environment.

**Return type**
None

`_set_hparams`(hp)

**Return type**
None

`configure_apex`(amp, model, optimizers, amp_level)

Override to init AMP your own way. Must return a model and list of optimizers.

**Parameters**
- `amp` *(object)* – pointer to amp library object.
- `model` *(LightningModule)* – pointer to current `LightningModule`.
- `optimizers` *(List[Optimizer]*) – list of optimizers passed in `configure_optimizers()`.
- `amp_level` *(str)* – AMP mode chosen (‘O1’, ‘O2’, etc...)

**Return type**
Tuple[`LightningModule`, `List[Optimizer]`]

**Returns**
Apex wrapped model and optimizers

**Examples**

```python
Default implementation used by Trainer.
def configure_apex(self, amp, model, optimizers, amp_level):
 model, optimizers = amp.initialize(
 model, optimizers, opt_level=amp_level,
)

 return model, optimizers
```

`configure_ddp`(model, device_ids)

Override to init DDP in your own way or with your own wrapper. The only requirements are that:

1. On a validation batch the call goes to `model.validation_step`.
2. On a training batch the call goes to `model.training_step`.
3. On a testing batch, the call goes to `model.test_step`.

**Parameters**
- `model` *(LightningModule)* – the `LightningModule` currently being optimized.
• **device_ids** (*List[int]*) – the list of GPU ids.

**Return type** DistributedDataParallel

**Returns** DDP wrapped model

**Examples**

```python
default implementation used in Trainer
def configure_ddp(self, model, device_ids):
 # Lightning DDP simply routes to test_step, val_step, etc...
 model = LightningDistributedDataParallel(
 model,
 device_ids=device_ids,
 find_unused_parameters=True
)
 return model
```

### configure_optimizers()

Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you’d need one. But in the case of GANs or similar you might have multiple.

**Return type** Union[Optimizer, Sequence[Optimizer], Dict, Sequence[Dict], Tuple[List, List], None]

**Returns**

Any of these 6 options.

- Single optimizer.
- List or Tuple - List of optimizers.
- Two lists - The first list has multiple optimizers, the second a list of LR schedulers (or lr_dict).
- Dictionary, with an ‘optimizer’ key, and (optionally) a ’lr_scheduler’ key which value is a single LR scheduler or lr_dict.
- Tuple of dictionaries as described, with an optional ‘frequency’ key.
- None - Fit will run without any optimizer.

**Note:** The ‘frequency’ value is an int corresponding to the number of sequential batches optimized with the specific optimizer. It should be given to none or to all of the optimizers. There is a difference between passing multiple optimizers in a list, and passing multiple optimizers in dictionaries with a frequency of 1: In the former case, all optimizers will operate on the given batch in each optimization step. In the latter, only one optimizer will operate on the given batch at every step.

The lr_dict is a dictionary which contains scheduler and its associated configuration. It has five keys. The default configuration is shown below.

```python
{
 'scheduler': lr_scheduler, # The LR schduler
 'interval': 'epoch', # The unit of the scheduler's step size
 'frequency': 1, # The frequency of the scheduler
 'reduce_on_plateau': False, # For ReduceLROnPlateau scheduler
 'monitor': 'val_loss' # Metric to monitor
}
```
If user only provides LR schedulers, then their configuration will set to default as shown above.

## Examples

```python
most cases
def configure_optimizers(self):
 opt = Adam(self.parameters(), lr=1e-3)
 return opt

multiple optimizer case (e.g.: GAN)
def configure_optimizers(self):
 generator_opt = Adam(self.model_gen.parameters(), lr=0.01)
 discriminator_opt = Adam(self.model_disc.parameters(), lr=0.02)
 return generator_opt, discriminator_opt

example with learning rate schedulers
def configure_optimizers(self):
 generator_opt = Adam(self.model_gen.parameters(), lr=0.01)
 discriminator_opt = Adam(self.model_disc.parameters(), lr=0.02)
 discriminator_sched = CosineAnnealing(discriminator_opt, T_max=10)
 return [generator_opt, discriminator_opt], [discriminator_sched]

example with step-based learning rate schedulers
def configure_optimizers(self):
 gen_opt = Adam(self.model_gen.parameters(), lr=0.01)
 dis_opt = Adam(self.model_disc.parameters(), lr=0.02)
 gen_sched = {'scheduler': ExponentialLR(gen_opt, 0.99),
 'interval': 'step'} # called after each training step
 dis_sched = CosineAnnealing(discriminator_opt, T_max=10) # called every epoch
 return [gen_opt, dis_opt], [gen_sched, dis_sched]

example with optimizer frequencies
see training procedure in 'Improved Training of Wasserstein GANs', Algorithm 1
https://arxiv.org/abs/1704.00028
def configure_optimizers(self):
 gen_opt = Adam(self.model_gen.parameters(), lr=0.01)
 dis_opt = Adam(self.model_disc.parameters(), lr=0.02)
 n_critic = 5
 return
 {'optimizer': dis_opt, 'frequency': n_critic},
 {'optimizer': gen_opt, 'frequency': 1}
```

### Note:
Some things to know:

- Lightning calls `.backward()` and `.step()` on each optimizer and learning rate scheduler as needed.
- If you use 16-bit precision (`precision=16`), Lightning will automatically handle the optimizers for you.
- If you use multiple optimizers, `training_step()` will have an additional `optimizer_idx` parameter.
• If you use LBFGS Lightning handles the closure function automatically for you.

• If you use multiple optimizers, gradients will be calculated only for the parameters of current optimizer at each training step.

• If you need to control how often those optimizers step or override the default .step() schedule, override the optimizer_step() hook.

• If you only want to call a learning rate scheduler every \(\times\) step or epoch, or want to monitor a custom metric, you can specify these in a lr_dict:

```py
{
 'scheduler': lr_scheduler,
 'interval': 'step', # or 'epoch'
 'monitor': 'val_f1',
 'frequency': \(\times\),
}
```

**abstract forward(***args, **kwargs**)

Same as `torch.nn.Module.forward()` , however in Lightning you want this to define the operations you want to use for prediction (i.e.: on a server or as a feature extractor).

Normally you’d call `self()` from your `training_step()` method. This makes it easy to write a complex system for training with the outputs you’d want in a prediction setting.

You may also find the `auto_move_data()` decorator useful when using the module outside Lightning in a production setting.

**Parameters**

- ***args** – Whatever you decide to pass into the forward method.
- ****kwargs** – Keyword arguments are also possible.

**Returns** Predicted output

**Examples**

```py
example if we were using this model as a feature extractor
def forward(self, x):
 feature_maps = self.convnet(x)
 return feature_maps

def training_step(self, batch, batch_idx):
 x, y = batch
 feature_maps = self(x)
 logits = self.classifier(feature_maps)

 # ...
 return loss

splitting it this way allows model to be used a feature extractor
model = MyModelAbove()

inputs = server.get_request()
results = model(inputs)
server.write_results(results)
```

(continues on next page)
freeze()

Freeze all params for inference.

Example

```python
model = MyLightningModule(...)
model.freeze()
```

Return type None

get_progress_bar_dict()

Additional items to be displayed in the progress bar.

Return type Dict[str, Union[int, str]]

Returns Dictionary with the items to be displayed in the progress bar.

get_tqdm_dict()

Additional items to be displayed in the progress bar.

Return type Dict[str, Union[int, str]]

Returns Dictionary with the items to be displayed in the progress bar.

Warning: Deprecated since v0.7.3. Use get_progress_bar_dict() instead.

init_ddp_connection(global_rank, world_size, is_slurm_managing_tasks=True)

Override to define your custom way of setting up a distributed environment.

Lightning’s implementation uses env:// init by default and sets the first node as root for SLURM managed cluster.

Parameters

- global_rank (int) – The global process idx.
- world_size (int) – Number of GPUs being use across all nodes. (num_nodes * num_gpus).
- is_slurm_managing_tasks (bool) – is cluster managed by SLURM.

Return type None

on_load_checkpoint(checkpoint)

Called by Lightning to restore your model. If you saved something with on_save_checkpoint() this is your chance to restore this.

Parameters checkpoint (Dict[str, Any]) – Loaded checkpoint
### on_load_checkpoint

```python
def on_load_checkpoint(self, checkpoint):
 # 99% of the time you don't need to implement this method
 self.something_cool_i_want_to_save = checkpoint['something_cool_i_want_to_save']
```

**Note:** Lightning auto-restores global step, epoch, and train state including amp scaling. There is no need for you to restore anything regarding training.

**Return type** None

### on_save_checkpoint

```python
def on_save_checkpoint(self, checkpoint):
 # 99% of use cases you don't need to implement this method
 checkpoint['something_cool_i_want_to_save'] = my_cool_pickable_object
```

**Note:** Lightning saves all aspects of training (epoch, global step, etc...) including amp scaling. There is no need for you to store anything about training.

**Return type** None

### optimizer_step

```python
optimizer_step(epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None)
```

Override this method to adjust the default way the Trainer calls each optimizer. By default, Lightning calls `step()` and `zero_grad()` as shown in the example once per optimizer.

**Parameters**

- **epoch** (`int`) – Current epoch
- **batch_idx** (`int`) – Index of current batch
- **optimizer** (`Optimizer`) – A PyTorch optimizer
- **optimizer_idx** (`int`) – If you used multiple optimizers this indexes into that list.
- **second_order_closure** (`Optional[Callable]`) – closure for second order methods
Examples

```python
DEFAULT
def optimizer_step(self, current_epoch, batch_idx, optimizer, optimizer_idx,
 second_order_closure=None):
 optimizer.step()
 optimizer.zero_grad()

Alternating schedule for optimizer steps (i.e.: GANs)
def optimizer_step(self, current_epoch, batch_idx, optimizer, optimizer_idx,
 second_order_closure=None):
 # update generator opt every 2 steps
 if optimizer_idx == 0:
 if batch_idx % 2 == 0:
 optimizer.step()
 optimizer.zero_grad()

 # update discriminator opt every 4 steps
 if optimizer_idx == 1:
 if batch_idx % 4 == 0:
 optimizer.step()
 optimizer.zero_grad()

 # ...
 # add as many optimizers as you want
```

Here’s another example showing how to use this for more advanced things such as learning rate warm-up:

```python
learning rate warm-up
def optimizer_step(self, current_epoch, batch_idx, optimizer,
 optimizer_idx, second_order_closure=None):
 # warm up lr
 if self.trainer.global_step < 500:
 lr_scale = min(1., float(self.trainer.global_step + 1) / 500.)
 for pg in optimizer.param_groups:
 pg['lr'] = lr_scale * self.learning_rate

 # update params
 optimizer.step()
 optimizer.zero_grad()
```

**Note:** If you also override the `on_before_zero_grad()` model hook don’t forget to add the call to it before `optimizer.zero_grad()` yourself.

**Return type** None

`prepare_data()`

Use this to download and prepare data.

**Warning:** DO NOT set state to the model (use `setup` instead) since this is NOT called on every GPU in DDP/TPU

Example:
**def** prepare_data(self):
    # good
download_data()
tokenize()
etc()

    # bad
self.split = data_split
self.some_state = some_other_state()

In DDP prepare_data can be called in two ways (using Trainer(prepare_data_per_node)):

1. Once per node. This is the default and is only called on LOCAL_RANK=0.
2. Once in total. Only called on GLOBAL_RANK=0.

Example:

    # DEFAULT
    # called once per node on LOCAL_RANK=0 of that node
Trainer(prepare_data_per_node=True)

    # call on GLOBAL_RANK=0 (great for shared file systems)
Trainer(prepare_data_per_node=False)

This is called before requesting the dataloaders:

    model.prepare_data()
    if ddp/tpu: init()
model.setup(step)
model.train_dataloader()
model.val_dataloader()
model.test_dataloader()

Return type None

print(*args, **kwargs)
Prints only from process 0. Use this in any distributed mode to log only once.

Parameters

- **args** – The thing to print. Will be passed to Python’s built-in print function.
- **kwargs** – Will be passed to Python’s built-in print function.

Example

    def forward(self, x):
        self.print(x, 'in forward')

Return type None

save_hyperparameters (*args, frame=None)
Save all model arguments.

Parameters **args** – single object of dict, NameSpace or OmegaConf or string names or arguments from class __init__
>>> from collections import OrderedDict

```python
>>> class ManuallyArgsModel(LightningModule):
... def __init__(self, arg1, arg2, arg3):
... super().__init__()
... # manually assign arguments
... self.save_hyperparameters('arg1', 'arg3')
... def forward(self, *args, **kwargs):
... ...

>>> model = ManuallyArgsModel(1, 'abc', 3.14)
>>> model.hparams
"arg1": 1
"arg3": 3.14
```

```python
>>> class AutomaticArgsModel(LightningModule):
... def __init__(self, arg1, arg2, arg3):
... super().__init__()
... # equivalent automatic
... self.save_hyperparameters()
... def forward(self, *args, **kwargs):
... ...

>>> model = AutomaticArgsModel(1, 'abc', 3.14)
>>> model.hparams
"arg1": 1
"arg2": abc
"arg3": 3.14
```

```python
>>> class SingleArgModel(LightningModule):
... def __init__(self, params):
... super().__init__()
... # manually assign single argument
... self.save_hyperparameters(params)
... def forward(self, *args, **kwargs):
... ...

>>> model = SingleArgModel(Namespace(p1=1, p2='abc', p3=3.14))
>>> model.hparams
"p1": 1
"p2": abc
"p3": 3.14
```

Return type None

```python
summarize (mode='top')
```

Return type ModelSummary

```python
tbptt_split_batch (batch, split_size)
```

When using truncated backpropagation through time, each batch must be split along the time dimension. Lightning handles this by default, but for custom behavior override this function.

Parameters

- **batch (``Tensor``)** - Current batch
- **split_size (``int``)** - The size of the split

Return type list

Returns List of batch splits. Each split will be passed to training_step() to enable truncated back propagation through time. The default implementation splits root level Tensors
and Sequences at dim=1 (i.e. time dim). It assumes that each time dim is the same length.

**Examples**

```python
def tbptt_split_batch(self, batch, split_size):
 splits = []
 for t in range(0, time_dims[0], split_size):
 batch_split = []
 for i, x in enumerate(batch):
 if isinstance(x, torch.Tensor):
 split_x = x[:, t:t + split_size]
 elif isinstance(x, collections.Sequence):
 split_x = [None] * len(x)
 for batch_idx in range(len(x)):
 split_x[batch_idx] = x[batch_idx][t:t + split_size]
 batch_split.append(split_x)
 splits.append(batch_split)
 return splits
```

**Note:** Called in the training loop after `on_batch_start()` if `truncated_bptt_steps > 0`. Each returned batch split is passed separately to `training_step()`.

**test_dataloader()**

Implement one or multiple PyTorch DataLoaders for testing.

The dataloader you return will not be called every epoch unless you set `reload_dataloaders_every_epoch` to True.

It’s recommended that all data downloads and preparation happen in `prepare_data()`.

- `fit()`
- `...`
- `prepare_data()`
- `train_dataloader()`
- `val_dataloader()`
- `test_dataloader()`

**Note:** Lightning adds the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself.

**Return type** `Union[DataLoader, List[DataLoader]]`

**Returns** Single or multiple PyTorch DataLoaders.
Example

```python
def test_dataloader(self):
 transform = transforms.Compose([transforms.ToTensor(),
 transforms.Normalize((0.5,), (1.0,))])
 dataset = MNIST(root='/path/to/mnist/', train=False, transform=transform,
 download=True)
 loader = torch.utils.data.DataLoader(
 dataset=dataset,
 batch_size=self.batch_size,
 shuffle=False)
 return loader
```

Note: If you don’t need a test dataset and a `test_step()`, you don’t need to implement this method.

`test_end(outputs)`

Warning: Deprecated in v0.7.0. Use `test_epoch_end()` instead. Will be removed in 1.0.0.

`test_epoch_end(outputs)`

Called at the end of a test epoch with the output of all test steps.

```
the pseudocode for these calls
test_outs = []
for test_batch in test_data:
 out = test_step(test_batch)
 test_outs.append(out)
test_epoch_end(test_outs)
```

**Parameters**

`outputs` (Union[List[Dict[str, Tensor]], List[List[Dict[str, Tensor]]]]) – List of outputs you defined in `test_step_end()`, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader

**Returns**

Dict has the following optional keys:

- progress_bar -> Dict for progress bar display. Must have only tensors.
- log -> Dict of metrics to add to logger. Must have only tensors (no images, etc).

**Return type** Dict or OrderedDict

Note: If you didn’t define a `test_step()`, this won’t be called.

- The outputs here are strictly for logging or progress bar.
- If you don’t need to display anything, don’t return anything.
- If you want to manually set current step, specify it with the ‘step’ key in the ‘log’ Dict
Examples

With a single dataloader:

```python
def test_epoch_end(self, outputs):
 test_acc_mean = 0
 for output in outputs:
 test_acc_mean += output['test_acc']
 test_acc_mean /= len(outputs)
 tqdm_dict = {'test_acc': test_acc_mean.item()}

 # show test_loss and test_acc in progress bar but only log test_loss
 results = {
 'progress_bar': tqdm_dict,
 'log': {'test_acc': test_acc_mean.item()}
 }
 return results
```

With multiple dataloaders, outputs will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each test step for that dataloader.

```python
def test_epoch_end(self, outputs):
 test_acc_mean = 0
 i = 0
 for dataloader_outputs in outputs:
 for output in dataloader_outputs:
 test_acc_mean += output['test_acc']
 i += 1
 test_acc_mean /= i
 tqdm_dict = {'test_acc': test_acc_mean.item()}

 # show test_loss and test_acc in progress bar but only log test_loss
 results = {
 'progress_bar': tqdm_dict,
 'log': {'test_acc': test_acc_mean.item(), 'step': self.current_epoch}
 }
 return results
```

test_step(*args, **kwargs)

Operates on a single batch of data from the test set. In this step you’d normally generate examples or calculate anything of interest such as accuracy.

```python
the pseudocode for these calls
test_outs = []
for test_batch in test_data:
 out = test_step(test_batch)
 test_outs.append(out)
test_epoch_end(test_outs)
```

Parameters

- **batch** (Tensor | (Tensor, ...) | [Tensor, ...]) – The output of your DataLoader. A tensor, tuple or list.
- **batch_idx** (int) – The index of this batch.
• dataloader_idx (int) – The index of the dataloader that produced this batch (only if multiple test datasets used).

Return type Dict[str, Tensor]

Returns Dict or OrderedDict - passed to the test_epoch_end() method. If you defined test_step_end() it will go to that first.

# if you have one test dataloader:
def test_step(self, batch, batch_idx):

# if you have multiple test dataloaders:
def test_step(self, batch, batch_idx, dataloader_idx):

Examples

# CASE 1: A single test dataset
def test_step(self, batch, batch_idx):
    x, y = batch
    # implement your own
    out = self(x)
    loss = self.loss(out, y)
    # log 6 example images
    # or generated text... or whatever
    sample_imgs = x[:6]
    grid = torchvision.utils.make_grid(sample_imgs)
    self.logger.experiment.add_image('example_images', grid, 0)
    # calculate acc
    labels_hat = torch.argmax(out, dim=1)
    val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)
    # all optional...
    # return whatever you need for the collation function test_epoch_end
    output = OrderedDict({
        'val_loss': loss_val,
        'val_acc': torch.tensor(val_acc), # everything must be a tensor
    })
    # return an optional dict
    return output

If you pass in multiple validation datasets, test_step() will have an additional argument.

# CASE 2: multiple test datasets
def test_step(self, batch, batch_idx, dataset_idx):
    # dataset_idx tells you which dataset this is.

Note: If you don’t need to validate you don’t need to implement this method.

Note: When the test_step() is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of the test epoch, the model goes back to training mode and gradients are
test_step_end(*args, **kwargs)

Use this when testing with dp or ddp2 because test_step() will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss.

**Note:** If you later switch to ddp or some other mode, this will still be called so that you don’t have to change your code.

```python
pseudocode
sub_batches = split_batches_for_dp(batch)
batch_parts_outputs = [test_step(sub_batch) for sub_batch in sub_batches]
test_step_end(batch_parts_outputs)
```

**Parameters**

- **batch_parts_outputs** – What you return in test_step() for each batch part.

**Return type** Dict[str, Tensor]

**Returns** Dict or OrderedDict - passed to the test_epoch_end().

**Examples**

```python
WITHOUT test_step_end
if used in DP or DDP2, this batch is 1/num_gpus large
def test_step(self, batch, batch_idx):
 # batch is 1/num_gpus big
 x, y = batch
 out = self(x)
 loss = self.softmax(out)
 loss = nce_loss(loss)
 return {'loss': loss}

with test_step_end to do softmax over the full batch
def test_step(self, batch, batch_idx):
 # batch is 1/num_gpus big
 x, y = batch
 out = self(x)
 return {'out': out}

def test_step_end(self, outputs):
 # this out is now the full size of the batch
 out = outputs['out']

 # this softmax now uses the full batch size
 loss = nce_loss(loss)
 return {'loss': loss}
```

See also:

See the Multi-GPU training guide for more details.
train_dataloader()

Warning: Deprecated in v0.5.0. Use `train_dataloader()` instead. Will be removed in 1.0.0.

Implement a PyTorch DataLoader for training.

Return type: `DataLoader`

Returns: Single PyTorch `DataLoader`.

The dataloader you return will not be called every epoch unless you set `reload_dataloaders_every_epoch` to `True`.

It’s recommended that all data downloads and preparation happen in `prepare_data()`.

- `fit()`
- `...`
- `prepare_data()`
- `train_dataloader()`

Note: Lightning adds the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself.

Example

```python
def train_dataloader(self):
 transform = transforms.Compose([transforms.ToTensor(),
 transforms.Normalize((0.5,), (1.0,))])
 dataset = MNIST(root='/path/to/mnist/', train=True, transform=transform,
 download=True)
 loader = torch.utils.data.DataLoader(
 dataset=dataset,
 batch_size=self.batch_size,
 shuffle=True
)
 return loader
```

training_end(*args, **kwargs)

Warning: Deprecated in v0.7.0. Use `training_step_end()` instead.

training_epoch_end(outputs)

Called at the end of the training epoch with the outputs of all training steps.

```python
the pseudocode for these calls
train_outs = []
for train_batch in train_data:
 # call training_step
 output = self.training_step(train_batch, batch_idx)
 train_outs.append(output)

note that we pass all training outputs of the epoch to this function
training_output = self.training_epoch_end(train_outs)
```
out = training_step(train_batch)
train_outs.append(out)
training_epoch_end(train_outs)

Parameters **outputs**  
(Union[List[Dict[str, Tensor]], List[List[Dict[str, Tensor]]]]) – List of outputs you defined in `training_step()`, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader.

**Return type** Dict[str, Dict[str, Tensor]]

**Returns**

Dict or OrderedDict. May contain the following optional keys:

- `log` (metrics to be added to the logger; only tensors)
- `progress_bar` (dict for progress bar display)
- any metric used in a callback (e.g. early stopping).

**Note:** If this method is not overridden, this won’t be called.

- The outputs here are strictly for logging or progress bar.
- If you don’t need to display anything, don’t return anything.
- If you want to manually set current step, you can specify the ‘step’ key in the ‘log’ dict.

**Examples**

With a single dataloader:

```python
def training_epoch_end(self, outputs):
 train_acc_mean = 0
 for output in outputs:
 train_acc_mean += output['train_acc']
 train_acc_mean /= len(outputs)

 # log training accuracy at the end of an epoch
 results = {'log': {'train_acc': train_acc_mean.item()},
 'progress_bar': {'train_acc': train_acc_mean},
 }
 return results
```

With multiple dataloaders, `outputs` will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each training step for that dataloader.

```python
def training_epoch_end(self, outputs):
 train_acc_mean = 0
 i = 0
 for dataloader_outputs in outputs:
 for output in dataloader_outputs:
 train_acc_mean += output['train_acc']
```
i += 1
train_acc_mean /= i

# log training accuracy at the end of an epoch
results = {
    'log': {'train_acc': train_acc_mean.item(), 'step': self.current_epoch},
    'progress_bar': {'train_acc': train_acc_mean},
}
return results

**training_step**(*args, **kwargs*)

Here you compute and return the training loss and some additional metrics for e.g. the progress bar or logger.

**Parameters**

- **batch** (*Tensor|([Tensor,...]|([Tensor,...]))*) – The output of your `DataLoader`. A tensor, tuple or list.
- **batch_idx** (*int*) – Integer displaying index of this batch
- **optimizer_idx** (*int*) – When using multiple optimizers, this argument will also be present.
- **hiddens** (*Tensor*) – Passed in if `truncated_bptt_steps > 0`.

**Return type** `Union[int, Dict[str, Union[Tensor, Dict[str, Tensor]]]]`

**Returns**

Dict with loss key and optional log or progress bar keys. When implementing `training_step()`, return whatever you need in that step:

- **loss** -> tensor scalar **REQUIRED**
- **progress_bar** -> Dict for progress bar display. Must have only tensors
- **log** -> Dict of metrics to add to logger. Must have only tensors (no images, etc)

In this step you’d normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something model specific.

**Examples**

```python
def training_step(self, batch, batch_idx):
x, y, z = batch

implement your own
out = self(x)
loss = self.loss(out, x)

logger_logs = {'training_loss': loss} # optional (MUST ALL BE TENSORS)

if using TestTubeLogger or TensorBoardLogger you can nest scalars
logger_logs = {'losses': logger_logs} # optional (MUST ALL BE TENSORS)

output = {
```
If you define multiple optimizers, this step will be called with an additional `optimizer_idx` parameter.

```python
Multiple optimizers (e.g.: GANs)
def training_step(self, batch, batch_idx, optimizer_idx):
 if optimizer_idx == 0:
 # do training_step with encoder
 if optimizer_idx == 1:
 # do training_step with decoder
```

If you add truncated back propagation through time you will also get an additional argument with the hidden states of the previous step.

```python
Truncated back-propagation through time
def training_step(self, batch, batch_idx, hiddens):
 # hiddens are the hidden states from the previous truncated backprop step
 ...
 out, hiddens = self.lstm(data, hiddens)
 ...
 return {
 "loss": ...,
 "hiddens": hiddens # remember to detach() this
 }
```

### Notes

The loss value shown in the progress bar is smoothed (averaged) over the last values, so it differs from the actual loss returned in train/validation step.

**training_step_end**(*args, **kwargs*)

Use this when training with dp or ddp2 because `training_step()` will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss.

**Note:** If you later switch to ddp or some other mode, this will still be called so that you don’t have to change your code

```python
pseudocode
sub_batches = split_batches_for_dp(batch)
batch_parts_outputs = [training_step(sub_batch) for sub_batch in sub_batches]
training_step_end(batch_parts_outputs)
```

**Parameters** batch_parts_outputs – What you return in `training_step` for each batch part.

**Return type** `Dict[str, Union[Tensor, Dict[str, Tensor]]]`
Returns

Dict with loss key and optional log or progress bar keys.

- loss -> tensor scalar **REQUIRED**
- progress_bar -> Dict for progress bar display. Must have only tensors
- log -> Dict of metrics to add to logger. Must have only tensors (no images, etc)

Examples

```python
WITHOUT training_step_end
if used in DP or DDP2, this batch is 1/num_gpus large
def training_step(self, batch, batch_idx):
 # batch is 1/num_gpus big
 x, y = batch
 out = self(x)
 loss = self.softmax(out)
 loss = nce_loss(loss)
 return {'loss': loss}

with training_step_end to do softmax over the full batch
def training_step(self, batch, batch_idx):
 # batch is 1/num_gpus big
 x, y = batch
 out = self(x)
 return {'out': out}

def training_step_end(self, outputs):
 # this out is now the full size of the batch
 out = outputs['out']
 # this softmax now uses the full batch size
 loss = nce_loss(loss)
 return {'loss': loss}
```

See also:

See the *Multi-GPU training* guide for more details.

**unfreeze()**

Unfreeze all parameters for training.

```python
model = MyLightningModule(...)
model.unfreeze()
```

**Return type** None

**val_dataloader()**

Implement one or multiple PyTorch DataLoaders for validation.

The dataloader you return will not be called every epoch unless you set `reload_dataloaders_every_epoch` to True.

It’s recommended that all data downloads and preparation happen in `prepare_data()`.
• `fit()`
• ...
• `prepare_data()`
• `train_dataloader()`
• `val_dataloader()`
• `test_dataloader()`

**Note:** Lightning adds the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself.

**Return type** `Union[DataLoader, List[DataLoader]]`

**Returns** Single or multiple PyTorch DataLoaders.

**Examples**

```python
def val_dataloader(self):
 transform = transforms.Compose([transforms.ToTensor(),
 transforms.Normalize((0.5,), (1.0,))])
 dataset = MNIST(root='/path/to/mnist/', train=False,
 transform=transform, download=True)
 loader = torch.utils.data.DataLoader(
 dataset=dataset,
 batch_size=self.batch_size,
 shuffle=False
)
 return loader

can also return multiple dataloaders
def val_dataloader(self):
 return [loader_a, loader_b, ..., loader_n]
```

**Note:** If you don’t need a validation dataset and a `validation_step()`, you don’t need to implement this method.

**Note:** In the case where you return multiple validation dataloaders, the `validation_step()` will have an argument `dataset_idx` which matches the order here.

`validation_end(outputs)`

**Warning:** Deprecated in v0.7.0. Use `validation_epoch_end()` instead. Will be removed in 1.0.0.

`validation_epoch_end(outputs)`
Called at the end of the validation epoch with the outputs of all validation steps.
The pseudocode for these calls

```python
val_outs = []
for val_batch in val_data:
 out = validation_step(val_batch)
 val_outs.append(out)
validation_epoch_end(val_outs)
```

Parameters:

- `outputs` (Union[List[Dict[str, Tensor]], List[List[Dict[str, Tensor]]]]) – List of outputs you defined in `validation_step()`, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader.

Returns:

- Dict or OrderedDict. May have the following optional keys:
  - `progress_bar` (dict for progress bar display; only tensors)
  - `log` (dict of metrics to add to logger; only tensors).

Note: If you didn’t define a `validation_step()`, this won’t be called.

- The outputs here are strictly for logging or progress bar.
- If you don’t need to display anything, don’t return anything.
- If you want to manually set current step, you can specify the `step` key in the `log` dict.

Examples

With a single dataloader:

```python
def validation_epoch_end(self, outputs):
 val_acc_mean = 0
 for output in outputs:
 val_acc_mean += output['val_acc']
 val_acc_mean /= len(outputs)
 tqdm_dict = {'val_acc': val_acc_mean.item()}
 # show val_acc in progress bar but only log val_loss
 results = {
 'progress_bar': tqdm_dict,
 'log': {'val_acc': val_acc_mean.item()}
 }
 return results
```

With multiple dataloaders, `outputs` will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each validation step for that dataloader.

```python
def validation_epoch_end(self, outputs):
 val_acc_mean = 0
 i = 0
 for dataloader_outputs in outputs:
 (continues on next page)"
for output in dataloader_outputs:
 val_acc_mean += output['val_acc']
 i += 1

val_acc_mean /= i
tqdm_dict = {'val_acc': val_acc_mean.item()}

show val_loss and val_acc in progress bar but only log val_loss
results = {
 'progress_bar': tqdm_dict,
 'log': {'val_acc': val_acc_mean.item(), 'step': self.current_epoch}
}

return results

validation_step(*args, **kwargs)

Operates on a single batch of data from the validation set. In this step you’d might generate examples or calculate anything of interest like accuracy.

the pseudocode for these calls
val_outs = []
for val_batch in val_data:
 out = validation_step(train_batch)
 val_outs.append(out)
validation_epoch_end(val_outs)

Parameters

- **batch** *(Tensor|([Tensor,...])|([Tensor,...]))* – The output of your DataLoader. A tensor, tuple or list.
- **batch_idx** *(int)* – The index of this batch
- **dataloader_idx** *(int)* – The index of the dataloader that produced this batch (only if multiple val datasets used)

Return type **Dict[str,Tensor]**

Returns Dict or OrderedDict - passed to validation_epoch_end(). If you defined validation_step_end() it will go to that first.

pseudocode of order
out = validation_step()
if defined('validation_step_end'):
 out = validation_step_end(out)
out = validation_epoch_end(out)

if you have one val dataloader:
def validation_step(self, batch, batch_idx)

if you have multiple val dataloaders:
def validation_step(self, batch, batch_idx, dataloader_idx)
Examples

```python
# CASE 1: A single validation dataset
def validation_step(self, batch, batch_idx):
    x, y = batch
    out = self(x)
    loss = self.loss(out, y)
    # log 6 example images
    # or generated text... or whatever
    sample_imgs = x[:6]
    grid = torchvision.utils.make_grid(sample_imgs)
    self.logger.experiment.add_image('example_images', grid, 0)
    # calculate acc
    labels_hat = torch.argmax(out, dim=1)
    val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)
    # all optional...
    # return whatever you need for the collation function
    output = OrderedDict({
        'val_loss': loss_val,
        'val_acc': torch.tensor(val_acc),  # everything must be a tensor
    })
    # return an optional dict
    return output
```

If you pass in multiple val datasets, validation_step will have an additional argument.

```python
# CASE 2: multiple validation datasets
def validation_step(self, batch, batch_idx, dataset_idx):
    # dataset_idx tells you which dataset this is.
```

Note: If you don’t need to validate you don’t need to implement this method.

Note: When the `validation_step()` is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of validation, the model goes back to training mode and gradients are enabled.

`validation_step_end(*args, **kwargs)`

Use this when validating with dp or ddp2 because `validation_step()` will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss.

Note: If you later switch to ddp or some other mode, this will still be called so that you don’t have to change your code.

```python
# pseudocode
sub_batches = split_batches_for_dp(batch)
```
batch_parts_outputs = [validation_step(sub_batch) for sub_batch in sub_batches]
validation_step_end(batch_parts_outputs)

Parameters **batch_parts_outputs** – What you return in `validation_step()` for each batch part.

Return type **Dict[str, Tensor]**

Returns Dict or OrderedDict - passed to the `validation_epoch_end()` method.

Examples

```python
# WITHOUT validation_step_end
# if used in DP or DDP2, this batch is 1/num_gpus large
def validation_step(self, batch, batch_idx):
    # batch is 1/num_gpus big
    x, y = batch
    out = self(x)
    loss = self.softmax(out)
    loss = nce_loss(loss)
    return {'loss': loss}

# --------------
# with validation_step_end to do softmax over the full batch
def validation_step(self, batch, batch_idx):
    # batch is 1/num_gpus big
    x, y = batch
    out = self(x)
    return {'out': out}

def validation_epoch_end(self, outputs):
    # this out is now the full size of the batch
    out = outputs['out']

    # this softmax now uses the full batch size
    loss = nce_loss(loss)
    return {'loss': loss}
```

See also:

See the Multi-GPU training guide for more details.

```
_device = None
device reference

_dtype = None
Current dtype

current_epoch = None
The current epoch

property example_input_array
Return type Any
```

37.1. pytorch_lightning.core package 297
global_step = None
Total training batches seen across all epochs

property hparams
 Return type Union[AttributeDict, str]

logger = None
Pointer to the logger object

property on_gpu
 True if your model is currently running on GPUs. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

trainer = None
Pointer to the trainer object

use_amp = None
True if using amp

use_ddp = None
True if using ddp

use_ddp2 = None
True if using ddp2

use_dp = None
True if using dp

pytorch_lightning.core.data_loader(fn)
Decorator to make any fx with this use the lazy property.

Warning: This decorator deprecated in v0.7.0 and it will be removed v0.9.0.

37.1.9 Submodules

pytorch_lightning.core.decorators module

pytorch_lightning.core.decorators.auto_move_data(fn)
Decorator for LightningModule methods for which input arguments should be moved automatically to the correct device. It has no effect if applied to a method of an object that is not an instance of LightningModule and is typically applied to __call__ or forward.

Parameters fn (Callable) – A LightningModule method for which the arguments should be moved to the device the parameters are on.

Example

```python
# directly in the source code
class LitModel(LightningModule):
    @auto_move_data
    def forward(self, x):
        return x

# or outside
```
LitModel.forward = auto_move_data(LitModel.forward)

model = LitModel()
model = model.to('cuda')
model(torch.zeros(1, 3))

input gets moved to device
tensor([[0., 0., 0.]], device='cuda:0')

Return type Callable

pytorch_lightning.core.decorators.data_loader(fn)
Decorator to make any fx with this use the lazy property.

Warning: This decorator deprecated in v0.7.0 and it will be removed v0.9.0.

pytorch_lightning.core.grads module
Module to describe gradients

class pytorch_lightning.core.grads.GradInformation(*args, **kwargs)
Bases: torch.nn.Module

grad_norm(norm_type)
Compute each parameter’s gradient’s norm and their overall norm.

The overall norm is computed over all gradients together, as if they were concatenated into a single vector.

Parameters

- norm_type (Union[float, int, str]) – The type of the used p-norm, cast to float if necessary. Can be 'inf' for infinity norm.

Returns

- The dictionary of p-norms of each parameter’s gradient and a special entry for the total p-norm of the gradients viewed as a single vector.

Return type norms

pytorch_lightning.core.hooks module

class pytorch_lightning.core.hooks.ModelHooks(*args, **kwargs)
Bases: torch.nn.Module

backward(trainer, loss, optimizer, optimizer_idx)
Override backward with your own implementation if you need to.

Parameters

- trainer – Pointer to the trainer
- loss (Tensor) – Loss is already scaled by accumulated grads
- optimizer (Optimizer) – Current optimizer being used
- optimizer_idx (int) – Index of the current optimizer being used
Called to perform backward step. Feel free to override as needed.

The loss passed in has already been scaled for accumulated gradients if requested.

Example:

```python
def backward(self, use_amp, loss, optimizer):
    if use_amp:
        with amp.scale_loss(loss, optimizer) as scaled_loss:
            scaled_loss.backward()
    else:
        loss.backward()
```

Return type None

on_after_backward()

Called in the training loop after loss.backward() and before optimizers do anything. This is the ideal place to inspect or log gradient information.

Example:

```python
def on_after_backward(self):
    # example to inspect gradient information in tensorboard
    if self.trainer.global_step % 25 == 0:  # don't make the tf file huge
        params = self.state_dict()
        for k, v in params.items():
            grads = v
            name = k
            self.logger.experiment.add_histogram(tag=name, values=grads, global_step=self.trainer.global_step)
```

Return type None

on_batch_end()

Called in the training loop after the batch.

Return type None

on_batch_start(batch)

Called in the training loop before anything happens for that batch.

If you return -1 here, you will skip training for the rest of the current epoch.

Parameters batch *(Any)* – The batched data as it is returned by the training DataLoader.

Return type None

on_before_zero_grad(optimizer)

Called after optimizer.step() and before optimizer.zero_grad().

Called in the training loop after taking an optimizer step and before zeroing grads. Good place to inspect weight information with weights updated.

This is where it is called:

```python
for optimizer in optimizers:
    optimizer.step()
model.on_before_zero_grad(optimizer)  # < ---- called here
optimizer.zero_grad
```
Parameters optimizer (Optimizer) – The optimizer for which grads should be zeroed.

Return type None

on_epoch_end()

Called in the training loop at the very end of the epoch.

Return type None

on_epoch_start()

Called in the training loop at the very beginning of the epoch.

Return type None

on_fit_end()

Called at the very end of fit. If on DDP it is called on every process

on_fit_start()

Called at the very beginning of fit. If on DDP it is called on every process

on_post_performance_check()

Called at the very end of the validation loop.

Return type None

on_pre_performance_check()

Called at the very beginning of the validation loop.

Return type None

on_sanity_check_start()

Called before starting evaluation.

Warning: Deprecated. Will be removed in v0.9.0.

on_train_end()

Called at the end of training before logger experiment is closed.

Return type None

on_train_start()

Called at the beginning of training before sanity check.

Return type None

setup(stage)

Called at the beginning of fit and test. This is a good hook when you need to build models dynamically or adjust something about them. This hook is called on every process when using DDP.

Parameters stage (str) – either ‘fit’ or ‘test’

Example:

```python
class LitModel(...):
    def __init__(self):
        self.l1 = None

    def prepare_data(self):
        download_data()
        tokenize()
```

(continues on next page)
don't do this
self.something = else

```python
def setup(step):
    data = Load_data(...)  
    self.l1 = nn.Linear(28, data.num_classes)
```

tear down \texttt{(stage)}

Called at the end of fit and test.

\textbf{Parameters} \texttt{stage} (str) – either ‘fit’ or ‘test’

\textbf{transfer_batch_to_device} \texttt{(batch, device)}

Override this hook if your DataLoader returns tensors wrapped in a custom data structure.

The data types listed below (and any arbitrary nesting of them) are supported out of the box:

• torch.Tensor
• list
• dict
• tuple
• torchtext.data.Batch (COMING SOON)

For anything else, you need to define how the data is moved to the target device (CPU, GPU, TPU, . . .).

Example:

```python
def transfer_batch_to_device(self, batch, device):
    if isinstance(batch, CustomBatch):
        # move all tensors in your custom data structure to the device
        batch.samples = batch.samples.to(device)
        batch.targets = batch.targets.to(device)
    else:
        batch = super().transfer_batch_to_device(data, device)
    return batch
```

\textbf{Parameters}

• \texttt{batch} (Any) – A batch of data that needs to be transferred to a new device.
• \texttt{device} (device) – The target device as defined in PyTorch.

\textbf{Return type} Any

\textbf{Returns} A reference to the data on the new device.

\textbf{Note:} This hook should only transfer the data and not modify it, nor should it move the data to any other device than the one passed in as argument (unless you know what you are doing). The Trainer already takes care of splitting the batch and determines the target devices.

\textbf{See also:}

• move_data_to_device()
• apply_to_collection()
pytorch_lightning.core.lightning module

class pytorch_lightning.core.lightning.LightningModule(*args, **kwargs)

_LightningModule__get_hparams_assignment_variable()

Looks at the code of the class to figure out what the user named self.hparams this only happens when the user explicitly sets self.hparams

classmethod _auto_collect_arguments(frame=None)

Collect all module arguments in the current constructor and all child constructors. The child constructors are all the __init__ methods that reach the current class through (chained) super().__init__() calls.

Parameters
- **frame** – instance frame

Returns arguments dictionary of the first instance parents_arguments: arguments dictionary of the parent’s instances

Return type self_arguments

_init_slurm_connection()

Sets up environment variables necessary for pytorch distributed communications based on slurm environment.

Return type None

_set_hparams(hp)

Return type None

configure_apex(amp, model, optimizers, amp_level)

Override to init AMP your own way. Must return a model and list of optimizers.

Parameters
- **amp** (object) – pointer to amp library object.
- **model** (LightningModule) – pointer to current LightningModule.
- **optimizers** (List[Optimizer]) – list of optimizers passed in configure_optimizers().
- **amp_level** (str) – AMP mode chosen (‘O1’, ‘O2’, etc...)

Return type Tuple[LightningModule, List[Optimizer]]

Returns Apex wrapped model and optimizers
Examples

```python
# Default implementation used by Trainer.
def configure_apex(self, amp, model, optimizers, amp_level):
    model, optimizers = amp.initialize(
        model, optimizers, opt_level=amp_level,
    )

    return model, optimizers

configure_ddp(model, device_ids)
Override to init DDP in your own way or with your own wrapper. The only requirements are that:
1. On a validation batch the call goes to model.validation_step.
2. On a training batch the call goes to model.training_step.
3. On a testing batch, the call goes to model.test_step.

Parameters

- **model** (LightningModule) – the LightningModule currently being optimized.
- **device_ids** (List[int]) – the list of GPU ids.

Return type DistributedDataParallel

Returns DDP wrapped model

Examples

```python
default implementation used in Trainer
def configure_ddp(self, model, device_ids):
 # Lightning DDP simply routes to test_step, val_step, etc...
 model = LightningDistributedDataParallel(
 model,
 device_ids=device_ids,
 find_unused_parameters=True
)

 return model
```

configure_optimizers()
Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you’d need one. But in the case of GANs or similar you might have multiple.

Return type Union[Optimizer, Sequence[Optimizer], Dict, Sequence[Dict], Tuple[List, List], None]

Returns

Any of these 6 options.

- Single optimizer.
- List or Tuple - List of optimizers.
- Two lists - The first list has multiple optimizers, the second a list of LR schedulers (or lr_dict).
- Dictionary, with an ‘optimizer’ key, and (optionally) a ‘lr_scheduler’ key which value is a single LR scheduler or lr_dict.
• Tuple of dictionaries as described, with an optional ‘frequency’ key.
• None - Fit will run without any optimizer.

**Note:** The ‘frequency’ value is an int corresponding to the number of sequential batches optimized with the specific optimizer. It should be given to none or to all of the optimizers. There is a difference between passing multiple optimizers in a list, and passing multiple optimizers in dictionaries with a frequency of 1: In the former case, all optimizers will operate on the given batch in each optimization step. In the latter, only one optimizer will operate on the given batch at every step.

The lr_dict is a dictionary which contains scheduler and its associated configuration. It has five keys. The default configuration is shown below.

```python
{
 'scheduler': lr_scheduler, # The LR scheduler
 'interval': 'epoch', # The unit of the scheduler's step size
 'frequency': 1, # The frequency of the scheduler
 'reduce_on_plateau': False, # For ReduceLROnPlateau scheduler
 'monitor': 'val_loss' # Metric to monitor
}
```

If user only provides LR schedulers, then their configuration will set to default as shown above.

### Examples

#### # most cases

```python
def configure_optimizers(self):
 opt = Adam(self.parameters(), lr=1e-3)
 return opt
```

#### # multiple optimizer case (e.g.: GAN)

```python
def configure_optimizers(self):
 generator_opt = Adam(self.model_gen.parameters(), lr=0.01)
 discriminator_opt = Adam(self.model_disc.parameters(), lr=0.02)
 return generator_opt, discriminator_opt
```

#### # example with learning rate schedulers

```python
def configure_optimizers(self):
 generator_opt = Adam(self.model_gen.parameters(), lr=0.01)
 discriminator_opt = Adam(self.model_disc.parameters(), lr=0.02)
 discriminator_sched = CosineAnnealing(discriminator_opt, T_max=10)
 return [generator_opt, discriminator_opt], [discriminator_sched]
```

#### # example with step-based learning rate schedulers

```python
def configure_optimizers(self):
 gen_opt = Adam(self.model_gen.parameters(), lr=0.01)
 dis_opt = Adam(self.model_disc.parameters(), lr=0.02)
 gen_sched = {'scheduler': ExponentialLR(gen_opt, 0.99),
 'interval': 'step'} # called after each training step
 dis_sched = CosineAnnealing(discriminator_opt, T_max=10) # called every epoch
 return [gen_opt, dis_opt], [gen_sched, dis_sched]
```

#### # example with optimizer frequencies

```python
see training procedure in 'Improved Training of Wasserstein GANs', Algorithm 1
```

(continues on next page)
def configure_optimizers(self):
    gen_opt = Adam(self.model_gen.parameters(), lr=0.01)
    dis_opt = Adam(self.model_disc.parameters(), lr=0.02)
    n_critic = 5
    return
        {'optimizer': dis_opt, 'frequency': n_critic},
        {'optimizer': gen_opt, 'frequency': 1}

Note: Some things to know:

- Lightning calls `.backward()` and `.step()` on each optimizer and learning rate scheduler as needed.
- If you use 16-bit precision (precision=16), Lightning will automatically handle the optimizers for you.
- If you use multiple optimizers, `training_step()` will have an additional `optimizer_idx` parameter.
- If you use LBFGS Lightning handles the closure function automatically for you.
- If you use multiple optimizers, gradients will be calculated only for the parameters of current optimizer at each training step.
- If you need to control how often those optimizers step or override the default `.step()` schedule, override the `optimizer_step()` hook.
- If you only want to call a learning rate scheduler every $x$ step or epoch, or want to monitor a custom metric, you can specify these in a `lr_dict`:

```python
{
 'scheduler': lr_scheduler,
 'interval': 'step', # or 'epoch'
 'monitor': 'val_f1',
 'frequency': x,
}
```

**abstract forward(***args, **kwargs)**

Same as `torch.nn.Module.forward()`, however in Lightning you want this to define the operations you want to use for prediction (i.e.: on a server or as a feature extractor).

Normally you’d call `self()` from your `training_step()` method. This makes it easy to write a complex system for training with the outputs you’d want in a prediction setting.

You may also find the `auto_move_data()` decorator useful when using the module outside Lightning in a production setting.

**Parameters**

- **args** – Whatever you decide to pass into the forward method.
- **kwargs** – Keyword arguments are also possible.

**Returns** Predicted output
Examples

```python
example if we were using this model as a feature extractor
def forward(self, x):
 feature_maps = self.convnet(x)
 return feature_maps
def training_step(self, batch, batch_idx):
 x, y = batch
 feature_maps = self(x)
 logits = self.classifier(feature_maps)
 # ...
 return loss

splitting it this way allows model to be used a feature extractor
model = MyModelAbove()
inputs = server.get_request()
results = model(inputs)
server.write_results(results)

This is in stark contrast to torch.nn.Module where normally you would have
→ this:

def forward(self, batch):
 x, y = batch
 feature_maps = self.convnet(x)
 logits = self.classifier(feature_maps)
 return logits
```

freeze()
Freeze all params for inference.

Example

```python
model = MyLightningModule(...)
model.freeze()
```

Return type None

get_progress_bar_dict()
Additional items to be displayed in the progress bar.

Return type Dict[str, Union[int, str]]

Returns Dictionary with the items to be displayed in the progress bar.

gtqdm_dict()
Additional items to be displayed in the progress bar.

Return type Dict[str, Union[int, str]]

Returns Dictionary with the items to be displayed in the progress bar.
Warning: Deprecated since v0.7.3. Use `get_progress_bar_dict()` instead.

`init_ddp_connection (global_rank, world_size, is_slurm_managing_tasks=True)`

Override to define your custom way of setting up a distributed environment.

Lightning’s implementation uses env:// init by default and sets the first node as root for SLURM managed cluster.

**Parameters**

- `global_rank (int)` – The global process idx.
- `world_size (int)` – Number of GPUs being use across all nodes. (num_nodes * num_gpus).
- `is_slurm_managing_tasks (bool)` – is cluster managed by SLURM.

**Return type** None

`on_load_checkpoint (checkpoint)`

Called by Lightning to restore your model. If you saved something with `on_save_checkpoint()` this is your chance to restore this.

**Parameters** `checkpoint (Dict[str, Any])` – Loaded checkpoint

**Example**

```python
def on_load_checkpoint(self, checkpoint):
 # 99% of the time you don’t need to implement this method
 self.something_cool_i_want_to_save = checkpoint['something_cool_i_want_to_save']
```

**Note:** Lightning auto-restores global step, epoch, and train state including amp scaling. There is no need for you to restore anything regarding training.

**Return type** None

`on_save_checkpoint (checkpoint)`

Called by Lightning when saving a checkpoint to give you a chance to store anything else you might want to save.

**Parameters** `checkpoint (Dict[str, Any])` – Checkpoint to be saved

**Example**

```python
def on_save_checkpoint(self, checkpoint):
 # 99% of use cases you don’t need to implement this method
 checkpoint['something_cool_i_want_to_save'] = my_cool_pickable_object
```

**Note:** Lightning saves all aspects of training (epoch, global step, etc...) including amp scaling. There is no need for you to store anything about training.
optimizer_step(epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None)

Override this method to adjust the default way the Trainer calls each optimizer. By default, Lightning calls step() and zero_grad() as shown in the example once per optimizer.

Parameters

- **epoch** (int) – Current epoch
- **batch_idx** (int) – Index of current batch
- **optimizer** (Optimizer) – A PyTorch optimizer
- **optimizer_idx** (int) – If you used multiple optimizers this indexes into that list.
- **second_order_closure** (Optional[Callable]) – closure for second order methods

Examples

```python
DEFAULT
def optimizer_step(self, current_epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None):
 optimizer.step()
 optimizer.zero_grad()

Alternating schedule for optimizer steps (i.e.: GANs)
def optimizer_step(self, current_epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None):
 # update generator opt every 2 steps
 if optimizer_idx == 0:
 if batch_idx % 2 == 0 :
 optimizer.step()
 optimizer.zero_grad()

 # update discriminator opt every 4 steps
 if optimizer_idx == 1:
 if batch_idx % 4 == 0 :
 optimizer.step()
 optimizer.zero_grad()

 # ...
 # add as many optimizers as you want
```

Here’s another example showing how to use this for more advanced things such as learning rate warm-up:

```python
learning rate warm-up
def optimizer_step(self, current_epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None):
 # warm up lr
 if self.trainer.global_step < 500:
 lr_scale = min(1., float(self.trainer.global_step + 1) / 500.)
 for pg in optimizer.param_groups:
 pg['lr'] = lr_scale * self.learning_rate

 # update params
 optimizer.step()
 optimizer.zero_grad()
```
**Note:** If you also override the `on_before_zero_grad()` model hook don’t forget to add the call to it before `optimizer.zero_grad()` yourself.

**Return type** None

**prepare_data()**

Use this to download and prepare data.

**Warning:** DO NOT set state to the model (use `setup` instead) since this is NOT called on every GPU in DDP/TPU

Example:

```python
def prepare_data(self):
 # good
 download_data()
tokenize()
etc()

 # bad
 self.split = data_split
 self.some_state = some_other_state()
```

In DDP `prepare_data` can be called in two ways (using `Trainer(prepare_data_per_node)`):

1. Once per node. This is the default and is only called on LOCAL_RANK=0.
2. Once in total. Only called on GLOBAL_RANK=0.

Example:

```python
DEFAULT
called once per node on LOCAL_RANK=0 of that node
Trainer(prepare_data_per_node=True)

call on GLOBAL_RANK=0 (great for shared file systems)
Trainer(prepare_data_per_node=False)
```

This is called before requesting the dataloaders:

```python
model.prepare_data()
 if ddp/tpu: init()
model.setup(step)
model.train_dataloader()
model.val_dataloader()
model.test_dataloader()
```

**Return type** None

**print(*args, **kwargs)**

Prints only from process 0. Use this in any distributed mode to log only once.

**Parameters**

- *args – The thing to print. Will be passed to Python’s built-in print function.
**kwargs – Will be passed to Python’s built-in print function.

Example

```python
def forward(self, x):
 self.print(x, 'in forward')
```

Return type None

save_hyperparameters (*args, frame=None)
Save all model arguments.

Parameters

args – single object of dict, NameSpace or OmegaConf or string names or arguments from class __init__

```python
>>> from collections import OrderedDict
>>> class ManuallyArgsModel(LightningModule):
... def __init__(self, arg1, arg2, arg3):
... super().__init__()
... # manually assign arguments
... self.save_hyperparameters('arg1', 'arg3')
... def forward(self, *args, **kwargs):
... ...

>>> model = ManuallyArgsModel(1, 'abc', 3.14)
>>> model.hparams
"arg1": 1
"arg3": 3.14
```

```python
>>> class AutomaticArgsModel(LightningModule):
... def __init__(self, arg1, arg2, arg3):
... super().__init__()
... # equivalent automatic
... self.save_hyperparameters()
... def forward(self, *args, **kwargs):
... ...

>>> model = AutomaticArgsModel(1, 'abc', 3.14)
>>> model.hparams
"arg1": 1
"arg2": abc
"arg3": 3.14
```

```python
>>> class SingleArgModel(LightningModule):
... def __init__(self, params):
... super().__init__()
... # manually assign single argument
... self.save_hyperparameters(params)
... def forward(self, *args, **kwargs):
... ...

>>> model = SingleArgModel(Namespace(p1=1, p2='abc', p3=3.14))
>>> model.hparams
"p1": 1
"p2": abc
"p3": 3.14
```

Return type None
summarize (mode='top')

Return type: ModelSummary

tbptt_split_batch (batch, split_size)

When using truncated backpropagation through time, each batch must be split along the time dimension. Lightning handles this by default, but for custom behavior override this function.

Parameters

- batch (Tensor) – Current batch
- split_size (int) – The size of the split

Return type: list

Returns: List of batch splits. Each split will be passed to `training_step()` to enable truncated back propagation through time. The default implementation splits root level Tensors and Sequences at dim=1 (i.e. time dim). It assumes that each time dim is the same length.

Examples

def tbptt_split_batch(self, batch, split_size):
    splits = []
    for t in range(0, time_dims[0], split_size):
        batch_split = []
        for i, x in enumerate(batch):
            if isinstance(x, torch.Tensor):
                split_x = x[:, t:t+split_size]
            elif isinstance(x, collections.Sequence):
                split_x = [None] * len(x)
                for batch_idx in range(len(x)):
                    split_x[batch_idx] = x[batch_idx][t:t+split_size]

        batch_split.append(split_x)
        splits.append(batch_split)

    return splits

Note: Called in the training loop after `on_batch_start()` if `truncated_bptt_steps > 0`. Each returned batch split is passed separately to `training_step()`.

test_dataloader()

Implement one or multiple PyTorch DataLoaders for testing.

The dataloader you return will not be called every epoch unless you set `reload_dataloaders_every_epoch` to True.

It’s recommended that all data downloads and preparation happen in `prepare_data()`.

- `fit()`
- `...`
- `prepare_data()`
- `train_dataloader()`
- `val_dataloader()`
• **test_dataloader()**

  **Note:** Lightning adds the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself.

  **Return type** Union[DataLoader, List[DataLoader]]

  **Returns** Single or multiple PyTorch DataLoaders.

  **Example**

  ```python
def test_dataloader(self):
 transform = transforms.Compose([transforms.ToTensor(),
 transforms.Normalize((0.5,), (1.0,))])
 dataset = MNIST(root='/path/to/mnist/', train=False, transform=transform,
 download=True)
 loader = torch.utils.data.DataLoader(
 dataset=dataset,
 batch_size=self.batch_size,
 shuffle=False
)
 return loader
  ```

  **Note:** If you don’t need a test dataset and a **test_step()**, you don’t need to implement this method.

**test_end**(outputs)

**Warning:** Deprecated in v0.7.0. Use **test_epoch_end()** instead. Will be removed in 1.0.0.

**test_epoch_end**(outputs)

Called at the end of a test epoch with the output of all test steps.

  ```python
 # the pseudocode for these calls
 test_outs = []
 for test_batch in test_data:
 out = test_step(test_batch)
 test_outs.append(out)
 test_epoch_end(test_outs)
  ```

**Parameters** outputs (Union[List[Dict[str, Tensor]], List[List[Dict[str, Tensor]]]]) – List of outputs you defined in **test_step_end()**, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader

**Returns**

  Dict has the following optional keys:
  
  • progress_bar -> Dict for progress bar display. Must have only tensors.
  • log -> Dict of metrics to add to logger. Must have only tensors (no images, etc).
**Return type**  Dict or OrderedDict

**Note:** If you didn’t define a `test_step()`, this won’t be called.

- The outputs here are strictly for logging or progress bar.
- If you don’t need to display anything, don’t return anything.
- If you want to manually set current step, specify it with the `step` key in the ‘log’ Dict

### Examples

With a single dataloader:

```python
def test_epoch_end(self, outputs):
 test_acc_mean = 0
 for output in outputs:
 test_acc_mean += output['test_acc']
 test_acc_mean /= len(outputs)
 tqdm_dict = {'test_acc': test_acc_mean.item()}

 # show test_loss and test_acc in progress bar but only log test_loss
 results = {
 'progress_bar': tqdm_dict,
 'log': {'test_acc': test_acc_mean.item()}
 }

 return results
```

With multiple dataloaders, `outputs` will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each test step for that dataloader.

```python
def test_epoch_end(self, outputs):
 test_acc_mean = 0
 i = 0
 for dataloader_outputs in outputs:
 for output in dataloader_outputs:
 test_acc_mean += output['test_acc']
 i += 1
 test_acc_mean /= i
 tqdm_dict = {'test_acc': test_acc_mean.item()}

 # show test_loss and test_acc in progress bar but only log test_loss
 results = {
 'progress_bar': tqdm_dict,
 'log': {'test_acc': test_acc_mean.item(), 'step': self.current_epoch}
 }

 return results
```

**test_step(**args, **kwargs)**

Operates on a single batch of data from the test set. In this step you’d normally generate examples or calculate anything of interest such as accuracy.
# the pseudocode for these calls

test_outs = []
for test_batch in test_data:
    out = test_step(test_batch)
    test_outs.append(out)
test_epoch_end(test_outs)

Parameters

- **batch** (Tensor|([Tensor,...]|[Tensor,...])) – The output of your DataLoader. A tensor, tuple or list.
- **batch_idx** (int) – The index of this batch.
- **dataloader_idx** (int) – The index of the dataloader that produced this batch (only if multiple test datasets used).

Return type Dict[str, Tensor]

Returns Dict or OrderedDict - passed to the `test_epoch_end()` method. If you defined `test_step_end()` it will go to that first.

```python
if you have one test dataloader:
def test_step(self, batch, batch_idx):

if you have multiple test dataloaders:
def test_step(self, batch, batch_idx, dataloader_idx):
```

Examples

```python
CASE 1: A single test dataset
def test_step(self, batch, batch_idx):
 x, y = batch

 # implement your own
 out = self(x)
 loss = self.loss(out, y)

 # log 6 example images
 # or generated text... or whatever
 sample_imgs = x[:6]
 grid = torchvision.utils.make_grid(sample_imgs)
 self.logger.experiment.add_image('example_images', grid, 0)

 # calculate acc
 labels_hat = torch.argmax(out, dim=1)
 val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)

 # all optional...
 # return whatever you need for the collation function test_epoch_end
 output = OrderedDict({
 'val_loss': loss_val,
 'val_acc': torch.tensor(val_acc), # everything must be a tensor
 })
```

(continues on next page)
If you pass in multiple validation datasets, test_step() will have an additional argument.

```python
CASE 2: multiple test datasets
def test_step(self, batch, batch_idx, dataset_idx):
 # dataset_idx tells you which dataset this is.
```

**Note:** If you don’t need to validate you don’t need to implement this method.

**Note:** When the test_step() is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of the test epoch, the model goes back to training mode and gradients are enabled.

```python
test_step_end(*args, **kwargs)
```
Use this when testing with dp or ddp2 because test_step() will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss.

**Note:** If you later switch to ddp or some other mode, this will still be called so that you don’t have to change your code.

```python
pseudocode
sub_batches = split_batches_for_dp(batch)
batch_parts_outputs = [test_step(sub_batch) for sub_batch in sub_batches]
test_step_end(batch_parts_outputs)
```

**Parameters** `batch_parts_outputs` – What you return in test_step() for each batch part.

**Return type** Dict[str, Tensor]

**Returns** Dict or OrderedDict - passed to the test_epoch_end().

**Examples**

```python
WITHOUT test_step_end
if used in DP or DDP2, this batch is 1/num_gpus large
def test_step(self, batch, batch_idx):
 # batch is 1/num_gpus big
 x, y = batch
 out = self(x)
 loss = self.softmax(out)
 loss = nce_loss(loss)
 return {'loss': loss}
```

# --------------

# with test_step_end to do softmax over the full batch
```python
def test_step(self, batch, batch_idx):
 # batch is 1/num_gpus big
 x, y = batch
 out = self(x)
 return {'out': out}

def test_step_end(self, outputs):
 # this out is now the full size of the batch
 out = outputs['out']
 # this softmax now uses the full batch size
 loss = nce_loss(loss)
 return {'loss': loss}
```

See also:

See the *Multi-GPU training* guide for more details.

**tng_dataloader()**

**Warning:** Deprecated in v0.5.0. Use *train_dataloader()* instead. Will be removed in 1.0.0.

**train_dataloader()**

Implement a PyTorch DataLoader for training.

- **Return type** *DataLoader*
- **Returns** Single PyTorch *DataLoader*.

The dataloader you return will not be called every epoch unless you set *reload_dataloaders_every_epoch* to True.

It’s recommended that all data downloads and preparation happen in *prepare_data()*.

- *fit()*
- *
- *prepare_data()*
- *train_dataloader()*

**Note:** Lightning adds the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself.
Example

def train_dataloader(self):
    transform = transforms.Compose([transforms.ToTensor(),
                                     transforms.Normalize((0.5,), (1.0,))])
    dataset = MNIST(root='/path/to/mnist/', train=True, transform=transform,
                    download=True)
    loader = torch.utils.data.DataLoader(
        dataset=dataset,
        batch_size=self.batch_size,
        shuffle=True)
    return loader

training_end(*args, **kwargs)

Warning: Deprecated in v0.7.0. Use training_step_end() instead.

training_epoch_end(outputs)
Called at the end of the training epoch with the outputs of all training steps.

    # the pseudocode for these calls
    train_outs = []
    for train_batch in train_data:
        out = training_step(train_batch)
        train_outs.append(out)
    training_epoch_end(train_outs)

Parameters outputs (Union[List[Dict[str, Tensor]], List[List[Dict[str, Tensor]]]]) – List of outputs you defined in training_step(), or if there are multiple dataloaders, a list containing a list of outputs for each dataloader.

Return type Dict[str, Dict[str, Tensor]]

Returns

Dict or OrderedDict. May contain the following optional keys:

- log (metrics to be added to the logger; only tensors)
- progress_bar (dict for progress bar display)
- any metric used in a callback (e.g. early stopping).

Note: If this method is not overridden, this won’t be called.

- The outputs here are strictly for logging or progress bar.
- If you don’t need to display anything, don’t return anything.
- If you want to manually set current step, you can specify the ‘step’ key in the ‘log’ dict.
Examples

With a single dataloader:

```python
def training_epoch_end(self, outputs):
 train_acc_mean = 0
 for output in outputs:
 train_acc_mean += output['train_acc']

 train_acc_mean /= len(outputs)

 # log training accuracy at the end of an epoch
 results = {
 'log': {'train_acc': train_acc_mean.item()},
 'progress_bar': {'train_acc': train_acc_mean},
 }
 return results
```

With multiple dataloaders, `outputs` will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each training step for that dataloader.

```python
def training_epoch_end(self, outputs):
 train_acc_mean = 0
 i = 0
 for dataloader_outputs in outputs:
 for output in dataloader_outputs:
 train_acc_mean += output['train_acc']
 i += 1

 train_acc_mean /= i

 # log training accuracy at the end of an epoch
 results = {
 'log': {'train_acc': train_acc_mean.item(), 'step': self.current_epoch},
 'progress_bar': {'train_acc': train_acc_mean},
 }
 return results
```

`training_step(*args, **kwargs)`

Here you compute and return the training loss and some additional metrics for e.g. the progress bar or logger.

Parameters

- `batch` (Tensor|Tensor...) | (Tensor,...) – The output of your DataLoader. A tensor, tuple or list.
- `batch_idx` (int) – Integer displaying index of this batch
- `optimizer_idx` (int) – When using multiple optimizers, this argument will also be present.
- `hiddens` (Tensor) – Passed in if truncated_bptt_steps > 0.

Return type: Union[int, Dict[str, Union[Tensor, Dict[str, Tensor]]]]

Returns

Dict with loss key and optional log or progress bar keys. When implementing `training_step()`, return whatever you need in that step:
• loss -> tensor scalar **REQUIRED**
• progress_bar -> Dict for progress bar display. Must have only tensors
• log -> Dict of metrics to add to logger. Must have only tensors (no images, etc)

In this step you’d normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something model specific.

**Examples**

```python
def training_step(self, batch, batch_idx):
 x, y, z = batch
 # implement your own
 out = self(x)
 loss = self.loss(out, x)
 logger_logs = {'training_loss': loss} # optional (MUST ALL BE TENSORS)
 output = {
 'loss': loss, # required
 'progress_bar': {'training_loss': loss}, # optional (MUST ALL BE TENSORS)
 'log': logger_logs
 }
 # return a dict
 return output
```

If you define multiple optimizers, this step will be called with an additional optimizer_idx parameter.

```python
Multiple optimizers (e.g.: GANs)
def training_step(self, batch, batch_idx, optimizer_idx):
 if optimizer_idx == 0:
 # do training_step with encoder
 if optimizer_idx == 1:
 # do training_step with decoder
```

If you add truncated back propagation through time you will also get an additional argument with the hidden states of the previous step.

```python
Truncated back-propagation through time
def training_step(self, batch, batch_idx, hiddens):
 # hiddens are the hidden states from the previous truncated backprop step
 ... out, hiddens = self.lstm(data, hiddens)
 ...
 return {
 "loss": ..., # remember to detach() this
 "hiddens": hiddens
 }
```
Notes

The loss value shown in the progress bar is smoothed (averaged) over the last values, so it differs from the actual loss returned in train/validation step.

training_step_end(*args, **kwargs)

Use this when training with dp or ddp2 because training_step() will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss.

Note: If you later switch to ddp or some other mode, this will still be called so that you don’t have to change your code.

```
pseudocode
sub_batches = split_batches_for_dp(batch)
batch_parts_outputs = [training_step(sub_batch) for sub_batch in sub_batches]
training_step_end(batch_parts_outputs)
```

Parameters batch_parts_outputs – What you return in training_step for each batch part.

Return type Dict[str, Union[Tensor, Dict[str, Tensor]]]

Returns

Dict with loss key and optional log or progress bar keys.

- loss -> tensor scalar REQUIRED
- progress_bar -> Dict for progress bar display. Must have only tensors
- log -> Dict of metrics to add to logger. Must have only tensors (no images, etc)

Examples

```
WITHOUT training_step_end
if used in DP or DDP2, this batch is 1/num_gpus large
def training_step(self, batch, batch_idx):
 # batch is 1/num_gpus big
 x, y = batch
 out = self(x)
 loss = self.softmax(out)
 loss = nce_loss(loss)
 return {'loss': loss}

with training_step_end to do softmax over the full batch
def training_step(self, batch, batch_idx):
 # batch is 1/num_gpus big
 x, y = batch
 out = self(x)
 return {'out': out}

def training_step_end(self, outputs):
 # this out is now the full size of the batch
 out = outputs['out']
```

(continues on next page)
# this softmax now uses the full batch size
loss = nce_loss(loss)
return {'loss': loss}

See also:

See the Multi-GPU training guide for more details.

**unfreeze()**

Unfreeze all parameters for training.

```python
model = MyLightningModule(...)
model.unfreeze()
```

**Return type** None

**val_dataloader()**

Implement one or multiple PyTorch DataLoaders for validation.

The dataloader you return will not be called every epoch unless you set `reload_dataloaders_every_epoch` to `True`.

It’s recommended that all data downloads and preparation happen in `prepare_data()`.

- `fit()`  
- `...`
- `prepare_data()`  
- `train_dataloader()`  
- `val_dataloader()`  
- `test_dataloader()`

**Note:** Lightning adds the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself.

**Return type** Union[DataLoader, List[DataLoader]]

**Returns** Single or multiple PyTorch DataLoaders.

**Examples**

```python
def val_dataloader(self):
 transform = transforms.Compose([transforms.ToTensor(),
 transforms.Normalize((0.5,), (1.0,))])
 dataset = MNIST(root='/path/to/mnist/', train=False,
 transform=transform, download=True)
 loader = torch.utils.data.DataLoader(
 dataset=dataset,
 batch_size=self.batch_size,
 shuffle=False)
```
return loader

# can also return multiple dataloaders
def val_dataloader(self):
    return [loader_a, loader_b, ..., loader_n]

**Note:** If you don’t need a validation dataset and a `validation_step()`, you don’t need to implement this method.

**Note:** In the case where you return multiple validation dataloaders, the `validation_step()` will have an argument `dataset_idx` which matches the order here.

`validation_end(outputs)`

**Warning:** Deprecated in v0.7.0. Use `validation_epoch_end()` instead. Will be removed in 1.0.0.

`validation_epoch_end(outputs)`

Called at the end of the validation epoch with the outputs of all validation steps.

```python
the pseudocode for these calls
val_outs = []
for val_batch in val_data:
 out = validation_step(val_batch)
 val_outs.append(out)
validation_epoch_end(val_outs)
```

**Parameters outputs** (Union[List[Dict[str, Tensor]], List[List[Dict[str, Tensor]]]]) – List of outputs you defined in `validation_step()`, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader.

**Return type** Dict[str, Dict[str, Tensor]]

Returns

Dict or OrderedDict. May have the following optional keys:

- progress_bar (dict for progress bar display; only tensors)
- log (dict of metrics to add to logger; only tensors).

**Note:** If you didn’t define a `validation_step()`, this won’t be called.

- The outputs here are strictly for logging or progress bar.
- If you don’t need to display anything, don’t return anything.
- If you want to manually set current step, you can specify the `step` key in the `log` dict.
Examples

With a single dataloader:

```python
def validation_epoch_end(self, outputs):
 val_acc_mean = 0
 for output in outputs:
 val_acc_mean += output['val_acc']

 val_acc_mean /= len(outputs)
 tqdm_dict = {'val_acc': val_acc_mean.item()}

 # show val_acc in progress bar but only log val_loss
 results = {
 'progress_bar': tqdm_dict,
 'log': {'val_acc': val_acc_mean.item()}
 }
 return results
```

With multiple dataloaders, outputs will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each validation step for that dataloader.

```python
def validation_epoch_end(self, outputs):
 val_acc_mean = 0
 i = 0
 for dataloader_outputs in outputs:
 for output in dataloader_outputs:
 val_acc_mean += output['val_acc']
 i += 1

 val_acc_mean /= i
 tqdm_dict = {'val_acc': val_acc_mean.item()}

 # show val_loss and val_acc in progress bar but only log val_loss
 results = {
 'progress_bar': tqdm_dict,
 'log': {'val_acc': val_acc_mean.item(), 'step': self.current_epoch}
 }
 return results
```

`validation_step(*args, **kwargs)`

Operates on a single batch of data from the validation set. In this step you’d might generate examples or calculate anything of interest like accuracy.

```python
the pseudocode for these calls
val_outs = []
for val_batch in val_data:
 out = validation_step(train_batch)
 val_outs.append(out)
 validation_epoch_end(val_outs)
```

**Parameters**

- **batch** (`Tensor[(Tensor, ...)] | [Tensor, ...]`) – The output of your `DataLoader`. A tensor, tuple or list.
- **batch_idx** (`int`) – The index of this batch
• **dataloader_idx** \((\text{int})\) – The index of the dataloader that produced this batch (only if multiple val datasets used)

**Return type** \(\text{Dict}[\text{str},\text{Tensor}]\)

**Returns** \(\text{Dict} \text{ or } \text{OrderedDict} \) - passed to \textit{validation_epoch_end()}. If you defined \textit{validation_step_end()} it will go to that first.

```python
pseudocode of order
out = validation_step()
if defined('validation_step_end'):
 out = validation_step_end(out)
out = validation_epoch_end(out)
```

```python
if you have one val dataloader:
def validation_step(self, batch, batch_idx):

if you have multiple val dataloaders:
def validation_step(self, batch, batch_idx, dataloader_idx):
```

**Examples**

```python
CASE 1: A single validation dataset
def validation_step(self, batch, batch_idx):
 x, y = batch

 # implement your own
 out = self(x)
 loss = self.loss(out, y)

 # log 6 example images
 # or generated text... or whatever
 sample_imgs = x[:6]
 grid = torchvision.utils.make_grid(sample_imgs)
 self.logger.experiment.add_image('example_images', grid, 0)

 # calculate acc
 labels_hat = torch.argmax(out, dim=1)
 val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)

 # all optional...
 # return whatever you need for the collation function validation_epoch_end
 output = OrderedDict({
 'val_loss': loss_val,
 'val_acc': torch.tensor(val_acc), # everything must be a tensor
 })

 # return an optional dict
 return output
```

If you pass in multiple val datasets, \textit{validation_step} will have an additional argument.

```python
CASE 2: multiple validation datasets
def validation_step(self, batch, batch_idx, dataset_idx):
 # dataset_idx tells you which dataset this is.
```
Note: If you don’t need to validate you don’t need to implement this method.

Note: When the `validation_step()` is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of validation, the model goes back to training mode and gradients are enabled.

`validation_step_end(*args, **kwargs)`

Use this when validating with dp or ddp2 because `validation_step()` will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss.

Note: If you later switch to ddp or some other mode, this will still be called so that you don’t have to change your code.

```python
pseudocode
sub_batches = split_batches_for_dp(batch)
batch_parts_outputs = [validation_step(sub_batch) for sub_batch in sub_batches]
validation_step_end(batch_parts_outputs)
```

Parameters `batch_parts_outputs` – What you return in `validation_step()` for each batch part.

Return type `Dict[str, Tensor]`

Returns Dict or OrderedDict - passed to the `validation_epoch_end()` method.

Examples

```python
WITHOUT validation_step_end
if used in DP or DDP2, this batch is 1/num_gpus large
def validation_step(self, batch, batch_idx):
 # batch is 1/num_gpus big
 x, y = batch
 out = self(x)
 loss = self.softmax(out)
 loss = nce_loss(loss)
 return {'loss': loss}

with validation_step_end to do softmax over the full batch
def validation_step(self, batch, batch_idx):
 # batch is 1/num_gpus big
 x, y = batch
 out = self(x)
 return {'out': out}

def validation_epoch_end(self, outputs):
 # this output is now the full size of the batch
 out = outputs['out']
```

(continues on next page)
loss = nce_loss(loss)
return {'loss': loss}

See also:

See the Multi-GPU training guide for more details.

_device = None
    device reference

_dtype = None
    Current dtype

current_epoch = None
    The current epoch

property example_input_array
    Return type Any

global_step = None
    Total training batches seen across all epochs

property hparams
    Return type Union[AttributeDict, str]

logger = None
    Pointer to the logger object

property on_gpu
    True if your model is currently running on GPUs. Useful to set flags around the LightningModule for different CPU vs GPU behavior.

trainer = None
    Pointer to the trainer object

use_amp = None
    True if using amp

use_ddp = None
    True if using ddp

use_ddp2 = None
    True if using ddp2

use_dp = None
    True if using dp
class pytorch_lightning.core.memory.LayerSummary(module)

Bases: object

Summary class for a single layer in a LightningModule. It collects the following information:

- Type of the layer (e.g. Linear, BatchNorm1d, ...)
- Input shape
- Output shape
- Number of parameters

The input and output shapes are only known after the example input array was passed through the model.

Example:

```python
>>> model = torch.nn.Conv2d(3, 8, 3)
>>> summary = LayerSummary(model)
>>> summary.num_parameters
224
>>> summary.layer_type
'Conv2d'
>>> output = model(torch.rand(1, 3, 5, 5))
>>> summary.in_size
[1, 3, 5, 5]
>>> summary.out_size
[1, 8, 3, 3]
```

Parameters

- **module (Module)** – A module to summarize

_register_hook()

Registers a hook on the module that computes the input- and output size(s) on the first forward pass. The hook will remove itself from the module, meaning that recursive models will only record their input- and output shapes once.

property in_size

property layer_type

Returns the class name of the module.

Return type str

property num_parameters

Returns the number of parameters in this module.

Return type int

property out_size

class pytorch_lightning.core.memory.ModelSummary(model, mode='top')

Bases: object

Generates a summary of all layers in a LightningModule.

Parameters

- **model** – The model to summarize (also referred to as the root module)
- **mode** – Can be one of
  - *top* (default): only the top-level modules will be recorded (the children of the root module)
### full

Summarizes all layers and their submodules in the root module.

The string representation of this summary prints a table with columns containing the name, type and number of parameters for each layer.

The root module may also have an attribute `example_input_array` as shown in the example below. If present, the root module will be called with it as input to determine the intermediate input- and output shapes of all layers. Supported are tensors and nested lists and tuples of tensors. All other types of inputs will be skipped and show as `?` in the summary table. The summary will also display `?` for layers not used in the forward pass.

Example:

```python
>>> class LitModel(pl.LightningModule):
... def __init__(self):
... super().__init__()
... self.net = nn.Sequential(nn.Linear(256, 512), nn.BatchNorm1d(512))
... self.example_input_array = torch.zeros(10, 256) # optional
... def forward(self, x):
... return self.net(x)
... >>> model = LitModel()
>>> ModelSummary(model, mode='top')
<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Params</th>
<th>In sizes</th>
<th>Out sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>net</td>
<td>Sequential</td>
<td>132 K</td>
<td>[10, 256]</td>
<td>[10, 512]</td>
</tr>
</tbody>
</table>

```
Return type List[Tuple[str, Module]]

property out_sizes
Return type List

property param_nums
Return type List[int]

pytorch_lightning.core.memory._format_summary_table(*cols)
Takes in a number of arrays, each specifying a column in the summary table, and combines them all into one big string defining the summary table that are nicely formatted.

Return type str

pytorch_lightning.core.memory.get_gpu_memory_map()
Get the current gpu usage.

Return type Dict[str, int]

Returns A dictionary in which the keys are device ids as integers and values are memory usage as integers in MB.

pytorch_lightning.core.memory.get_human_readable_count(number)
Abbreviates an integer number with K, M, B, T for thousands, millions, billions and trillions, respectively.

Examples

```python
>>> get_human_readable_count(123)
'123'
>>> get_human_readable_count(1234) # (one thousand)
'1 K'
>>> get_human_readable_count(2e6) # (two million)
'2 M'
>>> get_human_readable_count(3e9) # (three billion)
'3 B'
>>> get_human_readable_count(4e12) # (four trillion)
'4 T'
>>> get_human_readable_count(5e15) # (more than trillion)
'5,000 T'
```

Parameters number (int) – a positive integer number

Return type str

Returns A string formatted according to the pattern described above.

pytorch_lightning.core.memory.get_memory_profile(mode)
Get a profile of the current memory usage.

Parameters mode (str) – There are two modes:

- 'all' means return memory for all gpus
- 'min_max' means return memory for max and min

Return type Union[Dict[str, int], Dict[int, int]]

Returns
A dictionary in which the keys are device ids as integers and values are memory usage as integers in MB. If mode is ‘min_max’, the dictionary will also contain two additional keys:

- 'min_gpu_mem': the minimum memory usage in MB
- 'max_gpu_mem': the maximum memory usage in MB

Return type: Union[Dict, None]

```python
pytorch_lightning.core.memory.parse_batch_shape(batch)
```

### pytorch_lightning.core.saving module

```python
class pytorch_lightning.core.saving.ModelIO
 Bases: object

 classmethod _load_model_state(checkpoint, *args, **kwargs)

 classmethod load_from_checkpoint(checkpoint_path, *args, map_location=None, hparams_file=None, tags_csv=None, **kwargs)
```

Primary way of loading a model from a checkpoint. When Lightning saves a checkpoint it stores the arguments passed to `__init__` in the checkpoint under `module_arguments`

Any arguments specified through `*args` and `**kwargs` will override args stored in `hparams`.

**Parameters**

- **checkpoint_path** (str) – Path to checkpoint. This can also be a URL.
- **args** – Any positional args needed to init the model.
- **map_location** (Union[Dict[str, str], str, device, int, Callable, None]) – If your checkpoint saved a GPU model and you now load on CPUs or a different number of GPUs, use this to map to the new setup. The behaviour is the same as in `torch.load()`.
- **hparams_file** (Optional[str]) – Optional path to a .yaml file with hierarchical structure as in this example:

```yaml
drop_prob: 0.2
data_loader:
 batch_size: 32
```

You most likely won’t need this since Lightning will always save the hyperparameters to the checkpoint. However, if your checkpoint weights don’t have the hyperparameters saved, use this method to pass in a .yaml file with the hparams you’d like to use. These will be converted into a dict and passed into your LightningModule for use.

If your model’s `hparams` argument is `Namespace` and .yaml file has hierarchical structure, you need to refactor your model to treat `hparams` as dict.

.csv files are acceptable here till v0.9.0, see tags_csv argument for detailed usage.

- **tags_csv** (Optional[str]) –

```text
Warning: Deprecated since version 0.7.6.
tags_csv argument is deprecated in v0.7.6. Will be removed v0.9.0.
```

Optional path to a .csv file with two columns (key, value) as in this example:
Use this method to pass in a .csv file with the hparams you’d like to use.

- **hparam_overrides** – A dictionary with keys to override in the hparams
- **kwargs** – Any keyword args needed to init the model.

**Returns** LightningModule with loaded weights and hyperparameters (if available).

**Example**

```python
load weights without mapping ...
MyLightningModule.load_from_checkpoint('path/to/checkpoint.ckpt')

or load weights mapping all weights from GPU 1 to GPU 0 ...
map_location = {'cuda:1':'cuda:0'}
MyLightningModule.load_from_checkpoint(
 'path/to/checkpoint.ckpt',
 map_location=map_location
)

or load weights and hyperparameters from separate files.
MyLightningModule.load_from_checkpoint(
 'path/to/checkpoint.ckpt',
 hparams_file='/path/to/hparams_file.yaml'
)

override some of the params with new values
MyLightningModule.load_from_checkpoint(
 PATH,
 num_layers=128,
 pretrained_ckpt_path: NEW_PATH,
)

predict
pretrained_model.eval()
pretrained_model.freeze()
y_hat = pretrained_model(x)
```

**classmethod load_from_metrics**(weights_path, tags_csv, map_location=None)

**Warning:** Deprecated in version 0.7.0. You should use `load_from_checkpoint()` instead. Will be removed in v0.9.0.

**on_hpc_load**(checkpoint)

Hook to do whatever you need right before Slurm manager loads the model.

**Parameters checkpoint** (Dict[Str, Any]) – A dictionary with variables from the checkpoint.

**Return type** None
**on_hpc_save** *(checkpoint)*

Hook to do whatever you need right before Slurm manager saves the model.

**Parameters**
- **checkpoint** *(Dict[str, Any])* – A dictionary in which you can save variables to save in a checkpoint. Contents need to be pickleable.

**Return type** None

**on_load_checkpoint** *(checkpoint)*

Do something with the checkpoint. Gives model a chance to load something before state_dict is restored.

**Parameters**
- **checkpoint** *(Dict[str, Any])* – A dictionary with variables from the checkpoint.

**Return type** None

**on_save_checkpoint** *(checkpoint)*

Give the model a chance to add something to the checkpoint. state_dict is already there.

**Parameters**
- **checkpoint** *(Dict[str, Any])* – A dictionary in which you can save variables to save in a checkpoint. Contents need to be pickleable.

**Return type** None

```python
CHECKPOINT_HYPER_PARAMS_KEY = 'hyper_parameters'
CHECKPOINT_HYPER_PARAMS_NAME = 'hparams_name'
CHECKPOINT_HYPER_PARAMS_TYPE = 'hparams_type'
```

**pytorch_lightning.core.saving.convert**(val)

**Return type** Union[int, float, bool, str]

**pytorch_lightning.core.saving.load_hparams_from_tags_csv**(tags_csv)

Load hparams from a file.

```python
>>> hparams = Namespace(batch_size=32, learning_rate=0.001, data_root='./any/path/here')
>>> path_csv = './testing-hparams.csv'
>>> save_hparams_to_tags_csv(path_csv, hparams)
>>> hparams_new = load_hparams_from_tags_csv(path_csv)
>>> vars(hparams) == hparams_new
True
>>> os.remove(path_csv)
```

**Return type** Dict[str, Any]

**pytorch_lightning.core.saving.load_hparams_from_yaml**(config_yaml)

Load hparams from a file.

```python
>>> hparams = Namespace(batch_size=32, learning_rate=0.001, data_root='./any/path/here')
>>> path_yaml = './testing-hparams.yaml'
>>> save_hparams_to_yaml(path_yaml, hparams)
>>> hparams_new = load_hparams_from_yaml(path_yaml)
>>> vars(hparams) == hparams_new
True
>>> os.remove(path_yaml)
```

**Return type** Dict[str, Any]
pytorch_lightning.core.saving.save_hparams_to_tags_csv(tags_csv, hparams)

Return type None

pytorch_lightning.core.saving.save_hparams_to_yaml(config_yaml, hparams)

Parameters

• **config_yaml** – path to new YAML file

• **hparams** (Union[dict, Namespace]) – parameters to be saved

Return type None

pytorch_lightning.core.saving.update_hparams(hparams, updates)

Overrides hparams with new values

```python
>>> hparams = {'c': 4}
>>> update_hparams(hparams, {'a': {'b': 2}, 'c': 1})
>>> hparams['a']()['b'], hparams['c']
(2, 1)
>>> update_hparams(hparams, {'a': {'b': 4}, 'c': 7})
>>> hparams['a']()['b'], hparams['c']
(4, 7)
```

Parameters

• **hparams** (dict) – the original params and also target object

• **updates** (dict) – new params to be used as update

Return type None

### 37.2 pytorch_lightning.callbacks package

class pytorch_lightning.callbacks.Callback

Bases: abc.ABC

Abstract base class used to build new callbacks.

- **on_batch_end**(trainer, pl_module)
  Called when the training batch ends.

- **on_batch_start**(trainer, pl_module)
  Called when the training batch begins.

- **on_epoch_end**(trainer, pl_module)
  Called when the epoch ends.

- **on_epoch_start**(trainer, pl_module)
  Called when the epoch begins.

- **on_fit_end**(trainer)
  Called when fit ends

- **on_fit_start**(trainer)
  Called when fit begins

- **on_init_end**(trainer)
  Called when the trainer initialization ends, model has not yet been set.
on_init_start (trainer)
Called when the trainer initialization begins, model has not yet been set.

on_keyboard_interrupt (trainer, pl_module)
Called when the training is interrupted by KeyboardInterrupt.

on_sanity_check_end (trainer, pl_module)
Called when the validation sanity check ends.

on_sanity_check_start (trainer, pl_module)
Called when the validation sanity check starts.

on_test_batch_end (trainer, pl_module)
Called when the test batch ends.

on_test_batch_start (trainer, pl_module)
Called when the test batch begins.

on_test_end (trainer, pl_module)
Called when the test ends.

on_test_start (trainer, pl_module)
Called when the test begins.

on_train_end (trainer, pl_module)
Called when the train ends.

on_train_start (trainer, pl_module)
Called when the train begins.

on_validation_batch_end (trainer, pl_module)
Called when the validation batch ends.

on_validation_batch_start (trainer, pl_module)
Called when the validation batch begins.

on_validation_end (trainer, pl_module)
Called when the validation loop ends.

on_validation_start (trainer, pl_module)
Called when the validation loop begins.

setup (trainer, stage)
Called when fit or test begins

tear down (trainer, stage)
Called when fit or test ends

class pytorch_lightning.callbacks.EarlyStopping (monitor='val_loss', min_delta=0.0, patience=3, verbose=False, mode='auto', strict=True)

Bases: pytorch_lightning.callbacks.base.Callback

Parameters

• monitor (str) – quantity to be monitored. Default: 'val_loss'.

• min_delta (float) – minimum change in the monitored quantity to qualify as an improvement, i.e. an absolute change of less than min_delta, will count as no improvement. Default: 0.

• patience (int) – number of validation epochs with no improvement after which training will be stopped. Default: 0.

• verbose (bool) – verbosity mode. Default: False.
• **mode** *(str)* – one of {auto, min, max}. In *min* mode, training will stop when the quantity monitored has stopped decreasing; in *max* mode it will stop when the quantity monitored has stopped increasing; in *auto* mode, the direction is automatically inferred from the name of the monitored quantity. Default: 'auto'.

• **strict** *(bool)* – whether to crash the training if **monitor** is not found in the validation metrics. Default: True.

Example:

```python
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.callbacks import EarlyStopping
>>> early_stopping = EarlyStopping('val_loss')
>>> trainer = Trainer(early_stop_callback=early_stopping)
```

Methods:

- `_run_early_stopping_check` *(trainer, pl_module)*
- `_validate_condition_metric` *(logs)*

Checks that the condition metric for early stopping is good.

```python
>>> logs = {'val_loss': 0.5, 'val_acc': 0.7}
>>> _validate_condition_metric(logs)
```

- `on_train_end` *(trainer, pl_module)*
- `on_train_start` *(trainer, pl_module)*
- `on_validation_end` *(trainer, pl_module)*

Methods:

- `mode_dict` *(dict)*
- `property monitor_op`

```python
>>> mode_dict = {'max': torch.gt, 'min': torch.lt}
```

- `model_checkpoint` *(filepath=None, monitor='val_loss', verbose=False, save_last=False, save_top_k=1, save_weights_only=False, mode='auto', period=1, prefix='*)

**Bases:** `pytorch_lightning.callbacks.base.Callback`

Save the model after every epoch if it improves.

After training finishes, use **best_model_path** to retrieve the path to the best checkpoint file and **best_model_score** to retrieve its score.

**Parameters**

- **filepath** *(Optional[str]*) – path to save the model file. Can contain named formatting options to be auto-filled.

Example:

```python
custom path
saves a file like: my/path/epoch_0.ckpt
>>> checkpoint_callback = ModelCheckpoint(filepath='my/path/')
```

```python
save any arbitrary metrics like 'val_loss', etc. in name
saves a file like: my/path/epoch=2-val_loss=0.2_other_metric=0.3.ckpt
>>> checkpoint_callback = ModelCheckpoint(
```
Can also be set to None, then it will be set to default location during trainer construction.

- **monitor**(str) – quantity to monitor.
- **save_last**(bool) – always saves the model at the end of the epoch. Default: False.
- **save_top_k**(int) – if save_top_k == k, the best k models according to the quantity monitored will be saved. if save_top_k == 0, no models are saved. if save_top_k == -1, all models are saved. Please note that the monitors are checked every period epochs. if save_top_k >= 2 and the callback is called multiple times inside an epoch, the name of the saved file will be appended with a version count starting with v0.
- **mode**(str) – one of {auto, min, max}. If save_top_k != 0, the decision to overwrite the current save file is made based on either the maximization or the minimization of the monitored quantity. For val_acc, this should be max, for val_loss this should be min, etc. In auto mode, the direction is automatically inferred from the name of the monitored quantity.
- **save_weights_only**(bool) – if True, then only the model’s weights will be saved (model.save_weights(filepath)), else the full model is saved (model.save(filepath)).
- **period**(int) – Interval (number of epochs) between checkpoints.

Example:

```python
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.callbacks import ModelCheckpoint

saves checkpoints to 'my/path/' whenever 'val_loss' has a new min
>>> checkpoint_callback = ModelCheckpoint(filepath='my/path/')
>>> trainer = Trainer(checkpoint_callback=checkpoint_callback)

save epoch and val_loss in name
saves a file like: my/path/sample-mnist_epoch=02_val_loss=0.32.ckpt
>>> checkpoint_callback = ModelCheckpoint(
... filepath='my/path/sample-mnist_(epoch:02d)-(val_loss:.2f)'
...)

retrieve the best checkpoint after training
checkpoint_callback = ModelCheckpoint(filepath='my/path/')
trainer = Trainer(checkpoint_callback=checkpoint_callback)
model = ...
trainer.fit(model)
checkpoint_callback.best_model_path
```

Method descriptions:

- **_del_model**(filepath)
- **_do_check_save**(filepath, current, epoch)
- **_save_model**(filepath)
- **check_monitor_top_k**(current)
- **format_checkpoint_name**(epoch, metrics, ver=None)
  Generate a filename according to the defined template.
Example:

```python
>>> tmpdir = os.path.dirname(__file__)
>>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{epoch}'))
>>> os.path.basename(ckpt.format_checkpoint_name(0, {}))
'epoch=0.ckpt'
>>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{epoch:03d}'))
>>> os.path.basename(ckpt.format_checkpoint_name(5, {}))
'epoch=005.ckpt'
>>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{epoch}-{val_loss:.2f}'))
>>> os.path.basename(ckpt.format_checkpoint_name(2, dict(val_loss=0.123456)))
'epoch=2-val_loss=0.12.ckpt'
>>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{missing:d}'))
>>> os.path.basename(ckpt.format_checkpoint_name(0, {}))
'missing=0.ckpt'
```

`on_validation_end(trainer, pl_module)`
Called when the validation loop ends.

**property best**

**property kth_best_model**

**class pytorch_lightning.callbacks.GradientAccumulationScheduler**(scheduling)
**Bases:** `pytorch_lightning.callbacks.base.Callback`

Change gradient accumulation factor according to scheduling.

**Parameters**

`scheduling` *(dict)* – scheduling in format {epoch: accumulation_factor}

**Warning:** Epochs indexing starts from “1” until v0.6.x, but will start from “0” in v0.8.0.

Example:

```python
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.callbacks import GradientAccumulationScheduler
at epoch 5 start accumulating every 2 batches
>>> accumulator = GradientAccumulationScheduler(scheduling={5: 2})
>>> trainer = Trainer(callbacks=[accumulator])
alternatively, pass the scheduling dict directly to the Trainer
>>> trainer = Trainer(accumulate_grad_batches={5: 2})
```

`on_epoch_start(trainer, pl_module)`
Called when the epoch begins.

**class pytorch_lightning.callbacks.LearningRateLogger**
**Bases:** `pytorch_lightning.callbacks.base.Callback`

Automatically logs learning rate for learning rate schedulers during training.

Example:

```python
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.callbacks import LearningRateLogger
>>> lr_logger = LearningRateLogger()
>>> trainer = Trainer(callbacks=[lr_logger])
```
Logging names are automatically determined based on optimizer class name. In case of multiple optimizers of same type, they will be named Adam, Adam-1 etc. If a optimizer has multiple parameter groups they will be named Adam/pg1, Adam/pg2 etc. To control naming, pass in a name keyword in the construction of the learning rate schedulers.

Example:

```python
def configure_optimizer(self):
 optimizer = torch.optim.Adam(...)
 lr_scheduler = {'scheduler': torch.optim.lr_schedulers.LambdaLR(optimizer, ...)
 'name': 'my_logging_name'}
 return [optimizer], [lr_scheduler]
```

_extract_lr (trainer, interval)
Extracts learning rates for lr schedulers and saves information into dict structure.

_find_names (lr_schedulers)

_on_batch_start (trainer, pl_module)
Called when the training batch begins.

_on_epoch_start (trainer, pl_module)
Called when the epoch begins.

_on_train_start (trainer, pl_module)
Called before training, determines unique names for all lr schedulers in the case of multiple of the same type or in the case of multiple parameter groups.

class pytorch_lightning.callbacks.ProgressBarBase
Bases: pytorch_lightning.callbacks.base.Callback

The base class for progress bars in Lightning. It is a Callback that keeps track of the batch progress in the Trainer. You should implement your highly custom progress bars with this as the base class.

Example:

```python
class LitProgressBar(ProgressBarBase):
 def __init__(self):
 super().__init__() # don't forget this :)
 self.enable = True

 def disable(self):
 self.enable = False

 def on_batch_end(self, trainer, pl_module):
 super().on_batch_end(trainer, pl_module) # don't forget this :)
 percent = (self.train_batch_idx / self.total_train_batches) * 100
 sys.stdout.flush()
 sys.stdout.write(f'{percent:.01f} percent complete \r')

bar = LitProgressBar()
trainer = Trainer(callbacks=[bar])
```

disable()
You should provide a way to disable the progress bar. The Trainer will call this to disable the output on processes that have a rank different from 0, e.g., in multi-node training.

enable()
You should provide a way to enable the progress bar. The Trainer will call this in e.g. pre-training.
routines like the learning rate finder to temporarily enable and disable the main progress bar.

```python
on_batch_end(trainer, pl_module)
Called when the training batch ends.
```

```python
on_epoch_start(trainer, pl_module)
Called when the epoch begins.
```

```python
on_init_end(trainer)
Called when the trainer initialization ends, model has not yet been set.
```

```python
on_test_batch_end(trainer, pl_module)
Called when the test batch ends.
```

```python
on_test_start(trainer, pl_module)
Called when the test begins.
```

```python
on_train_start(trainer, pl_module)
Called when the train begins.
```

```python
on_validation_batch_end(trainer, pl_module)
Called when the validation batch ends.
```

```python
on_validation_start(trainer, pl_module)
Called when the validation loop begins.
```

```
property test_batch_idx
The current batch index being processed during testing. Use this to update your progress bar.

 Return type int
```

```
property total_test_batches
The total number of training batches during testing, which may change from epoch to epoch. Use this to set the total number of iterations in the progress bar. Can return inf if the test dataloader is of infinite size.

 Return type int
```

```
property total_train_batches
The total number of training batches during training, which may change from epoch to epoch. Use this to set the total number of iterations in the progress bar. Can return inf if the training dataloader is of infinite size.

 Return type int
```

```
property total_val_batches
The total number of training batches during validation, which may change from epoch to epoch. Use this to set the total number of iterations in the progress bar. Can return inf if the validation dataloader is of infinite size.

 Return type int
```

```
property train_batch_idx
The current batch index being processed during training. Use this to update your progress bar.

 Return type int
```

```
property trainer
```

```
property val_batch_idx
The current batch index being processed during validation. Use this to update your progress bar.

 Return type int
```
This is the default progress bar used by Lightning. It prints to `stdout` using the `tqdm` package and shows up to four different bars:

- **sanity check progress**: the progress during the sanity check run
- **main progress**: shows training + validation progress combined. It also accounts for multiple validation runs during training when `val_check_interval` is used.
- **validation progress**: only visible during validation; shows total progress over all validation datasets.
- **test progress**: only active when testing; shows total progress over all test datasets.

For infinite datasets, the progress bar never ends.

If you want to customize the default `tqdm` progress bars used by Lightning, you can override specific methods of the callback class and pass your custom implementation to the `Trainer`:

Example:

```python
class LitProgressBar(ProgressBar):
 def init_validation_tqdm(self):
 bar = super().init_validation_tqdm()
 bar.set_description('running validation ...')
 return bar

bar = LitProgressBar()
trainer = Trainer(callbacks=[bar])
```

### Parameters

- **refresh_rate** *(int)* – Determines at which rate (in number of batches) the progress bars get updated. Set it to 0 to disable the display. By default, the `Trainer` uses this implementation of the progress bar and sets the refresh rate to the value provided to the `progress_bar_refresh_rate` argument in the `Trainer`.

- **process_position** *(int)* – Set this to a value greater than 0 to offset the progress bars by this many lines. This is useful when you have progress bars defined elsewhere and want to show all of them together. This corresponds to `process_position` in the `Trainer`.

### disable()

You should provide a way to disable the progress bar. The `Trainer` will call this to disable the output on processes that have a rank different from 0, e.g., in multi-node training.

**Return type** None

### enable()

You should provide a way to enable the progress bar. The `Trainer` will call this in e.g. pre-training routines like the learning rate finder to temporarily enable and disable the main progress bar.

**Return type** None

### init_sanity_tqdm()

Override this to customize the `tqdm` bar for the validation sanity run.

**Return type** `tqdm`

### init_test_tqdm()

Override this to customize the `tqdm` bar for testing.
Return type `tqdm`  

`init_train_tqdm()`  
Override this to customize the tqdm bar for training.

Return type `tqdm`  

`init_validation_tqdm()`  
Override this to customize the tqdm bar for validation.

Return type `tqdm`  

`on_batch_end (trainer, pl_module)`  
Called when the training batch ends.

`on_epoch_start (trainer, pl_module)`  
Called when the epoch begins.

`on_sanity_check_end (trainer, pl_module)`  
Called when the validation sanity check ends.

`on_sanity_check_start (trainer, pl_module)`  
Called when the validation sanity check starts.

`on_test_batch_end (trainer, pl_module)`  
Called when the test batch ends.

`on_test_end (trainer, pl_module)`  
Called when the test ends.

`on_test_start (trainer, pl_module)`  
Called when the test begins.

`on_train_end (trainer, pl_module)`  
Called when the train ends.

`on_train_start (trainer, pl_module)`  
Called when the train begins.

`on_validation_batch_end (trainer, pl_module)`  
Called when the validation batch ends.

`on_validation_end (trainer, pl_module)`  
Called when the validation loop ends.

`on_validation_start (trainer, pl_module)`  
Called when the validation loop begins.

property `is_disabled`  
Return type `bool`

property `is_enabled`  
Return type `bool`

property `process_position`  
Return type `int`

property `refresh_rate`  
Return type `int`
37.2.1 Submodules

**pytorch_lightning.callbacks.base module**

**Callback Base**

Abstract base class used to build new callbacks.

```python
class Callback
 Bases: abc.ABC

 Abstract base class used to build new callbacks.

 on_batch_end(trainer, pl_module)
 Called when the training batch ends.

 on_batch_start(trainer, pl_module)
 Called when the training batch begins.

 on_epoch_end(trainer, pl_module)
 Called when the epoch ends.

 on_epoch_start(trainer, pl_module)
 Called when the epoch begins.

 on_fit_end(trainer)
 Called when fit ends

 on_fit_start(trainer)
 Called when fit begins

 on_init_end(trainer)
 Called when the trainer initialization ends, model has not yet been set.

 on_init_start(trainer)
 Called when the trainer initialization begins, model has not yet been set.

 on_keyboard_interrupt(trainer, pl_module)
 Called when the training is interrupted by KeyboardInterrupt.

 on_sanity_check_end(trainer, pl_module)
 Called when the validation sanity check ends.

 on_sanity_check_start(trainer, pl_module)
 Called when the validation sanity check starts.

 on_test_batch_end(trainer, pl_module)
 Called when the test batch ends.

 on_test_batch_start(trainer, pl_module)
 Called when the test batch begins.

 on_test_end(trainer, pl_module)
 Called when the test ends.

 on_test_start(trainer, pl_module)
 Called when the test begins.

 on_train_end(trainer, pl_module)
 Called when the train ends.

 on_train_start(trainer, pl_module)
 Called when the train begins.
```
on_validation_batch_end(trainer, pl_module)
Called when the validation batch ends.

on_validation_batch_start(trainer, pl_module)
Called when the validation batch begins.

on_validation_end(trainer, pl_module)
Called when the validation loop ends.

on_validation_start(trainer, pl_module)
Called when the validation loop begins.

setup(trainer, stage)
Called when fit or test begins

tear down(trainer, stage)
Called when fit or test ends

pytorch_lightning.callbacks.early_stopping module

Early Stopping

Monitor a validation metric and stop training when it stops improving.

class pytorch_lightning.callbacks.early_stopping.EarlyStopping (monitor='val_loss',
min_delta=0.0,
patience=3,
verbose=False,
mode='auto',
strict=True)

Bases: pytorch_lightning.callbacks.base.Callback

Parameters

- monitor (str) – quantity to be monitored. Default: 'val_loss'.
- min_delta (float) – minimum change in the monitored quantity to qualify as an improvement, i.e. an absolute change of less than min_delta, will count as no improvement. Default: 0.
- patience (int) – number of validation epochs with no improvement after which training will be stopped. Default: 0.
- mode (str) – one of {auto, min, max}. In min mode, training will stop when the quantity monitored has stopped decreasing; in max mode it will stop when the quantity monitored has stopped increasing; in auto mode, the direction is automatically inferred from the name of the monitored quantity. Default: 'auto'.
- strict (bool) – whether to crash the training if monitor is not found in the validation metrics. Default: True.

Example:

```python
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.callbacks import EarlyStopping
>>> early_stopping = EarlyStopping('val_loss')
>>> trainer = Trainer(early_stop_callback=early_stopping)

_run_early_stopping_check(trainer, pl_module)
```
_validate_condition_metric(logs)
Checks that the condition metric for early stopping is good.
 RETURNS
:returns:

on_train_end(trainer, pl_module)
Called when the train ends.

on_train_start(trainer, pl_module)
Called when the train begins.

on_validation_end(trainer, pl_module)
Called when the validation loop ends.

mode_dict = {'max': torch.gt, 'min': torch.lt}

property monitor_op

pytorch_lightning.callbacks.gradient_accumulation_scheduler module

Gradient Accumulator

Change gradient accumulation factor according to scheduling.

class pytorch_lightning.callbacks.gradient_accumulation_scheduler.GradientAccumulationScheduler
    Bases: pytorch_lightning.callbacks.base.Callback

    Change gradient accumulation factor according to scheduling.

    Parameters
    scheduling (dict) – scheduling in format {epoch: accumulation_factor}

    Warning: Epochs indexing starts from “1” until v0.6.x, but will start from “0” in v0.8.0.

Example:

```python
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.callbacks import GradientAccumulationScheduler

at epoch 5 start accumulating every 2 batches
>>> accumulator = GradientAccumulationScheduler(scheduling={5: 2})
>>> trainer = Trainer(callbacks=[accumulator])

alternatively, pass the scheduling dict directly to the Trainer
>>> trainer = Trainer(accumulate_grad_batches={5: 2})
```

on_epoch_start(trainer, pl_module)
Called when the epoch begins.
**pytorch_lightning.callbacks.lr_logger module**

**Learning Rate Logger**

Log learning rate for lr schedulers during training

```python
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.callbacks import LearningRateLogger
>>> lr_logger = LearningRateLogger()
>>> trainer = Trainer(callbacks=[lr_logger])
```

Logging names are automatically determined based on optimizer class name. In case of multiple optimizers of same type, they will be named `Adam, Adam-1` etc. If a optimizer has multiple parameter groups they will be named `Adam/pg1, Adam/pg2` etc. To control naming, pass in a `name` keyword in the construction of the learning rate schedulers

Example:

```python
def configure_optimizer(self):
 optimizer = torch.optim.Adam(...)
 lr_scheduler = {'scheduler': torch.optim.lr_schedulers.LambdaLR(optimizer, ...)
 'name': 'my_logging_name'}
 return [optimizer], [lr_scheduler]
```

**_extract_lr** *(trainer, interval)*

Extracts learning rates for lr schedulers and saves information into dict structure.

**_find_names** *(lr_schedulers)*

**on_batch_start** *(trainer, pl_module)*

Called when the training batch begins.

**on_epoch_start** *(trainer, pl_module)*

Called when the epoch begins.

**on_train_start** *(trainer, pl_module)*

Called before training, determines unique names for all lr schedulers in the case of multiple of the same type or in the case of multiple parameter groups

**pytorch_lightning.callbacks.model_checkpoint module**

**Model Checkpointing**

Automatically save model checkpoints during training.
class pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint

Bases: pytorch_lightning.callbacks.base.Callback

Save the model after every epoch if it improves.

After training finishes, use best_model_path to retrieve the path to the best checkpoint file and best_model_score to retrieve its score.

Parameters

- **filepath** (Optional[str]) – path to save the model file. Can contain named formatting options to be auto-filled.

  Example:

  ```
 # custom path
 # saves a file like: my/path/epoch_0.ckpt
 >>> checkpoint_callback = ModelCheckpoint('my/path/')

 # save any arbitrary metrics like `val_loss`, etc. in name
 # saves a file like: my/path/epoch=2-val_loss=0.2其他_metric=0.3.ckpt
 >>> checkpoint_callback = ModelCheckpoint(
 ... filepath='my/path/{epoch}-%{val_loss:.2f}-%{other_metric:.2f}.ckpt'
 ...)
  ```

  Can also be set to None, then it will be set to default location during trainer construction.

- **monitor** (str) – quantity to monitor.
- **verbose** (bool) – verbosity mode. Default: False.
- **save_last** (bool) – always saves the model at the end of the epoch. Default: False.
- **save_top_k** (int) – if save_top_k == k, the best k models according to the quantity monitored will be saved. if save_top_k == 0, no models are saved. if save_top_k == -1, all models are saved. Please note that the monitors are checked every period epochs. if save_top_k >= 2 and the callback is called multiple times inside an epoch, the name of the saved file will be appended with a version count starting with v0.
- **mode** (str) – one of {auto, min, max}. If save_top_k != 0, the decision to overwrite the current save file is made based on either the maximization or the minimization of the monitored quantity. For val_acc, this should be max, for val_loss this should be min, etc. In auto mode, the direction is automatically inferred from the name of the monitored quantity.
- **save_weights_only** (bool) – if True, then only the model’s weights will be saved (model.save_weights(filepath)), else the full model is saved (model.save(filepath)).
- **period** (int) – Interval (number of epochs) between checkpoints.
Example:

```python
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.callbacks import ModelCheckpoint

saves checkpoints to 'my/path/' whenever 'val_loss' has a new min
>>> checkpoint_callback = ModelCheckpoint(filepath='my/path/')
>>> trainer = Trainer(checkpoint_callback=checkpoint_callback)

save epoch and val_loss in name
saves a file like: my/path/sample-mnist_epoch=02_val_loss=0.32.ckpt
>>> checkpoint_callback = ModelCheckpoint(
... filepath='my/path/sample-mnist_{epoch:02d}-{val_loss:.2f}"
...)

retrieve the best checkpoint after training
checkpoint_callback = ModelCheckpoint(filepath='my/path/')
trainer = Trainer(checkpoint_callback=checkpoint_callback)
model = ...
trainer.fit(model)
checkpoint_callback.best_model_path
```

`_del_model` *(filepath)*

`_do_check_save` *(filepath, current, epoch)*

`_save_model` *(filepath)*

`check_monitor_top_k` *(current)*

`format_checkpoint_name` *(epoch, metrics, ver=None)*

Generate a filename according to the defined template.

Example:

```python
>>> tmpdir = os.path.dirname(__file__)
>>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{epoch}'))
>>> os.path.basename(ckpt.format_checkpoint_name(0, {}))
'epoch=0.ckpt'
>>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{epoch:03d}'))
>>> os.path.basename(ckpt.format_checkpoint_name(5, {}))
'epoch=005.ckpt'
>>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{epoch}-{val_loss:.2f}'))
>>> os.path.basename(ckpt.format_checkpoint_name(2, dict(val_loss=0.123456)))
'epoch=2-val_loss=0.12.ckpt'
>>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{missing:d}'))
>>> os.path.basename(ckpt.format_checkpoint_name(0, {}))
'missing=0.ckpt'
```

`on_validation_end` *(trainer, pl_module)*

Called when the validation loop ends.

`property best`

`property kth_best_model`
Progress Bars

Use or override one of the progress bar callbacks.

```python
class pytorch_lightning.callbacks.progress.ProgressBar(refresh_rate=1, process_position=0):
 Bases: pytorch_lightning.callbacks.progress.ProgressBarBase

This is the default progress bar used by Lightning. It prints to `stdout` using the `tqdm` package and shows up to four different bars:

- **sanity check progress**: the progress during the sanity check run
- **main progress**: shows training + validation progress combined. It also accounts for multiple validation runs during training when `val_check_interval` is used.
- **validation progress**: only visible during validation; shows total progress over all validation datasets.
- **test progress**: only active when testing; shows total progress over all test datasets.

For infinite datasets, the progress bar never ends.

If you want to customize the default `tqdm` progress bars used by Lightning, you can override specific methods of the callback class and pass your custom implementation to the `Trainer`:

Example:

```python
class LitProgressBar(ProgressBar):
    def init_validation_tqdm(self):
        bar = super().init_validation_tqdm()
        bar.set_description('running validation ...')
        return bar

bar = LitProgressBar()
trainer = Trainer(callbacks=[bar])
```

Parameters

- **refresh_rate** (int) – Determines at which rate (in number of batches) the progress bars get updated. Set it to 0 to disable the display. By default, the `Trainer` uses this implementation of the progress bar and sets the refresh rate to the value provided to the `progress_bar_refresh_rate` argument in the `Trainer`.

- **process_position** (int) – Set this to a value greater than 0 to offset the progress bars by this many lines. This is useful when you have progress bars defined elsewhere and want to show all of them together. This corresponds to `process_position` in the `Trainer`.

`disable()`

You should provide a way to disable the progress bar. The `Trainer` will call this to disable the output on processes that have a rank different from 0, e.g., in multi-node training.

Return type None

`enable()`

You should provide a way to enable the progress bar. The `Trainer` will call this in e.g. pre-training routines like the `learning rate finder` to temporarily enable and disable the main progress bar.

Return type None
init_sanity_tqdm()
 Override this to customize the tqdm bar for the validation sanity run.

 Return type tqdm

init_test_tqdm()
 Override this to customize the tqdm bar for testing.

 Return type tqdm

init_train_tqdm()
 Override this to customize the tqdm bar for training.

 Return type tqdm

init_validation_tqdm()
 Override this to customize the tqdm bar for validation.

 Return type tqdm

on_batch_end(trainer, pl_module)
 Called when the training batch ends.

on_epoch_start(trainer, pl_module)
 Called when the epoch begins.

on_sanity_check_end(trainer, pl_module)
 Called when the validation sanity check ends.

on_sanity_check_start(trainer, pl_module)
 Called when the validation sanity check starts.

on_test_batch_end(trainer, pl_module)
 Called when the test batch ends.

on_test_end(trainer, pl_module)
 Called when the test ends.

on_test_start(trainer, pl_module)
 Called when the test begins.

on_train_end(trainer, pl_module)
 Called when the train ends.

on_train_start(trainer, pl_module)
 Called when the train begins.

on_validation_batch_end(trainer, pl_module)
 Called when the validation batch ends.

on_validation_end(trainer, pl_module)
 Called when the validation loop ends.

on_validation_start(trainer, pl_module)
 Called when the validation loop begins.

property is_disabled
 Return type bool

property is_enabled
 Return type bool

property process_position
Return type `int`

property refresh_rate

Return type `int`

class pytorch_lightning.callbacks.progress.ProgressBarBase

Bases: `pytorch_lightning.callbacks.base.Callback`

The base class for progress bars in Lightning. It is a `Callback` that keeps track of the batch progress in the `Trainer`. You should implement your highly custom progress bars with this as the base class.

Example:

```python
class LitProgressBar(ProgressBarBase):
    def __init__(self):
        super().__init__()  # don't forget this :)
        self.enable = True

    def disable(self):
        self.enable = False

    def on_batch_end(self, trainer, pl_module):
        super().on_batch_end(trainer, pl_module)  # don't forget this :)
        percent = (self.train_batch_idx / self.total_train_batches) * 100
        sys.stdout.flush()
        sys.stdout.write(f'
{percent:.01f} percent complete \r')

bar = LitProgressBar()
trainer = Trainer(callbacks=[bar])
```

disable()

You should provide a way to disable the progress bar. The `Trainer` will call this to disable the output on processes that have a rank different from 0, e.g., in multi-node training.

enable()

You should provide a way to enable the progress bar. The `Trainer` will call this in e.g. pre-training routines like the learning rate finder to temporarily enable and disable the main progress bar.

on_batch_end(trainer, pl_module)

Called when the training batch ends.

on_epoch_start(trainer, pl_module)

Called when the epoch begins.

on_init_end(trainer)

Called when the trainer initialization ends, model has not yet been set.

on_test_batch_end(trainer, pl_module)

Called when the test batch ends.

on_test_start(trainer, pl_module)

Called when the test begins.

on_train_start(trainer, pl_module)

Called when the train begins.

on_validation_batch_end(trainer, pl_module)

Called when the validation batch ends.

on_validation_start(trainer, pl_module)

Called when the validation loop begins.
property test_batch_idx
The current batch index being processed during testing. Use this to update your progress bar.

Return type int

property total_test_batches
The total number of training batches during testing, which may change from epoch to epoch. Use this to set the total number of iterations in the progress bar. Can return inf if the test dataloader is of infinite size.

Return type int

property total_train_batches
The total number of training batches during training, which may change from epoch to epoch. Use this to set the total number of iterations in the progress bar. Can return inf if the training dataloader is of infinite size.

Return type int

property total_val_batches
The total number of training batches during validation, which may change from epoch to epoch. Use this to set the total number of iterations in the progress bar. Can return inf if the validation dataloader is of infinite size.

Return type int

property train_batch_idx
The current batch index being processed during training. Use this to update your progress bar.

Return type int

property val_batch_idx
The current batch index being processed during validation. Use this to update your progress bar.

Return type int

pytorch_lightning.callbacks.progress.convert_inf(x)
The tqdm doesn’t support inf values. We have to convert it to None.

37.3 pytorch_lightning.loggers package

class pytorch_lightning.loggers.LightningLoggerBase(agg_key_funcs=None, agg_default_func=numpy.mean)
Bases: abc.ABC
Base class for experiment loggers.

Parameters

• agg_key_funcs (Optional[Mapping[str, Callable[[Sequence[float]], float]]]) – Dictionary which maps a metric name to a function, which will aggregate the metric values for the same steps.

• agg_default_func (Callable[[Sequence[float]], float]) – Default function to aggregate metric values. If some metric name is not presented in the agg_key_funcs dictionary, then the agg_default_func will be used for aggregation.
Note: The `agg_key_funcs` and `agg_default_func` arguments are used only when one logs metrics with the `agg_and_log_metrics()` method.

```python
def _aggregate_metrics(metrics, step=None)
    Aggregates metrics.
    Parameters
    • metrics (Dict[str, float]) – Dictionary with metric names as keys and measured quantities as values
    • step (Optional[int]) – Step number at which the metrics should be recorded
    Return type Tuple[int, Optional[Dict[str, float]]]
    Returns Step and aggregated metrics. The return value could be None. In such case, metrics are added to the aggregation list, but not aggregated yet.
```

```python
static _convert_params(params)
    Return type Dict[str, Any]
```

```python
static _finalize_agg_metrics()
    This shall be called before save/close.
```

```python
static _flatten_dict(params, delimiter='/')
    Flatten hierarchical dict, e.g. {'a': {'b': 'c'}} -> {'a/b': 'c'}.
    Parameters
    • params (Dict[str, Any]) – Dictionary containing the hyperparameters
    • delimiter (str) – Delimiter to express the hierarchy. Defaults to '/'.
    Return type Dict[str, Any]
    Returns Flattened dict.
```

Examples

```python
>>> LightningLoggerBase._flatten_dict({'a': {'b': 'c'}})
{'a/b': 'c'}
>>> LightningLoggerBase._flatten_dict({'a': {'b': 123}})
{'a/b': 123}
```

```python
def _reduce_agg_metrics()
    Aggregate accumulated metrics.
```

```python
static _sanitize_params(params)
    Returns params with non-primitvies converted to strings for logging.
```

```python
>>> params = {'float': 0.3,
...     'int': 1,
...     'string': 'abc',
...     'bool': True,
...     'list': [1, 2, 3],
...     'namespace': Namespace(foo=3),
...     'layer': torch.nn.BatchNorm1d}
>>> import pprint
```

(continues on next page)
>>> pprint.pprint(LightningLoggerBase._sanitize_params(params))
{'bool': True,
 'float': 0.3,
 'int': 1,
 'layer': '<class 'torch.nn.modules.batchnorm.BatchNorm1d'>",
 'list': '[1, 2, 3]',
 'namespace': 'Namespace(foo=3)',
 'string': 'abc'}

Return type Dict[str, Any]

agg_and_log_metrics *(metrics, step=None)*

Aggregates and records metrics. This method doesn’t log the passed metrics instantaneously, but instead it aggregates them and logs only if metrics are ready to be logged.

Parameters

- **metrics**: Dict[str, float] – Dictionary with metric names as keys and measured quantities as values
- **step**: Optional[int] – Step number at which the metrics should be recorded

close

Do any cleanup that is necessary to close an experiment.

Return type None

finalize(status)

Do any processing that is necessary to finalize an experiment.

Parameters status (str) – Status that the experiment finished with (e.g. success, failed, aborted)

Return type None

abstract log_hyperparams *(params)*

Record hyperparameters.

Parameters params (Namespace) – Namespace containing the hyperparameters

abstract log_metrics *(metrics, step=None)*

Records metrics. This method logs metrics as soon as it received them. If you want to aggregate metrics for one specific step, use the agg_and_log_metrics() method.

Parameters

- **metrics**: Dict[str, float] – Dictionary with metric names as keys and measured quantities as values
- **step**: Optional[int] – Step number at which the metrics should be recorded

save

Save log data.

Return type None

update_agg_funcs(agg_key_funcs=None, agg_default_func=numpy.mean)

Update aggregation methods.

Parameters
• **agg_key_funcs** *(Optional[Mapping[str, Callable[[Sequence[float]], float]])* – Dictionary which maps a metric name to a function, which will aggregate the metric values for the same steps.

• **agg_default_func** *(Callable[[Sequence[float]], float]*) – Default function to aggregate metric values. If some metric name is not presented in the `agg_key_funcs` dictionary, then the `agg_default_func` will be used for aggregation.

abstract property experiment

Return the experiment object associated with this logger.

 Return type Any

abstract property name

Return the experiment name.

 Return type str

abstract property version

Return the experiment version.

 Return type Union[int, str]

class pytorch_lightning.loggers.LoggerCollection(logger_iterable)

Bases: *pytorch_lightning.loggers.base.LightningLoggerBase*

The `LoggerCollection` class is used to iterate all logging actions over the given `logger_iterable`.

 Parameters logger_iterable (Iterable[LightningLoggerBase]) – An iterable collection of loggers

close()

Do any cleanup that is necessary to close an experiment.

 Return type None

finalize(status)

Do any processing that is necessary to finalize an experiment.

 Parameters status (str) – Status that the experiment finished with (e.g. success, failed, aborted)

 Return type None

log_hyperparams(params)

Record hyperparameters.

 Parameters params (Union[Dict[str, Any], Namespace]) – Namespace containing the hyperparameters

 Return type None

log_metrics(metrics, step=\texttt{None})

Records metrics. This method logs metrics as as soon as it received them. If you want to aggregate metrics for one specific `step`, use the `agg_and_log_metrics()` method.

 Parameters

 • metrics (Dict[str, float]) – Dictionary with metric names as keys and measured quantities as values

 • step (Optional[int]) – Step number at which the metrics should be recorded

 Return type None
save()
Save log data.

Return type None

property experiment
Return the experiment object associated with this logger.

Return type List[Any]

property name
Return the experiment name.

Return type str

property version
Return the experiment version.

Return type str

class pytorch_lightning.loggers.TensorBoardLogger(save_dir, name='default', version=None, **kwargs)

Bases: pytorch_lightning.loggers.base.LightningLoggerBase

Log to local file system in TensorBoard format. Implemented using SummaryWriter. Logs are saved to os.path.join(save_dir, name, version). This is the default logger in Lightning, it comes preinstalled.

Example

```python
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.loggers import TensorBoardLogger
>>> logger = TensorBoardLogger("tb_logs", name="my_model")
>>> trainer = Trainer(logger=logger)
```

Parameters

- **save_dir** (str) – Save directory
- **name** (Optional[str]) – Experiment name. Defaults to 'default'. If it is the empty string then no per-experiment subdirectory is used.
- **version** (Union[int, str, None]) – Experiment version. If version is not specified the logger inspects the save directory for existing versions, then automatically assigns the next available version. If it is a string then it is used as the run-specific subdirectory name, otherwise 'version_${version}' is used.
- ****kwargs – Other arguments are passed directly to the SummaryWriter constructor.

_get_next_version()

finalize(status)
Do any processing that is necessary to finalize an experiment.

Parameters status (str) – Status that the experiment finished with (e.g. success, failed, aborted)

Return type None

log_hyperparams(params, metrics=None)
Record hyperparameters.
Parameters `params` ([`Union[Dict[str, Any], Namespace]`]) – Namespace containing the hyperparameters

Return type None

log_metrics *(metrics, step=None)*
Records metrics. This method logs metrics as soon as it received them. If you want to aggregate metrics for one specific step, use the `agg_and_log_metrics()` method.

Parameters

- **metrics** ([`Dict[str, float]`]) – Dictionary with metric names as keys and measured quantities as values
- **step** ([`Optional[int]`]) – Step number at which the metrics should be recorded

Return type None

save()
Save log data.

Return type None

NAME_HPARAMS_FILE = 'hparams.yaml'

property experiment
Actual tensorboard object. To use TensorBoard features in your `LightningModule` do the following.

Example:

```
self.logger.experiment.some_tensorboard_function()
```

Return type SummaryWriter

property log_dir
The directory for this run’s tensorboard checkpoint. By default, it is named `'version_${self.version}'` but it can be overridden by passing a string value for the constructor’s version parameter instead of `None` or an int.

Return type str

property name
Return the experiment name.

Return type str

property root_dir
Parent directory for all tensorboard checkpoint subdirectories. If the experiment name parameter is `None` or the empty string, no experiment subdirectory is used and the checkpoint will be saved in “save_dir/version_dir”

Return type str

property version
Return the experiment version.

Return type int

class `pytorch_lightning.loggers.CometLogger` *(api_key=None, save_dir=None, workspace=None, project_name=None, rest_api_key=None, experiment_name=None, experiment_key=None, **kwargs)*
Bases: `pytorch_lightning.loggers.base.LightningLoggerBase`

Log using Comet.ml. Install it with pip:

```
$ pip install comet-ml
```

Comet requires either an API Key (online mode) or a local directory path (offline mode).

ONLINE MODE

Example

```python
>>> import os
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.loggers import CometLogger

# arguments made to CometLogger are passed on to the comet_ml.Experiment class
>>> comet_logger = CometLogger(
...     api_key=os.environ.get('COMET_API_KEY'),
...     workspace=os.environ.get('COMET_WORKSPACE'),  # Optional
...     save_dir='.',  # Optional
...     project_name='default_project',  # Optional
...     rest_api_key=os.environ.get('COMET_REST_API_KEY'),  # Optional
...     experiment_name='default'  # Optional
... )

>>> trainer = Trainer(logger=comet_logger)
```

OFFLINE MODE

Example

```python
>>> from pytorch_lightning.loggers import CometLogger

# arguments made to CometLogger are passed on to the comet_ml.Experiment class
>>> comet_logger = CometLogger(
...     save_dir='.',
...     workspace=os.environ.get('COMET_WORKSPACE'),  # Optional
...     project_name='default_project',  # Optional
...     rest_api_key=os.environ.get('COMET_REST_API_KEY'),  # Optional
...     experiment_name='default'  # Optional
... )

>>> trainer = Trainer(logger=comet_logger)
```

Parameters

- `api_key` *(Optional str)* – Required in online mode. API key, found on Comet.ml
- `save_dir` *(Optional str)* – Required in offline mode. The path for the directory to save local comet logs
- `workspace` *(Optional str)* – Optional. Name of workspace for this user
- `project_name` *(Optional str)* – Optional. Send your experiment to a specific project. Otherwise will be sent to Uncategorized Experiments. If the project name does not already exist, Comet.ml will create a new project.
- `rest_api_key` *(Optional str)* – Optional. Rest API key found in Comet.ml settings. This is used to determine version number
• `experiment_name (Optional[str])` – Optional. String representing the name for this particular experiment on Comet.ml.

• `experiment_key (Optional[str])` – Optional. If set, restores from existing experiment.

`finalize(status)`

When calling `self.experiment.end()`, that experiment won’t log any more data to Comet. That’s why, if you need to log any more data, you need to create an `ExistingCometExperiment`. For example, to log data when testing your model after training, because when training is finalized `CometLogger.finalize()` is called.

This happens automatically in the `experiment()` property, when `self._experiment` is set to `None`, i.e. `self.reset_experiment()`.

Return type None

`log_hyperparams (params)`

Record hyperparameters.

Parameters

• `params (Union[Dict[str, Any], Namespace])` – Namespace containing the hyperparameters

Return type None

`log_metrics (metrics, step=None)`

Records metrics. This method logs metrics as as soon as it received them. If you want to aggregate metrics for one specific `step`, use the `agg_and_log_metrics()` method.

Parameters

• `metrics (Dict[str, Union[Tensor, float]])` – Dictionary with metric names as keys and measured quantities as values

• `step (Optional[int])` – Step number at which the metrics should be recorded

Return type None

`reset_experiment ()`

property `experiment`

Actual Comet object. To use Comet features in your `LightningModule` do the following.

Example:

```python
self.logger.experiment.some_comet_function()
```

Return type `BaseExperiment`

property `name`

Return the experiment name.

Return type `str`

property `version`

Return the experiment version.

Return type `str`

class `pytorch_lightning.loggers.MLFlowLogger (experiment_name='default', tracks='None', tags='None', save_dir='None')`

Bases: `pytorch_lightning.loggers.base.LightningLoggerBase`
Log using MLflow. Install it with pip:

```
pip install mlflow
```

Example

```python
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.loggers import MLFlowLogger
>>> mlf_logger = MLFlowLogger(
...     experiment_name="default",
...     tracking_uri="file:./ml-runs"
... )
>>> trainer = Trainer(logger=mlf_logger)
```

Use the logger anywhere in your LightningModule as follows:

```python
>>> from pytorch_lightning import LightningModule
>>> class LitModel(LightningModule):
...     def training_step(self, batch, batch_idx):
...         # example
...         self.logger.experiment.whatever_ml_flow_supports(...)
...     def any_lightning_module_function_or_hook(self):
...         self.logger.experiment.whatever_ml_flow_supports(...)
```

Parameters

- `experiment_name (str)` – The name of the experiment
- `tracking_uri (Optional[str])` – Address of local or remote tracking server. If not provided, defaults to the service set by `mlflow.tracking.set_tracking_uri`.
- `tags (Optional[Dict[str, Any]])` – A dictionary tags for the experiment.

finalize (status='FINISHED')

Do any processing that is necessary to finalize an experiment.

Parameters

- `status (str)` – Status that the experiment finished with (e.g. success, failed, aborted)

Return type None

log_hyperparams (params)

Record hyperparameters.

Parameters

- `params (Union[Dict[str, Any], Namespace])` – Namespace containing the hyperparameters

Return type None

log_metrics (metrics, step=None)

Records metrics. This method logs metrics as soon as it received them. If you want to aggregate metrics for one specific `step`, use the `agg_and_log_metrics()` method.

Parameters

- `metrics (Dict[str, float])` – Dictionary with metric names as keys and measured quantities as values
- `step (Optional[int])` – Step number at which the metrics should be recorded
property experiment
Actual MLflow object. To use mlflow features in your LightningModule do the following.
Example:
```
self.logger.experiment.some_mlflow_function()
```

property name
Return the experiment name.

property run_id

property version
Return the experiment version.

class pytorch_lightning.loggers.NeptuneLogger (api_key=None, project_name=None, close_after_fit=True, offline_mode=False, experiment_name=None, upload_source_files=None, params=None, properties=None, tags=None, **kwargs)

Bases: `pytorch_lightning.loggers.base.LightningLoggerBase`

Log using Neptune. Install it with pip:
```
pip install neptune-client
```

The Neptune logger can be used in the online mode or offline (silent) mode. To log experiment data in online mode, NeptuneLogger requires an API key. In offline mode, the logger does not connect to Neptune.

ONLINE MODE

Example
```
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.loggers import NeptuneLogger

>>> # arguments made to NeptuneLogger are passed on to the neptune.experiments. Experiment class

>>> # We are using an api_key for the anonymous user "neptuner" but you can use your own.

>>> neptune_logger = NeptuneLogger(
...     api_key="ANONYMOUS",
...     project_name="shared/pytorch-lightning-integration",
...     experiment_name="default", # Optional,
...     params={"max_epochs": 10}, # Optional,
...     tags=["pytorch-lightning", 'mlp'] # Optional,
... )

>>> trainer = Trainer(max_epochs=10, logger=neptune_logger)
```

OFFLINE MODE
Example

```python
>>> from pytorch_lightning.loggers import NeptuneLogger

>>> # arguments made to NeptuneLogger are passed on to the neptune.experiments.Experiment class
>>> neptune_logger = NeptuneLogger(
    offline_mode=True,
    project_name='USER_NAME/PROJECT_NAME',
    experiment_name='default',  # Optional,
    params={'max_epochs': 10},  # Optional,
    tags=['pytorch-lightning', 'mlp']  # Optional,
)

>>> trainer = Trainer(max_epochs=10, logger=neptune_logger)
```

Use the logger anywhere in your `LightningModule` as follows:

```python
>>> from pytorch_lightning import LightningModule

>>> class LitModel(LightningModule):

    def training_step(self, batch, batch_idx):
        # log metrics
        self.logger.experiment.log_metric('acc_train', ...)

        # log images
        self.logger.experiment.log_image('worse_predictions', ...)

        # log model checkpoint
        self.logger.experiment.log_artifact('model_checkpoint.pt', ...)

        self.logger.experiment.whatever_neptune_supports(...)

    def any_lightning_module_function_or_hook(self):
        self.logger.experiment.log_metric('acc_train', ...)

        self.logger.experiment.log_image('worse_predictions', ...)

        self.logger.experiment.log_artifact('model_checkpoint.pt', ...)

        self.logger.experiment.whatever_neptune_supports(...)
```

If you want to log objects after the training is finished use `close_after_fit=False`:

```python
neptune_logger = NeptuneLogger(
    close_after_fit=False,
)

trainer = Trainer(logger=neptune_logger)
trainer.fit()
```

Log test metrics
trainer.test(model)

Log additional metrics
from sklearn.metrics import accuracy_score
accuracy = accuracy_score(y_true, y_pred)
neptune_logger.experiment.log_metric('test_accuracy', accuracy)

Log charts
from scikitplot.metrics import plot_confusion_matrix
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(16, 12))
```

(continues on next page)
plot_confusion_matrix(y_true, y_pred, ax=ax)
neptune_logger.experiment.log_image('confusion_matrix', fig)

# Save checkpoints folder
neptune_logger.experiment.log_artifact('my/checkpoints')

# When you are done, stop the experiment
neptune_logger.experiment.stop()

See also:

• An Example experiment showing the UI of Neptune.

• Tutorial on how to use Pytorch Lightning with Neptune.

Parameters

• **api_key** *(Optional* [str]) – Required in online mode. Neptune API token, found on https://neptune.ai. Read how to get your API key. It is recommended to keep it in the `NEPTUNE_API_TOKEN` environment variable and then you can leave `api_key=None`.

• **project_name** *(Optional* [str]) – Required in online mode. Qualified name of a project in a form of “namespace/project_name” for example “tom/minst-classification”. If None, the value of `NEPTUNE_PROJECT` environment variable will be taken. You need to create the project in https://neptune.ai first.

• **offline_mode** *(bool)* – Optional default False. If True no logs will be sent to Neptune. Usually used for debug purposes.

• **close_after_fit** *(Optional* [bool]) – Optional default True. If False the experiment will not be closed after training and additional metrics, images or artifacts can be logged. Also, remember to close the experiment explicitly by running `neptune_logger.experiment.stop()`.

• **experiment_name** *(Optional* [str]) – Optional. Editable name of the experiment. Name is displayed in the experiment’s Details (Metadata section) and in experiments view as a column.

• **upload_source_files** *(Optional* [List[str]]) – Optional. List of source files to be uploaded. Must be list of str or single str. Uploaded sources are displayed in the experiment’s Source code tab. If None is passed, the Python file from which the experiment was created will be uploaded. Pass an empty list ([]) to upload no files. Unix style pathname pattern expansion is supported. For example, you can pass `'* .py'` to upload all python source files from the current directory. For recursion lookup use `'**/* .py'` (for Python 3.5 and later). For more information see `glob` library.

• **params** *(Optional* [Dict[str, Any]]) – Optional. Parameters of the experiment. After experiment creation params are read-only. Parameters are displayed in the experiment’s Parameters section and each key-value pair can be viewed in the experiments view as a column.

• **properties** *(Optional* [Dict[str, Any]]) – Optional. Default is {}. Properties of the experiment. They are editable after the experiment is created. Properties are displayed in the experiment’s Details section and each key-value pair can be viewed in the experiments view as a column.

• **tags** *(Optional* [List[str]]) – Optional. Default is []. Must be list of str. Tags of the experiment. They are editable after the experiment is created (see: `append_tag()`)
and remove_tag()). Tags are displayed in the experiment’s Details section and can be viewed in the experiments view as a column.

```python
_create_or_get_experiment()
append_tags(tags)
 Appends tags to the neptune experiment.
 Parameters
 tags (Union[<str>, Iterable[str]]) – Tags to add to the current experiment.
 If str is passed, a single tag is added. If multiple - comma separated - str are passed, all of them are added as tags. If list of str is passed, all elements of the list are added as tags.
 Return type None
finalize(status)
 Do any processing that is necessary to finalize an experiment.
 Parameters
 status (str) – Status that the experiment finished with (e.g. success, failed, aborted)
 Return type None
log_artifact(artifact, destination=None)
 Save an artifact (file) in Neptune experiment storage.
 Parameters
 • artifact (str) – A path to the file in local filesystem.
 • destination (Optional[str]) – Optional. Default is None. A destination path. If None is passed, an artifact file name will be used.
 Return type None
log_hyperparams(params)
 Record hyperparameters.
 Parameters
 params (Union[Dict[str, Any], Namespace]) – Namespace containing the hyperparameters
 Return type None
log_image(log_name, image, step=None)
 Log image data in Neptune experiment
 Parameters
 • log_name (str) – The name of log, i.e. bboxes, visualisations, sample_images.
 • image (Union[str, Image, Any]) – The value of the log (data-point). Can be one of the following types: PIL image, matplotlib.figure.Figure, path to image file (str)
 • step (Optional[int]) – Step number at which the metrics should be recorded, must be strictly increasing
 Return type None
log_metric(metric_name, metric_value, step=None)
 Log metrics (numeric values) in Neptune experiments.
 Parameters
 • metric_name (str) – The name of log, i.e. mse, loss, accuracy.
 • metric_value (Union[Tensor, float, str]) – The value of the log (data-point).
• **step (Optional[int])** – Step number at which the metrics should be recorded, must be strictly increasing

Return type None

log_metrics (metrics, step=None)

Log metrics (numeric values) in Neptune experiments.

Parameters

• **metrics (Dict[str, Union[Tensor, float]])** – Dictionary with metric names as keys and measured quantities as values

• **step (Optional[int])** – Step number at which the metrics should be recorded, must be strictly increasing

Return type None

log_text (log_name, text, step=None)

Log text data in Neptune experiments.

Parameters

• **log_name (str)** – The name of log, i.e. mse, my_text_data, timing_info.

• **text (str)** – The value of the log (data-point).

• **step (Optional[int])** – Step number at which the metrics should be recorded, must be strictly increasing

Return type None

set_property (key, value)

Set key-value pair as Neptune experiment property.

Parameters

• **key (str)** – Property key.

• **value (Any)** – New value of a property.

Return type None

property experiment

Actual Neptune object. To use neptune features in your *LightningModule* do the following.

Example:

```python
self.logger.experiment.some_neptune_function()
```

Return type Experiment

property name

Return the experiment name.

Return type str

property version

Return the experiment version.

Return type str
class pytorch_lightning.loggers.TestTubeLogger(save_dir, name='default', description=None, debug=False, version=None, create_git_tag=False)

Bases: pytorch_lightning.loggers.base.LightningLoggerBase

Log to local file system in TensorBoard format but using a nicer folder structure (see full docs). Install it with pip:

```
pip install test_tube
```

Example

```python
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.loggers import TestTubeLogger
>>> logger = TestTubeLogger("tt_logs", name="my_exp_name")
>>> trainer = Trainer(logger=logger)
```

Use the logger anywhere in your `LightningModule` as follows:

```python
>>> from pytorch_lightning import LightningModule
>>> class LitModel(LightningModule):
...     def training_step(self, batch, batch_idx):
...         # example
...         self.logger.experiment.whatever_method_summary_writer_supports(...)
...     def any_lightning_module_function_or_hook(self):
...         self.logger.experiment.add_histogram(...)
```

Parameters

- `save_dir` (`str`): Save directory
- `name` (`str`): Experiment name. Defaults to 'default'.
- `description` (`Optional[str]`): A short snippet about this experiment
- `debug` (`bool`): If True, it doesn’t log anything.
- `version` (`Optional[int]`): Experiment version. If version is not specified the logger inspects the save directory for existing versions, then automatically assigns the next available version.
- `create_git_tag` (`bool`): If True creates a git tag to save the code used in this experiment.

`close()`

Do any cleanup that is necessary to close an experiment.

Return type None

`finalize(status)`

Do any processing that is necessary to finalize an experiment.

Parameters `status` (`str`): Status that the experiment finished with (e.g. success, failed, aborted)

Return type None

`log_hyperparams(params)`

Record hyperparameters.
Parameters `params` (Union[Dict[str, Any], Namespace]) – Namespace containing the hyperparameters

Return type None

`log_metrics (metrics, step=None)`
Records metrics. This method logs metrics as soon as it received them. If you want to aggregate metrics for one specific `step`, use the `agg_and_log_metrics()` method.

Parameters

- `metrics` (Dict[str, float]) – Dictionary with metric names as keys and measured quantities as values
- `step` (Optional[int]) – Step number at which the metrics should be recorded

Return type None

`save()`
Save log data.

Return type None

property `experiment`
Actual TestTube object. To use TestTube features in your `LightningModule` do the following.

Example:
```
self.logger.experiment.some_test_tube_function()
```

Return type Experiment

property `name`
Return the experiment name.

Return type str

property `version`
Return the experiment version.

Return type int

class `pytorch_lightning.loggers.WandbLogger` (name=None, save_dir=None, offline=False, id=None, anonymous=False, version=None, project=None, tags=None, log_model=False, experiment=None, entity=None, group=None)

Bases: `pytorch_lightning.loggers.base.LightningLoggerBase`

Log using Weights and Biases. Install it with pip:
```
pip install wandb
```

Parameters

- `name` (Optional[str]) – Display name for the run.
- `save_dir` (Optional[str]) – Path where data is saved.
- `offline` (bool) – Run offline (data can be streamed later to wandb servers).
- `id` (Optional[str]) – Sets the version, mainly used to resume a previous run.
- `anonymous` (bool) – Enables or explicitly disables anonymous logging.
• **version** *(Optional[str]*) – Sets the version, mainly used to resume a previous run.
• **project** *(Optional[str]*) – The name of the project to which this run will belong.
• **tags** *(Optional[List[str]]*) – Tags associated with this run.
• **log_model** *(bool)* – Save checkpoints in wandb dir to upload on W&B servers.
• **experiment** – WandB experiment object
• **entity** – The team posting this run (default: your username or your default team)
• **group** *(Optional[str]*) – A unique string shared by all runs in a given group

Example

```python
>>> from pytorch_lightning.loggers import WandbLogger
>>> from pytorch_lightning import Trainer

>>> wandb_logger = WandbLogger()

>>> trainer = Trainer(logger=wandb_logger)
```

See also:

- Tutorial on how to use W&B with Pytorch Lightning.

log_hyperparams *(params)*

Record hyperparameters.

Parameters

- **params** *(Union[Dict[str, Any], Namespace])* – Namespace containing the hyperparameters

Return type None

log_metrics *(metrics, step=None)*

Records metrics. This method logs metrics as soon as it received them. If you want to aggregate metrics for one specific step, use the `agg_and_log_metrics()` method.

Parameters

- **metrics** *(Dict[str, float])* – Dictionary with metric names as keys and measured quantities as values
- **step** *(Optional[int])* – Step number at which the metrics should be recorded

Return type None

watch *(model, log='gradients', log_freq=100)*

property experiment

Actual wandb object. To use wandb features in your *LightningModule* do the following.

Example:

```python
self.logger.experiment.some_wandb_function()
```

Return type Run

property name

Return the experiment name.

Return type str
property version

Return the experiment version.

Return type
str

class pytorch_lightning.loggers.TrainsLogger(
 project_name=None,
 task_name=None,
 task_type='training',
 reuse_last_task_id=True,
 output_uri=None,
 auto_connect_arg_parser=True,
 auto_connect_frameworks=True,
 auto_resource_monitoring=True)

Bases: pytorch_lightning.loggers.base.LightningLoggerBase

Log using allegro.ai TRAINS. Install it with pip:

```
pip install trains
```

Example

```python
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.loggers import TrainsLogger
>>> trains_logger = TrainsLogger(
...     project_name='pytorch lightning',
...     task_name='default',
...     output_uri='.',
... )
TRAINS Task: ...
TRAINS results page: ...
>>> trainer = Trainer(logger=trains_logger)
```

Use the logger anywhere in your **LightningModule** as follows:

```python
>>> from pytorch_lightning import LightningModule
>>> class LitModel(LightningModule):
...    def training_step(self, batch, batch_idx):
...        # example
...        self.logger.experiment.whatever_trains_supports(...)
...    
...    def any_lightning_module_function_or_hook(self):
...        self.logger.experiment.whatever_trains_supports(...)
```

Parameters

- `project_name` *(str, optional)* – The name of the experiment’s project. Defaults to None.
- `task_name` *(str, optional)* – The name of the experiment. Defaults to None.
- `task_type` *(str)* – The name of the experiment. Defaults to 'training'.
- `reuse_last_task_id` *(bool)* – Start with the previously used task id. Defaults to True.
- `auto_connect_arg_parser` *(bool)* – Automatically grab the ArgumentParser and connect it with the task. Defaults to True.
• `auto_connect_frameworks` (bool) – If True, automatically patch to trains backend. Defaults to True.

• `auto_resource_monitoring` (bool) – If True, machine vitals will be sent alongside the task scalars. Defaults to True.

Examples

```python
>>> logger = TrainsLogger("pytorch lightning", "default", output_uri=".")
TRAINS Task: ...
TRAINS results page: ...
>>> logger.log_metrics({"val_loss": 1.23}, step=0)
>>> logger.log_text("sample test")
sample test
```  

```python
>>> import numpy as np
>>> logger.log_artifact("confusion matrix", np.ones((2, 3)))
>>> logger.log_image("passed", "Image 1", np.random.randint(0, 255, (200, 150, 3), dtype=np.uint8))
```  

```

```

classmethod `bypass_mode`

Returns the bypass mode state.

Note: `GITHUB_ACTIONS` env will automatically set `bypass_mode` to True unless overridden specifically with `TrainsLogger.set_bypass_mode(False)`.

Return type bool

Returns If True, all outside communication is skipped.

`finalize` (status=None)

Do any processing that is necessary to finalize an experiment.

Parameters status (Optional[str]) – Status that the experiment finished with (e.g. success, failed, aborted)

Return type None

`log_artifact` (name, artifact, metadata=None, delete_after_upload=False)

Save an artifact (file/object) in TRAINS experiment storage.

Parameters

• name (str) – Artifact name. Notice! it will override the previous artifact if the name already exists.

• artifact (Union[str, Path, Dict[str, Any], ndarray, Image]) – Artifact object to upload. Currently supports:

 – string / pathlib.Path are treated as path to artifact file to upload If a wildcard or a folder is passed, a zip file containing the local files will be created and uploaded.

 – dict will be stored as .json file and uploaded

 – pandas.DataFrame will be stored as .csv.gz (compressed CSV file) and uploaded

 – numpy.ndarray will be stored as .npz and uploaded

 – PIL.Image.Image will be stored to .png file and uploaded
• **metadata** *(Optional[Dict[str, Any]])* – Simple key/value dictionary to store on the artifact. Defaults to None.

• **delete_after_upload** *(bool)* – If True, the local artifact will be deleted (only applies if artifact is a local file). Defaults to False.

Return type None

log_hyperparams(params)
Log hyperparameters (numeric values) in TRAINS experiments.

Parameters
- **params** *(Union[Dict[str, Any], Namespace])* – The hyperparameters that passed through the model.

Return type None

log_image(title, series, image, step=None)
Log Debug image in TRAINS experiment

Parameters
- **title** *(str)* – The title of the debug image, i.e. “failed”, “passed”.
- **series** *(str)* – The series name of the debug image, i.e. “Image 0”, “Image 1”.
- **image** *(Union[str, ndarray, Image, Tensor])* – Debug image to log. If numpy.ndarray or torch.Tensor, the image is assumed to be the following:
 - shape: CHW
 - color space: RGB
 - value range: [0., 1.] (float) or [0, 255] (uint8)
- **step** *(Optional[int])* – Step number at which the metrics should be recorded. Defaults to None.

Return type None

log_metric(title, series, value, step=None)
Log metrics (numeric values) in TRAINS experiments. This method will be called by the users.

Parameters
- **title** *(str)* – The title of the graph to log, e.g. loss, accuracy.
- **series** *(str)* – The series name in the graph, e.g. classification, localization.
- **value** *(float)* – The value to log.
- **step** *(Optional[int])* – Step number at which the metrics should be recorded. Defaults to None.

Return type None

log_metrics(metrics, step=None)
Log metrics (numeric values) in TRAINS experiments. This method will be called by Trainer.

Parameters
- **metrics** *(Dict[str, float])* – The dictionary of the metrics. If the key contains “/”, it will be split by the delimiter, then the elements will be logged as “title” and “series” respectively.
- **step** *(Optional[int])* – Step number at which the metrics should be recorded. Defaults to None.
Return type None

log_text *(text)*

Log console text data in TRAINS experiment.

Parameters text *(str)* – The value of the log (data-point).

Return type None

classmethod set_bypass_mode *(bypass)*

Will bypass all outside communication, and will drop all logs. Should only be used in “standalone mode”, when there is no access to the trains-server.

Parameters bypass *(bool)* – If True, all outside communication is skipped.

Return type None

classmethod set_credentials *(api_host=None, web_host=None, files_host=None, key=None, secret=None)*

Set new default TRAINS-server host and credentials. These configurations could be overridden by either OS environment variables or trains.conf configuration file.

Note: Credentials need to be set prior to Logger initialization.

Parameters

- **api_host** *(Optional[str]*) – Trains API server url, example: host='http://localhost:8008'
- **web_host** *(Optional[str]*) – Trains WEB server url, example: host='http://localhost:8080'
- **files_host** *(Optional[str]*) – Trains Files server url, example: host='http://localhost:8081'
- **key** *(Optional[str]*) – user key/secret pair, example: key='thisisakey123'
- **secret** *(Optional[str]*) – user key/secret pair, example: secret='thisisseceret123'

Return type None

_bypass = None

property experiment

Actual TRAINS object. To use TRAINS features in your LightningModule do the following.

Example:

```python
self.logger.experiment.some_trains_function()
```

Return type Task

property id

ID is a uuid (string) representing this specific experiment in the entire system.

Return type Optional[str]

property name

Name is a human readable non-unique name (str) of the experiment.
Return type Optional["str"]

property version
Return the experiment version.

Return type Optional["str"]

37.3.1 Submodules

pytorch_lightning.loggers.base module

class pytorch_lightning.loggers.base.DummyExperiment
 Bases: object
 Dummy experiment

 nop(**kw)

class pytorch_lightning.loggers.base.DummyLogger
 Bases: pytorch_lightning.loggers.base.LightningLoggerBase
 Dummy logger for internal use. Is usefull if we want to disable users logger for a feature, but still secure that users code can run

 log_hyperparams(params)
 Record hyperparameters.

 Parameters
 params -- Namespace containing the hyperparameters

 log_metrics(metrics, step)
 Records metrics. This method logs metrics as as soon as it received them. If you want to aggregate metrics for one specific step, use the `agg_and_log_metrics()` method.

 Parameters
 • metrics -- Dictionary with metric names as keys and measured quantities as values
 • step -- Step number at which the metrics should be recorded

property experiment
Return the experiment object associated with this logger.

property name
Return the experiment name.

property version
Return the experiment version.

class pytorch_lightning.loggers.base.LightningLoggerBase(agg_key_funcs=None, agg_default_func=numpy.mean)
 Bases: abc.ABC
 Base class for experiment loggers.

 Parameters
 • agg_key_funcs (Optional[Mapping[str, Callable[[Sequence[float]], float]]]) -- Dictionary which maps a metric name to a function, which will aggregate the metric values for the same steps.

 • agg_default_func (Callable[[Sequence[float]], float]) -- Default function to aggregate metric values. If some metric name is not presented in the `agg_key_funcs` dictionary, then the `agg_default_func` will be used for aggregation.
Note: The `agg_key_func` and `agg_default_func` arguments are used only when one logs metrics with the `agg_and_log_metrics()` method.

```python
_def_aggregate_metrics_(metrics, step=None)
Aggregates metrics.

Parameters
  - metrics (Dict[str, float]) – Dictionary with metric names as keys and measured quantities as values
  - step (Optional[int]) – Step number at which the metrics should be recorded

Return type: Tuple[int, Optional[Dict[str, float]]]

Returns: Step and aggregated metrics. The return value could be None. In such case, metrics are added to the aggregation list, but not aggregated yet.
```

```python
static _convert_params_(params)
Return type: Dict[str, Any]
```

```python
_finalize_agg_metrics()
This shall be called before save/close.
```

```python
static _flatten_dict_(params, delimiter='/')
Flatten hierarchical dict, e.g. ('a': {'b': 'c'}) -> {'a/b': 'c'}.

Parameters
  - params (Dict[str, Any]) – Dictionary containing the hyperparameters
  - delimiter (str) – Delimiter to express the hierarchy. Defaults to '/'.

Return type: Dict[str, Any]

Returns: Flattened dict.
```

Examples

```python
>>> LightningLoggerBase._flatten_dict({'a': {'b': 'c'}})
{'a/b': 'c'}
>>> LightningLoggerBase._flatten_dict({'a': {'b': 123}})
{'a/b': 123}
```

```python
_reduce_agg_metrics()
Aggregate accumulated metrics.
```

```python
static _sanitize_params_(params)
Returns params with non-primitvies converted to strings for logging.
```

```python
>>> params = {"float": 0.3,
...
  "int": 1,
  "string": "abc",
  "bool": True,
  "list": [1, 2, 3],
  "namespace": Namespace(foo=3),
  "layer": torch.nn.BatchNorm1d}
>>> import pprint
```

(continues on next page)
>>> pprint.pprint(LightningLoggerBase._sanitize_params(params))
{'bool': True,
 'float': 0.3,
 'int': 1,
 'layer': '<class 'torch.nn.modules.batchnorm.BatchNorm1d'>",
 'list': '[1, 2, 3]',
 'namespace': 'Namespace(foo=3)',
 'string': 'abc'}

Return type `Dict[str, Any]`

agg_and_log_metrics (*metrics, step=None*)
Aggregates and records metrics. This method doesn’t log the passed metrics instantaneously, but instead it aggregates them and logs only if metrics are ready to be logged.

Parameters

- **metrics** (*Dict[str, float]*) – Dictionary with metric names as keys and measured quantities as values
- **step** (*Optional[int]*) – Step number at which the metrics should be recorded

close()
Do any cleanup that is necessary to close an experiment.

Return type None

finalize (*status*)
Do any processing that is necessary to finalize an experiment.

Parameters

- **status** (*str*) – Status that the experiment finished with (e.g. success, failed, aborted)

Return type None

abstract log_hyperparams (*params*)
Record hyperparameters.

Parameters

- **params** (*Namespace*) – Namespace containing the hyperparameters

abstract log_metrics (*metrics, step=None*)
Records metrics. This method logs metrics as soon as it received them. If you want to aggregate metrics for one specific step, use the `agg_and_log_metrics()` method.

Parameters

- **metrics** (*Dict[str, float]*) – Dictionary with metric names as keys and measured quantities as values
- **step** (*Optional[int]*) – Step number at which the metrics should be recorded

save()
Save log data.

Return type None

update_agg_funcs (*agg_key_funcs=None, agg_default_func=numpy.mean*)
Update aggregation methods.

Parameters
• `agg_key_funcs` *(Optional)* `Mapping[str, Callable[[Sequence[float]], float]]` – Dictionary which maps a metric name to a function, which will aggregate the metric values for the same steps.

• `agg_default_func` `Callable[[Sequence[float], float]]` – Default function to aggregate metric values. If some metric name is not presented in the `agg_key_funcs` dictionary, then the `agg_default_func` will be used for aggregation.

abstract property experiment
Return the experiment object associated with this logger.

 Return type Any

abstract property name
Return the experiment name.

 Return type str

abstract property version
Return the experiment version.

 Return type `Union[int, str]`

class `pytorch_lightning.loggers.base.LoggerCollection(logger_iterable)`

Bases: `pytorch_lightning.loggers.base.LightningLoggerBase`

The `LoggerCollection` class is used to iterate all logging actions over the given `logger_iterable`.

Parameters

- `logger_iterable` *(Iterable[LightningLoggerBase])* – An iterable collection of loggers

close()
Do any cleanup that is necessary to close an experiment.

 Return type None

finalize(status)
Do any processing that is necessary to finalize an experiment.

 Parameters

 - `status` *(str)* – Status that the experiment finished with (e.g. success, failed, aborted)

 Return type None

log_hyperparams(params)
Record hyperparameters.

 Parameters

 - `params` *(Union[Dict[str, Any], Namespace])* – Namespace containing the hyperparameters

 Return type None

log_metrics(metrics, step=None)
Records metrics. This method logs metrics as as soon as it received them. If you want to aggregate metrics for one specific step, use the `agg_and_log_metrics()` method.

 Parameters

 - `metrics` *(Dict[str, float])* – Dictionary with metric names as keys and measured quantities as values

 - `step` *(Optional[int])* – Step number at which the metrics should be recorded

 Return type None
save()
Save log data.

Return type None

property experiment
Return the experiment object associated with this logger.

Return type List[Any]

property name
Return the experiment name.

Return type str

property version
Return the experiment version.

Return type str

pytorch_lightning.loggers.base.merge_dicts(dicts, agg_key_funcs=None, default_func=numpy.mean)
Merge a sequence with dictionaries into one dictionary by aggregating the same keys with some given function.

Parameters

- **dicts** (Sequence[Mapping]) – Sequence of dictionaries to be merged.
- **agg_key_funcs** (Optional[Mapping[str, Callable[[Sequence[float]], float]]]) – Mapping from key name to function. This function will aggregate a list of values, obtained from the same key of all dictionaries. If some key has no specified aggregation function, the default one will be used. Default is: None (all keys will be aggregated by the default function).
- **default_func** (Callable[[Sequence[float]], float]) – Default function to aggregate keys, which are not presented in the agg_key_funcs map.

Return type Dict

Returns Dictionary with merged values.

Examples

```python
>>> import pprint
>>> d1 = {'a': 1.7, 'b': 2.0, 'c': 1, 'd': {'d1': 1, 'd3': 3}}
>>> d2 = {'a': 1.1, 'b': 2.2, 'v': 1, 'd': {'d1': 2, 'd2': 3}}
>>> d3 = {'a': 1.1, 'v': 2.3, 'd': {'d3': 3, 'd4': {'d5': 1}}}
>>> dflt_func = min
>>> agg_funcs = {'a': np.mean, 'v': max, 'd': {'d1': sum}}
>>> pprint.pprint(merge_dicts([d1, d2, d3], agg_funcs, dflt_func))
{'a': 1.3, 'b': 2.0, 'c': 1, 'd': {'d1': 3, 'd2': 3, 'd3': 3, 'd4': {'d5': 1}}, 'v': 2.3}
```
class pytorch_lightning.loggers.comet.CometLogger:

Log using Comet.ml. Install it with pip:

```
pip install comet-ml
```

Comet requires either an API Key (online mode) or a local directory path (offline mode).

ONLINE MODE

Example

```python
>>> import os
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.loggers import CometLogger

# arguments made to CometLogger are passed on to the comet_ml.Experiment class
>>> comet_logger = CometLogger(
...    api_key=os.environ.get('COMET_API_KEY'),
...    workspace=os.environ.get('COMET_WORKSPACE'), # Optional
...    save_dir='.', # Optional
...    project_name='default_project', # Optional
...    rest_api_key=os.environ.get('COMET_REST_API_KEY'), # Optional
...    experiment_name='default' # Optional
...)

>>> trainer = Trainer(logger=comet_logger)
```

OFFLINE MODE

Example

```python
>>> from pytorch_lightning.loggers import CometLogger

# arguments made to CometLogger are passed on to the comet_ml.Experiment class
>>> comet_logger = CometLogger(
...    save_dir='.',
...    workspace=os.environ.get('COMET_WORKSPACE'), # Optional
...    project_name='default_project', # Optional
...    rest_api_key=os.environ.get('COMET_REST_API_KEY'), # Optional
...    experiment_name='default' # Optional
...)

>>> trainer = Trainer(logger=comet_logger)
```

Parameters

- `api_key` (Optional[str]) – Required in online mode. API key, found on Comet.ml
• **save_dir (Optional[str])** – Required in offline mode. The path for the directory to save local comet logs

• **workspace (Optional[str])** – Optional. Name of workspace for this user

• **project_name (Optional[str])** – Optional. Send your experiment to a specific project. Otherwise will be sent to Uncategorized Experiments. If the project name does not already exist, Comet.ml will create a new project.

• **rest_api_key (Optional[str])** – Optional. Rest API key found in Comet.ml settings. This is used to determine version number

• **experiment_name (Optional[str])** – Optional. String representing the name for this particular experiment on Comet.ml.

• **experiment_key (Optional[str])** – Optional. If set, restores from existing experiment.

finalize(status)

When calling `self.experiment.end()`, that experiment won’t log any more data to Comet. That’s why, if you need to log any more data, you need to create an ExistingCometExperiment. For example, to log data when testing your model after training, because when training is finalized `CometLogger.finalize()` is called.

This happens automatically in the `experiment()` property, when `self._experiment` is set to `None`, i.e. `self.reset_experiment()`.

Return type None

log_hyperparams(params)

Record hyperparameters.

Parameters **params** (Union[Dict[str, Any], Namespace]) – Namespace containing the hyperparameters

Return type None

log_metrics(metrics, step=None)

Records metrics. This method logs metrics as soon as it received them. If you want to aggregate metrics for one specific step, use the `agg_and_log_metrics()` method.

Parameters

• **metrics** (Dict[str, Union[Tensor, float]]) – Dictionary with metric names as keys and measured quantities as values

• **step** (Optional[int]) – Step number at which the metrics should be recorded

Return type None

reset_experiment()

property experiment

Actual Comet object. To use Comet features in your `LightningModule` do the following.

Example:

```python
self.logger.experiment.some_comet_function()
```

Return type BaseExperiment

property name

Return the experiment name.
Return type \texttt{str}

\textbf{property version}

Return the experiment version.

Return type \texttt{str}

\texttt{pytorch_lightning.loggers.mlflow module}

MLflow

\texttt{class pytorch_lightning.loggers.mlflow.MLFlowLogger(\texttt{experiment_name}='default', \texttt{tracking_uri}=None, \texttt{tags}=None, \texttt{save_dir}=None)}

Bases: \texttt{pytorch_lightning.loggers.base.LightningLoggerBase}

Log using MLflow. Install it with \texttt{pip}:

\texttt{pip install mlflow}

Example

```python
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.loggers import MLFlowLogger
>>> mlf_logger = MLFlowLogger(
...    experiment_name="default",
...    tracking_uri="file:./ml-runs"
...)
>>> trainer = Trainer(logger=mlf_logger)
```

Use the logger anywhere in your \texttt{LightningModule} as follows:

```python
>>> from pytorch_lightning import LightningModule
>>> class LitModel(LightningModule):
...    def training_step(self, batch, batch_idx):
...        # example
...        self.logger.experiment.whatever_ml_flow_supports(...)
...    ...
...    def any_lightning_module_function_or_hook(self):
...        self.logger.experiment.whatever_ml_flow_supports(...)
```

Parameters

- \texttt{experiment_name (str)} – The name of the experiment
- \texttt{tracking_uri (Optional[str])} – Address of local or remote tracking server. If not provided, defaults to the service set by \texttt{mlflow.tracking.set_tracking_uri}.
- \texttt{tags (Optional[Dict[str, Any]])} – A dictionary tags for the experiment.

\texttt{finalize(status='FINISHED')}

Do any processing that is necessary to finalize an experiment.

Parameters

\texttt{status (str)} – Status that the experiment finished with (e.g. success, failed, aborted)

Return type \texttt{None}
log_hyperparams (params)
Record hyperparameters.

Parameters

- **params** *(Union[Dict[str, Any], Namespace]) – Namespace containing the hyperparameters*

Return type None

log_metrics (metrics, step=None)
Records metrics. This method logs metrics as soon as it received them. If you want to aggregate metrics for one specific `step`, use the `agg_and_log_metrics()` method.

Parameters

- **metrics** *(Dict[str, float]) – Dictionary with metric names as keys and measured quantities as values*
- **step** *(Optional[int]) – Step number at which the metrics should be recorded*

Return type None

property experiment
Actual MLflow object. To use mlflow features in your *LightningModule* do the following.

Example:

```
self.logger.experiment.some_mlflow_function()
```

Return type MlflowClient

property name
Return the experiment name.

Return type str

property run_id

property version
Return the experiment version.

Return type str

pytorch_lightning.loggers.neptune module

Neptune

class `pytorch_lightning.loggers.neptune.NeptuneLogger (api_key=None, project_name=None, close_after_fit=True, offline_mode=False, experiment_name=None, upload_source_files=None, params=None, properties=None, tags=None, **kwargs)`

Bases: `pytorch_lightning.loggers.base.LightningLoggerBase`

Log using *Neptune*. Install it with pip:
pip install neptune-client

The Neptune logger can be used in the online mode or offline (silent) mode. To log experiment data in online mode, `NeptuneLogger` requires an API key. In offline mode, the logger does not connect to Neptune.

ONLINE MODE

Example

```python
>>> from pytorch_lightning import Trainer
>>>
>>> from pytorch_lightning.loggers import NeptuneLogger
>>>
# arguments made to NeptuneLogger are passed on to the neptune.experiments.
...
# We are using an api_key for the anonymous user "neptuner" but you can use your own.
>>> neptune_logger = NeptuneLogger(
...     api_key='ANONYMOUS',
...     project_name='shared/pytorch-lightning-integration',
...     experiment_name='default', # Optional,
...     params={'max_epochs': 10}, # Optional,
...     tags=['pytorch-lightning', 'mlp'] # Optional,
... )
>>> trainer = Trainer(max_epochs=10, logger=neptune_logger)
```

OFFLINE MODE

Example

```python
>>> from pytorch_lightning.loggers import NeptuneLogger
>>>
# arguments made to NeptuneLogger are passed on to the neptune.experiments.
...
# We are using an api_key for the anonymous user "neptuner" but you can use your own.
>>> neptune_logger = NeptuneLogger(
...     offline_mode=True,
...     project_name='USER_NAME/PROJECT_NAME',
...     experiment_name='default', # Optional,
...     params={'max_epochs': 10}, # Optional,
...     tags=['pytorch-lightning', 'mlp'] # Optional,
... )
>>> trainer = Trainer(max_epochs=10, logger=neptune_logger)
```

Use the logger anywhere in your `LightningModule` as follows:

```python
>>> from pytorch_lightning import LightningModule
>>> class LitModel(LightningModule):
...     def training_step(self, batch, batch_idx):
...         # log metrics
...         self.logger.experiment.log_metric('acc_train', ...)
...         # log images
...         self.logger.experiment.log_image('worse_predictions', ...)
...         # log model checkpoint
...         self.logger.experiment.log_artifact('model_checkpoint.pt', ...)
...         self.logger.experiment.whatever_neptune_supports(...)
...
...     def any_lightning_module_function_or_hook(self):
```

(continues on next page)
If you want to log objects after the training is finished use close_after_fit=False:

```python
neptune_logger = NeptuneLogger(
    ...,
    close_after_fit=False,
    ...
)
trainer = Trainer(logger=neptune_logger)
trainer.fit()

# Log test metrics
trainer.test(model)

# Log additional metrics
from sklearn.metrics import accuracy_score
accuracy = accuracy_score(y_true, y_pred)
neptune_logger.experiment.log_metric('test_accuracy', accuracy)

# Log charts
from scikitplot.metrics import plot_confusion_matrix
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(16, 12))
plot_confusion_matrix(y_true, y_pred, ax=ax)
neptune_logger.experiment.log_image('confusion_matrix', fig)

# Save checkpoints folder
neptune_logger.experiment.log_artifact('my/checkpoints')

# When you are done, stop the experiment
neptune_logger.experiment.stop()
```

See also:

- An Example experiment showing the UI of Neptune.
- Tutorial on how to use Pytorch Lightning with Neptune.

Parameters

- `api_key (Optional[str])` – Required in online mode. Neptune API token, found on https://neptune.ai. Read how to get your API key. It is recommended to keep it in the `NEPTUNE_API_TOKEN` environment variable and then you can leave `api_key=None`.

- `project_name (Optional[str])` – Required in online mode. Qualified name of a project in a form of “namespace/project_name” for example “tom/minst-classification”. If None, the value of `NEPTUNE_PROJECT` environment variable will be taken. You need to create the project in https://neptune.ai first.

- `offline_mode (bool)` – Optional default False. If True no logs will be sent to Neptune. Usually used for debug purposes.
• **close_after_fit** *(Optional[bool])* – Optional default True. If False the experiment will not be closed after training and additional metrics, images or artifacts can be logged. Also, remember to close the experiment explicitly by running `neptune_logger.experiment.stop()`.

• **experiment_name** *(Optional[str])* – Optional. Editable name of the experiment. Name is displayed in the experiment’s Details (Metadata section) and in experiments view as a column.

• **upload_source_files** *(Optional[List[str]])* – Optional. List of source files to be uploaded. Must be list of str or single str. Uploaded sources are displayed in the experiment’s Source code tab. If None is passed, the Python file from which the experiment was created will be uploaded. Pass an empty list ([]) to upload no files. Unix style path-name pattern expansion is supported. For example, you can pass '/*.py' to upload all python source files from the current directory. For recursion lookup use '**/*.py' (for Python 3.5 and later). For more information see `glob` library.

• **params** *(Optional[Dict[str, Any]])* – Optional. Parameters of the experiment. After experiment creation params are read-only. Parameters are displayed in the experiment’s Parameters section and each key-value pair can be viewed in the experiments view as a column.

• **properties** *(Optional[Dict[str, Any]])* – Optional. Default is {}. Properties of the experiment. They are editable after the experiment is created. Properties are displayed in the experiment’s Details section and each key-value pair can be viewed in the experiments view as a column.

• **tags** *(Optional[List[str]])* – Optional. Default is []. Must be list of str. Tags of the experiment. They are editable after the experiment is created (see: `append_tag()` and `remove_tag()`). Tags are displayed in the experiment’s Details section and can be viewed in the experiments view as a column.

```python
_create_or_get_experiment()
```

append_tags *(tags)*

Appends tags to the neptune experiment.

Parameters

- **tags** *(Union[str, Iterable[str]])* – Tags to add to the current experiment.

 If str is passed, a single tag is added. If multiple - comma separated - str are passed, all of them are added as tags. If list of str is passed, all elements of the list are added as tags.

 Return type None

```python
finalize(status)
```

Do any processing that is necessary to finalize an experiment.

Parameters

- **status** *(str)* – Status that the experiment finished with (e.g. success, failed, aborted)

 Return type None

```python
log_artifact(artifact, destination=None)
```

Save an artifact (file) in Neptune experiment storage.

Parameters

- **artifact** *(str)* – A path to the file in local filesystem.

 destination *(Optional[str])* – Optional. Default is None. A destination path. If None is passed, an artifact file name will be used.

 Return type None
log_hyperparams (params)
Record hyperparameters.

Parameters params (Union[Dict[str, Any], Namespace]) – Namespace containing the hyperparameters

Return type None

log_image (log_name, image, step=None)
Log image data in Neptune experiment

Parameters

• log_name (str) – The name of log, i.e. bboxes, visualisations, sample_images.
• image (Union[str, Image, Any]) – The value of the log (data-point). Can be one of the following types: PIL image, matplotlib.figure.Figure, path to image file (str)
• step (Optional[int]) – Step number at which the metrics should be recorded, must be strictly increasing

Return type None

log_metric (metric_name, metric_value, step=None)
Log metrics (numeric values) in Neptune experiments.

Parameters

• metric_name (str) – The name of log, i.e. mse, loss, accuracy.
• metric_value (Union[Tensor, float, str]) – The value of the log (data-point).
• step (Optional[int]) – Step number at which the metrics should be recorded, must be strictly increasing

Return type None

log_metrics (metrics, step=None)
Log metrics (numeric values) in Neptune experiments.

Parameters

• metrics (Dict[str, Union[Tensor, float]]) – Dictionary with metric names as keys and measured quantities as values
• step (Optional[int]) – Step number at which the metrics should be recorded, must be strictly increasing

Return type None

log_text (log_name, text, step=None)
Log text data in Neptune experiments.

Parameters

• log_name (str) – The name of log, i.e. mse, my_text_data, timing_info.
• text (str) – The value of the log (data-point).
• step (Optional[int]) – Step number at which the metrics should be recorded, must be strictly increasing

Return type None

set_property (key, value)
Set key-value pair as Neptune experiment property.
Parameters

- **key** (*str*) – Property key.
- **value** (*Any*) – New value of a property.

Return type: None

property experiment

Actual Neptune object. To use neptune features in your *LightningModule* do the following.

Example:

```python
self.logger.experiment.some_neptune_function()
```

Return type: *Experiment*

property name

Return the experiment name.

Return type: *str*

property version

Return the experiment version.

Return type: *str*

pytorch_lightning.loggers.tensorboard module

TensorBoard

```python
class pytorch_lightning.loggers.tensorboard.TensorBoardLogger(save_dir, 
name='default', 
version=None, 
**kwargs)
```

Bases: *pytorch_lightning.loggers.base.LightningLoggerBase*

Log to local file system in *TensorBoard* format. Implemented using *SummaryWriter*. Logs are saved to `os.path.join(save_dir, name, version)`. This is the default logger in Lightning, it comes preinstalled.

Example

```python
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.loggers.tensorboard import TensorBoardLogger
>>> logger = TensorBoardLogger("tb_logs", name="my_model")
>>> trainer = Trainer(logger=logger)
```

Parameters

- **save_dir** (*str*) – Save directory
- **name** (*Optional*[str]*) – Experiment name. Defaults to 'default'. If it is the empty string then no per-experiment subdirectory is used.
• **version** (Union[int, str, None]) – Experiment version. If version is not specified the logger inspects the save directory for existing versions, then automatically assigns the next available version. If it is a string then it is used as the run-specific subdirectory name, otherwise 'version_${version}' is used.

• **kwargs** – Other arguments are passed directly to the SummaryWriter constructor.

```python
_get_next_version()
finalize (status)
    Do any processing that is necessary to finalize an experiment.
    Parameters status (str) – Status that the experiment finished with (e.g. success, failed, aborted)
    Return type None

log_hyperparams (params, metrics=None)
    Record hyperparameters.
    Parameters params (Union[Dict[str, Any], Namespace]) – Namespace containing the hyperparameters
    Return type None

log_metrics (metrics, step=None)
    Records metrics. This method logs metrics as as soon as it received them. If you want to aggregate metrics for one specific step, use the agg_and_log_metrics() method.
    Parameters
        • metrics (Dict[str, float]) – Dictionary with metric names as keys and measured quantities as values
        • step (Optional[int]) – Step number at which the metrics should be recorded
    Return type None

save ()
    Save log data.
    Return type None

NAME_HPARAMS_FILE = 'hparams.yaml'

property experiment
    Actual tensorboard object. To use TensorBoard features in your LightningModule do the following.
    Example:
    ```python
 self.logger.experiment.some_tensorboard_function()
    ```
    Return type SummaryWriter

property log_dir
    The directory for this run’s tensorboard checkpoint. By default, it is named 'version_${self.version}' but it can be overridden by passing a string value for the constructor’s version parameter instead of None or an int.
    Return type str

property name
    Return the experiment name.
Return type str

**property root_dir**
Parent directory for all tensorboard checkpoint subdirectories. If the experiment name parameter is
None or the empty string, no experiment subdirectory is used and the checkpoint will be saved in
"save_dir/version_dir"

Return type str

**property version**
Return the experiment version.

Return type int

**pytorch_lightning.loggers.test_tube module**

**Test Tube**

class pytorch_lightning.loggers.test_tube.TestTubeLogger (save_dir, name='default',
description=None, debug=False, version=None, create_git_tag=False)

Bases: pytorch_lightning.loggers.base.LightningLoggerBase

Log to local file system in TensorBoard format but using a nicer folder structure (see full docs). Install it with pip:

```
pip install test_tube
```

**Example**

```python
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.loggers import TestTubeLogger
>>> logger = TestTubeLogger("tt_logs", name="my_exp_name")
>>> trainer = Trainer(logger=logger)
```

Use the logger anywhere in your LightningModule as follows:

```python
>>> from pytorch_lightning import LightningModule
>>> class LitModel(LightningModule):
... def training_step(self, batch, batch_idx):
... # example
... self.logger.experiment.whatever_method_summary_writer_supports(...)
... ...
... def any_lightning_module_function_or_hook(self):
... self.logger.experiment.add_histogram(...)
```

**Parameters**

- `save_dir (str)` – Save directory
- `name (str)` – Experiment name. Defaults to 'default'.
- `description (Optional[str])` – A short snippet about this experiment
- `debug (bool)` – If True, it doesn’t log anything.
• **version** *(Optional[int]*) – Experiment version. If version is not specified the logger inspects the save directory for existing versions, then automatically assigns the next available version.

• **create_git_tag** *(bool)* – If True creates a git tag to save the code used in this experiment.

**close** ()
Do any cleanup that is necessary to close an experiment.

**Return type** None

**finalize**(status)
Do any processing that is necessary to finalize an experiment.

**Parameters**

status *(str)* – Status that the experiment finished with (e.g. success, failed, aborted)

**Return type** None

**log_hyperparams**(params)
Record hyperparameters.

**Parameters**

params *(Union[Dict[str, Any], Namespace]*) – Namespace containing the hyperparameters

**Return type** None

**log_metrics**(metrics, step=None)
Records metrics. This method logs metrics as soon as it received them. If you want to aggregate metrics for one specific step, use the **agg_and_log_metrics()** method.

**Parameters**

• **metrics** *(Dict[str, float]*) – Dictionary with metric names as keys and measured quantities as values

• **step** *(Optional[int]*) – Step number at which the metrics should be recorded

**Return type** None

**save** ()
Save log data.

**Return type** None

**property experiment**
Actual TestTube object. To use TestTube features in your **LightningModule** do the following.

Example:

```python
self.logger.experiment.some_test_tube_function()
```

**Return type** Experiment

**property name**
Return the experiment name.

**Return type** str

**property version**
Return the experiment version.

**Return type** int
class pytorch_lightning.loggers.trains.TrainsLogger(
    project_name=None,
    task_name=None,
    task_type='training',
    reuse_last_task_id=True,
    output_uri=None,
    auto_connect_arg_parser=True,
    auto_connect_frameworks=True,
    auto_resource_monitoring=True)

Bases: pytorch_lightning.loggers.base.LightningLoggerBase

Log using allegro.ai TRAINS. Install it with pip:

```
pip install trains
```

Example

```
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.loggers import TrainsLogger

trains_logger = TrainsLogger(
 project_name='pytorch lightning',
 task_name='default',
 output_uri='.',
)

TRAINS Task: ...
TRAINS results page: ...

trainer = Trainer(logger=trains_logger)
```

Use the logger anywhere in your LightningModule as follows:

```
>>> from pytorch_lightning import LightningModule

class LitModel(LightningModule):
 ...
 def training_step(self, batch, batch_idx):
 ... # example
 ...
 self.logger.experiment.whatever_trains_supports(...)
 ...

 def any_lightning_module_function_or_hook(self):
 ... # example
 ...
 self.logger.experiment.whatever_trains_supports(...)
```

Parameters

- **project_name** *(Optional[str])* – The name of the experiment’s project. Defaults to None.
- **task_name** *(Optional[str])* – The name of the experiment. Defaults to None.
- **task_type** *(str)* – The name of the experiment. Defaults to 'training'.
- **reuse_last_task_id** *(bool)* – Start with the previously used task id. Defaults to True.
- **output_uri** *(Optional[str])* – Default location for output models. Defaults to None.
• **auto_connect_arg_parser** (bool) – Automatically grab the ArgumentParser and connect it with the task. Defaults to True.

• **auto_connect_frameworks** (bool) – If True, automatically patch to trains back-end. Defaults to True.

• **auto_resource_monitoring** (bool) – If True, machine vitals will be sent alongside the task scalars. Defaults to True.

### Examples

```python
>>> logger = TrainsLogger("pytorch lightning", "default", output_uri=".")
TRAINS Task: ...
TRAINS results page: ...
>>> logger.log_metrics({"val_loss": 1.23}, step=0)
>>> logger.log_text("sample test")
>>> import numpy as np
>>> logger.log_artifact("confusion matrix", np.ones((2, 3)))
>>> logger.log_image("passed", "Image 1", np.random.randint(0, 255, (200, 150, 3), dtype=np.uint8))
```

#### classmethod bypass_mode()

Returns the bypass mode state.

---

**Note:** `GITHUB_ACTIONS` env will automatically set bypass_mode to True unless overridden specifically with `TrainsLogger.set_bypass_mode(False)`.

---

**Return type** bool

Returns If True, all outside communication is skipped.

#### finalize(status=None)

Do any processing that is necessary to finalize an experiment.

**Parameters**

- **status** *(Optional[str]*) – Status that the experiment finished with (e.g. success, failed, aborted)

**Return type** None

#### log_artifact(name, artifact, metadata=None, delete_after_upload=False)

Save an artifact (file/object) in TRAINS experiment storage.

**Parameters**

- **name** *(str)* – Artifact name. Notice! it will override the previous artifact if the name already exists.

- **artifact** *(Union[str, Path, Dict[str, Any], ndarray, Image]*) – Artifact object to upload. Currently supports:
  - string / `pathlib.Path` are treated as path to artifact file to upload If a wildcard or a folder is passed, a zip file containing the local files will be created and uploaded.
  - dict will be stored as .json file and uploaded
  - `pandas.DataFrame` will be stored as .csv.gz (compressed CSV file) and uploaded
  - `numpy.ndarray` will be stored as .npz and uploaded
PIL.Image.Image will be stored to .png file and uploaded

- **metadata** *(Optional[Dict[str, Any]])* – Simple key/value dictionary to store on the artifact. Defaults to None.

- **delete_after_upload** *(bool)* – If True, the local artifact will be deleted (only applies if artifact is a local file). Defaults to False.

**Return type** None

### log_hyperparams(params)
Log hyperparameters (numeric values) in TRAINS experiments.

**Parameters**
- **params** *(Union[Dict[str, Any], Namespace])* – The hyperparameters that passed through the model.

**Return type** None

### log_image(title, series, image, step=None)
Log Debug image in TRAINS experiment

**Parameters**
- **title** *(str)* – The title of the debug image, i.e. “failed”, “passed”.

- **series** *(str)* – The series name of the debug image, i.e. “Image 0”, “Image 1”.

- **image** *(Union[str, ndarray, Image, Tensor])* – Debug image to log. If numpy.ndarray or torch.Tensor, the image is assumed to be the following:
  - shape: CHW
  - color space: RGB
  - value range: [0., 1.] (float) or [0, 255] (uint8)

- **step** *(Optional[int])* – Step number at which the metrics should be recorded. Defaults to None.

**Return type** None

### log_metric(title, series, value, step=None)
Log metrics (numeric values) in TRAINS experiments. This method will be called by the users.

**Parameters**
- **title** *(str)* – The title of the graph to log, e.g. loss, accuracy.

- **series** *(str)* – The series name in the graph, e.g. classification, localization.

- **value** *(float)* – The value to log.

- **step** *(Optional[int])* – Step number at which the metrics should be recorded. Defaults to None.

**Return type** None

### log_metrics(metrics, step=None)
Log metrics (numeric values) in TRAINS experiments. This method will be called by Trainer.

**Parameters**
- **metrics** *(Dict[str, float])* – The dictionary of the metrics. If the key contains “/”, it will be split by the delimiter, then the elements will be logged as “title” and “series” respectively.
- **step (Optional[int])** – Step number at which the metrics should be recorded. Defaults to None.

  **Return type** None

**log_text (text)**
Log console text data in TRAINS experiment.

  **Parameters**
  - **text (str)** – The value of the log (data-point).
  - **Return type** None

**classmethod set_bypass_mode (bypass)**
Will bypass all outside communication, and will drop all logs. Should only be used in “standalone mode”, when there is no access to the trains-server.

  **Parameters**
  - **bypass (bool)** – If True, all outside communication is skipped.
  - **Return type** None

**classmethod set_credentials (api_host=None, web_host=None, files_host=None, key=None, secret=None)**
Set new default TRAINS-server host and credentials. These configurations could be overridden by either OS environment variables or trains.conf configuration file.

  **Parameters**
  - **api_host (Optional[str])** – Trains API server url, example: host='http://localhost:8008'
  - **web_host (Optional[str])** – Trains WEB server url, example: host='http://localhost:8080'
  - **files_host (Optional[str])** – Trains Files server url, example: host='http://localhost:8081'
  - **key (Optional[str])** – user key/secret pair, example: key='thisisakey123'
  - **secret (Optional[str])** – user key/secret pair, example: secret='thisisseceret123'

  **Return type** None

_**bypass = None**_ 

**property experiment**
Actual TRAINS object. To use TRAINS features in your LightningModule do the following.

  **Example:**

  ```python
 self.logger.experiment.some_trains_function()
  ```

  **Return type** Task

**property id**
ID is a uuid (string) representing this specific experiment in the entire system.

  **Return type** Optional[str]
property name
Name is a human readable non-unique name (str) of the experiment.

Return type Optional[str]

property version
Return the experiment version.

Return type Optional[str]

pytorch_lightning.loggers.wandb module

Weights and Biases

class pytorch_lightning.loggers.wandb.WandbLogger(name=None, save_dir=None, offline=False, id=None, anonymous=False, version=None, project=None, tags=None, log_model=False, experiment=None, entity=None, group=None)

Bases: pytorch_lightning.loggers.base.LightningLoggerBase

Log using Weights and Biases. Install it with pip:

```
pip install wandb
```

Parameters

- name (Optional[str]) – Display name for the run.
- save_dir (Optional[str]) – Path where data is saved.
- offline (bool) – Run offline (data can be streamed later to wandb servers).
- id (Optional[str]) – Sets the version, mainly used to resume a previous run.
- anonymous (bool) – Enables or explicitly disables anonymous logging.
- version (Optional[str]) – Sets the version, mainly used to resume a previous run.
- project (Optional[str]) – The name of the project to which this run will belong.
- tags (Optional[List[str]]) – Tags associated with this run.
- log_model (bool) – Save checkpoints in wandb dir to upload on W&B servers.
- experiment – WandB experiment object
- entity – The team posting this run (default: your username or your default team)
- group (Optional[str]) – A unique string shared by all runs in a given group
Example

```python
>>> from pytorch_lightning.loggers import WandbLogger
>>> from pytorch_lightning import Trainer

>>> wandb_logger = WandbLogger()

>>> trainer = Trainer(logger=wandb_logger)
```

See also:

- Tutorial on how to use W&B with Pytorch Lightning.

**log_hyperparams** *(params)*

Record hyperparameters.

Parameters

- **params** *(Union[Dict[str, Any], Namespace]*) – Namespace containing the hyperparameters

Return type None

**log_metrics** *(metrics, step=None)*

Records metrics. This method logs metrics as soon as it received them. If you want to aggregate metrics for one specific step, use the `agg_and_log_metrics()` method.

Parameters

- **metrics** *(Dict[str, float]*) – Dictionary with metric names as keys and measured quantities as values
- **step** *(Optional[int]*) – Step number at which the metrics should be recorded

Return type None

**watch** *(model, log='gradients', log_freq=100)*

**property experiment**

Actual wandb object. To use wandb features in your `LightningModule` do the following.

Example:

```python
self.logger.experiment.some_wandb_function()
```

Return type Run

**property name**

Return the experiment name.

Return type str

**property version**

Return the experiment version.

Return type str
37.4 `pytorch_lightning.metrics` package

class `pytorch_lightning.metrics.MSE` (*reduction='elementwise_mean'*)

Bases: `pytorch_lightning.metrics.metric.Metric`

Computes the mean squared loss.

**Parameters**

- `reduction` (*str*) – a method for reducing mse over labels (default: takes the mean)
  
  Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements

**Example**

```python
>>> pred = torch.tensor([0., 1, 2, 3])
>>> target = torch.tensor([0., 1, 2, 2])
>>> metric = MSE()
>>> metric(pred, target)
tensor(0.2500)
```

**forward** (*pred, target*)

Actual metric computation

**Parameters**

- `pred` (*Tensor*) – predicted labels
- `target` (*Tensor*) – ground truth labels

**Return type** *Tensor*

**Returns** A Tensor with the mse loss.

```
_device = None
_dtype = None
```

class `pytorch_lightning.metrics.RMSE` (*reduction='elementwise_mean'*)

Bases: `pytorch_lightning.metrics.metric.Metric`

Computes the root mean squared loss.

**Parameters**

- `reduction` (*str*) – a method for reducing mse over labels (default: takes the mean)
  
  Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements

**Example**

```python
>>> pred = torch.tensor([0., 1, 2, 3])
>>> target = torch.tensor([0., 1, 2, 2])
>>> metric = RMSE()
>>> metric(pred, target)
tensor(0.5000)
```

**forward** (*pred, target*)

Actual metric computation

**Parameters**

- `pred` (*Tensor*) – predicted labels
• **target** (*Tensor*) – ground truth labels

Return type: *Tensor*

Returns: A Tensor with the rmse loss.

```python
_device = None
_dtype = None
class pytorch_lightning.metrics.MAE(reduction='elementwise_mean')
Bases: pytorch_lightning.metrics.metric.Metric
Computes the root mean absolute loss or L1-loss.

Parameters **reduction** (*str*) – a method for reducing mse over labels (default: takes the mean)

Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements

Example

```python
>>> pred = torch.tensor([0., 1, 2, 3])
>>> target = torch.tensor([0., 1, 2, 2])
>>> metric = MAE()
>>> metric(pred, target)
tensor(0.2500)
```

forward (*pred, target*)

Actual metric computation

Parameters

• **pred** (*Tensor*) – predicted labels

• **target** (*Tensor*) – ground truth labels

Return type: *Tensor*

Returns: A Tensor with the mae loss.

```python
_device = None
_dtype = None
class pytorch_lightning.metrics.RMSLE(reduction='elementwise_mean')
Bases: pytorch_lightning.metrics.metric.Metric
Computes the root mean squared log loss.

Parameters **reduction** (*str*) – a method for reducing mse over labels (default: takes the mean)

Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements
Example

```python
>>> pred = torch.tensor([0., 1, 2, 3])
>>> target = torch.tensor([0., 1, 2, 2])
>>> metric = RMSLE()
>>> metric(pred, target)
tensor(0.0207)
```

`forward(pred, target)`

Actual metric computation

Parameters

- `pred (Tensor)` – predicted labels
- `target (Tensor)` – ground truth labels

Return type `Tensor`

Returns A Tensor with the rmsle loss.

_class pytorch_lightning.metrics.AUC(reduce_group=torch.distributed.group.WORLD, reduce_op=torch.distributed.ReduceOp.SUM)_

Calculates the Area Under the Curve using the trapoezoidal rule

Warning: Every metric call will cause a GPU synchronization, which may slow down your code

Example

```python
>>> y_pred = torch.tensor([0, 1, 2, 3])
>>> y_true = torch.tensor([0, 1, 2, 2])
>>> metric = AUC()
>>> metric(y_pred, y_true)
tensor([4.])
```

Parameters

- `reduce_group (Any)` – the process group for DDP reduces (only needed for DDP training). Defaults to all processes (world)
- `reduce_op (Any)` – the operation to perform during reduction within DDP (only needed for DDP training). Defaults to sum.

`forward(x, y)`

Computes the AUC

Parameters

- `x (ndarray)` – x coordinates.
- `y (ndarray)` – y coordinates.

Return type `float`
Returns AUC calculated with trapezoidal rule

_class = None
_device = None
_dtype = None

class pytorch_lightning.metrics.AUROC(pos_label=1, reduce_group=None, reduce_op=None)
Bases: pytorch_lightning.metrics.metric.TensorMetric
Computes the area under curve (AUC) of the receiver operator characteristic (ROC)

Example

```python
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 2, 2])
>>> metric = AUROC()
>>> metric(pred, target)
tensor(0.3333)
```

Parameters

- **pos_label** (int) – positive label indicator
- **reduce_group** (Optional[Any]) – the process group to reduce metric results from DDP
- **reduce_op** (Optional[Any]) – the operation to perform for ddp reduction

forward(pred, target, sample_weight=None)
Actual metric computation

Parameters

- **pred** (Tensor) – predicted labels
- **target** (Tensor) – groundtruth labels
- **sample_weight** (Optional[Sequence]) – the weights per sample

Returns classification score

Return type torch.Tensor

_class = None
_device = None
_dtype = None

class pytorch_lightning.metrics.Accuracy(num_classes=None, reduction='elementwise_mean', reduce_group=None, reduce_op=None)
Bases: pytorch_lightning.metrics.metric.TensorMetric
Computes the accuracy classification score
Example

```python
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 2, 2])
>>> metric = Accuracy()
>>> metric(pred, target)
tensor(0.7500)
```

Parameters

- `num_classes` *(Optional[int])* – number of classes
- `reduction` *(str)* – a method for reducing accuracies over labels (default: takes the mean)
  
  Available reduction methods:
  - `elementwise_mean`: takes the mean
  - `none`: pass array
  - `sum`: add elements
- `reduce_group` *(Optional[Any])* – the process group to reduce metric results from DDP
- `reduce_op` *(Optional[Any])* – the operation to perform for ddp reduction

**forward(pred, target)**

Actual metric computation

Parameters

- `pred` *(Tensor)* – predicted labels
- `target` *(Tensor)* – ground truth labels

Return type: Tensor

Returns: A Tensor with the classification score.

_.device = None

_dtype = None

```python
class pytorch_lightning.metrics.AveragePrecision(pos_label=1,
reduce_group=None,
reduce_op=None)
```

**Bases**: `pytorch_lightning.metrics.metric.TensorMetric`

Computes the average precision score

Example

```python
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 2, 2])
>>> metric = AveragePrecision()
>>> metric(pred, target)
tensor(0.3333)
```

Parameters

- `pos_label` *(int)* – positive label indicator
- `reduce_group` *(Optional[Any])* – the process group to reduce metric results from DDP
- `reduce_op` *(Optional[Any])* – the operation to perform for ddp reduction
forward(pred, target, sample_weight=None)
Actual metric computation

Parameters

- **pred** (*Tensor*) – predicted labels
- **target** (*Tensor*) – groundtruth labels
- **sample_weight** (*Optional[Sequence]*) – the weights per sample

Returns classification score

Return type *torch.Tensor*

_class pytorch_lightning.metrics.ConfusionMatrix (normalize=False, reduce_group=None, reduce_op=None)_

 Computes the confusion matrix C where each entry $C_{i,j}$ is the number of observations in group i that were predicted in group j.

**Example**

```python
>>> pred = torch.tensor([0, 1, 2, 2])
>>> target = torch.tensor([0, 1, 2, 2])
>>> metric = ConfusionMatrix()
>>> metric(pred, target)
tensor([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 2.]])
```

Parameters

- **normalize** (*bool*) – whether to compute a normalized confusion matrix
- **reduce_group** (*Optional[Any]*) – the process group to reduce metric results from DDP
- **reduce_op** (*Optional[Any]*) – the operation to perform for ddp reduction

forward(pred, target)
Actual metric computation

Parameters

- **pred** (*Tensor*) – predicted labels
- **target** (*Tensor*) – ground truth labels

Return type *Tensor*

Returns A Tensor with the confusion matrix.

_device = None
_dtype = None
class pytorch_lightning.metrics.DiceCoefficient (include_background=False, 
    nan_score=0.0, no_fg_score=0.0, 
    reduction='elementwise_mean', reduce_group=None, reduce_op=None)

Bases: pytorch_lightning.metrics.metric.TensorMetric

Computes the dice coefficient

Example

```python
>>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05],
 [0.05, 0.85, 0.05, 0.05],
 [0.05, 0.05, 0.85, 0.05],
 [0.05, 0.05, 0.05, 0.85]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> metric = DiceCoefficient()
>>> metric(pred, target)
tensor(0.3333)
```

Parameters

- **include_background** (bool) – whether to also compute dice for the background
- **nan_score** (float) – score to return, if a NaN occurs during computation (denom zero)
- **no_fg_score** (float) – score to return, if no foreground pixel was found in target
- **reduction** (str) – a method for reducing accuracies over labels (default: takes the mean)
  Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements
- **reduce_group** (Optional[Any]) – the process group to reduce metric results from DDP
- **reduce_op** (Optional[Any]) – the operation to perform for ddp reduction

forward (pred, target)

Actual metric computation

Parameters

- **pred** (Tensor) – predicted probability for each label
- **target** (Tensor) – groundtruth labels

Returns the calculated dice coefficient

Return type torch.Tensor

_device = None

_dtype = None

class pytorch_lightning.metrics.F1 (num_classes=None, reduction='elementwise_mean', reduce_group=None, reduce_op=None)

Bases: pytorch_lightning.metrics.metric.TensorMetric

Computes the F1 score, which is the harmonic mean of the precision and recall. It ranges between 1 and 0, where 1 is perfect and the worst value is 0.
Example

```python
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 2, 2])
>>> metric = F1()
>>> metric(pred, target)
tensor(0.6667)
```

**Parameters**
- `num_classes` *(Optional[int]*) – number of classes
- `reduction` *(str)* – a method for reducing accuracies over labels (default: takes the mean)
  Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements
- `reduce_group` *(Optional[Any]*) – the process group to reduce metric results from DDP
- `reduce_op` *(Optional[Any]*) – the operation to perform for ddp reduction

**forward**(pred, target)
Actual metric computation

**Parameters**
- `pred` *(Tensor)* – predicted labels
- `target` *(Tensor)* – groundtruth labels

**Returns** classification score

**Return type** torch.Tensor

```python
class = None
dtype = None
class pytorch_lightning.metrics.FBeta(beta, num_classes=None, reduction='elementwise_mean', reduce_group=None, reduce_op=None)
Bases: pytorch_lightning.metrics.metric.TensorMetric
```

Computes the FBeta Score, which is the weighted harmonic mean of precision and recall. It ranges between 1 and 0, where 1 is perfect and the worst value is 0.

Example

```python
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 2, 2])
>>> metric = FBeta(0.25)
>>> metric(pred, target)
tensor(0.7361)
```

**Parameters**
- `beta` *(float)* – determines the weight of recall in the combined score.
- `num_classes` *(Optional[int]*) – number of classes
• **reduction**(str) – a method for reducing accuracies over labels (default: takes the mean)
  Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements

• **reduce_group**(Optional[Any]) – the process group to reduce metric results from DDP

• **reduce_op**(Optional[Any]) – the operation to perform for DDP reduction

**forward**(pred, target)
Actual metric computation

Parameters
• **pred**(Tensor) – predicted labels
• **target**(Tensor) – groundtruth labels

Returns classification score

Return type torch.Tensor

```
_device = None
_dtype = None

class pytorch_lightning.metrics.MulticlassPrecisionRecall(num_classes=None, reduction=None, reduce_group=None, reduce_op=None):

 Bases: pytorch_lightning.metrics.metric.TensorCollectionMetric

 Computes the multiclass PR Curve

Example

```python
>>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05],
                        [0.05, 0.85, 0.05, 0.05],
                        [0.05, 0.05, 0.85, 0.05],
                        [0.05, 0.05, 0.05, 0.85]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> metric = MulticlassPrecisionRecall()
>>> metric(pred, target)
(tensor([1., 1.]), tensor([1., 0.]), tensor([0.8500]),
 (tensor([1., 1.]), tensor([1., 0.]), tensor([0.8500]),
 (tensor([0.2500, 0.0000, 1.0000]), tensor([1., 0., 0.]), tensor([0.0500, 0.
→ 8500])),
 (tensor([0.2500, 0.0000, 1.0000]), tensor([1., 0., 0.]), tensor([0.0500, 0.
→ 8500]))))
```

Parameters
• **num_classes**(Optional[int]) – number of classes

• **reduction** – a method for reducing accuracies over labels (default: takes the mean) Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements

• **reduce_group**(Optional[Any]) – the process group to reduce metric results from DDP

• **reduce_op**(Optional[Any]) – the operation to perform for ddp reduction
forward *(pred, target, sample_weight=None)*

Actual metric computation

Parameters

- **pred** *(Tensor)* – predicted probability for each label
- **target** *(Tensor)* – groundtruth labels
- **sample_weight** *(Optional[Sequence]*) – Weights for each sample defining the sample’s impact on the score

Returns A tuple consisting of one tuple per class, holding precision, recall and thresholds

Return type *tuple*

```python
_device = None
_dtype = None

class pytorch_lightning.metrics.MulticlassROC(num_classes=None, reduce_group=None, reduce_op=None)
```

Bases: `pytorch_lightning.metrics.metric.TensorCollectionMetric`

Computes the multiclass ROC

Example

```python
>>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05],
...                       [0.05, 0.85, 0.05, 0.05],
...                       [0.05, 0.05, 0.85, 0.05],
...                       [0.05, 0.05, 0.05, 0.85]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> metric = MulticlassROC()
>>> classes_roc = metric(pred, target)
>>> metric(pred, target)
((tensor([0., 0., 1.]), tensor([0., 1., 1.]), tensor([1.8500, 0.8500, 0.0500])),
 (tensor([0., 0., 1.]), tensor([0., 1., 1.]), tensor([1.8500, 0.8500, 0.0500])),
 (tensor([0.0000, 0.3333, 1.0000]), tensor([0., 0., 1.]), tensor([1.8500, 0.8500, 1.0000])),
 (tensor([0.0000, 0.3333, 1.0000]), tensor([0., 0., 1.]), tensor([1.8500, 0.8500, 1.0000])))
```

Parameters

- **num_classes** *(Optional[int]*) – number of classes
- **reduction** – a method for reducing accuracies over labels (default: takes the mean) Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements
- **reduce_group** *(Optional[Any]*) – the process group to reduce metric results from DDP
- **reduce_op** *(Optional[Any]*) – the operation to perform for ddp reduction

forward *(pred, target, sample_weight=None)*

Actual metric computation

Parameters

- **pred** *(Tensor)* – predicted probability for each label
- **target** *(Tensor)* – groundtruth labels
- **sample_weight** *(Optional[Sequence]*) – Weights for each sample defining the sample’s impact on the score

Returns A tuple consisting of one tuple per class, holding false positive rate, true positive rate and thresholds

Return type tuple

```python
_dev = None
_dty = None
class pytorch_lightning.metrics.Precision(num_classes=None, reduction='elementwise_mean', reduce_group=None, reduce_op=None)
Bases: pytorch_lightning.metrics.metric.TensorMetric
Computes the precision score

Example

```python
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 2, 2])
>>> metric = Precision(num_classes=4)
>>> metric(pred, target)
tensor(0.7500)
```

**Parameters**

- **num_classes** *(Optional[int]*) – number of classes
- **reduction** *(str)* – a method for reducing accuracies over labels (default: takes the mean)
Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements
- **reduce_group** *(Optional[Any]*) – the process group to reduce metric results from DDP
- **reduce_op** *(Optional[Any]*) – the operation to perform for ddp reduction

**forward** *(pred, target)*

Actual metric computation

**Parameters**

- **pred** *(Tensor)* – predicted labels
- **target** *(Tensor)* – ground truth labels

**Return type** Tensor

**Returns** A Tensor with the classification score.

```python
_dev = None
_dty = None
class pytorch_lightning.metrics.PrecisionRecall(pos_label=1, reduce_group=None, reduce_op=None)
Bases: pytorch_lightning.metrics.metric.TensorCollectionMetric
Computes the precision recall curve

Example

```python
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 2, 2])
>>> metric = PrecisionRecall()
>>> prec, recall, thr = metric(pred, target)
>>> prec
tensor([0.3333, 0.0000, 0.0000, 1.0000])
>>> recall
tensor([1., 0., 0., 0.])
>>> thr
tensor([1., 2., 3.])
```

Parameters

- `pos_label` (int) – positive label indicator
- `reduce_group` (Optional[Any]) – the process group to reduce metric results from DDP
- `reduce_op` (Optional[Any]) – the operation to perform for ddp reduction

`forward(pred, target, sample_weight=None)`

Actual metric computation

Parameters

- `pred` (Tensor) – predicted labels
- `target` (Tensor) – groundtruth labels
- `sample_weight` (Optional[Sequence]) – the weights per sample

Return type: Tuple[Tensor, Tensor, Tensor]

Returns

- precision values
- recall values
- threshold values

_class pytorch_lightning.metrics.PrecisionRecallCurve (pos_label=1, reduce_group=torch.distributed.group.WORLD, reduce_op=torch.distributed.ReduceOp.SUM)_

Bases: `pytorch_lightning.metrics.sklearns.SklearnMetric`

Compute precision-recall pairs for different probability thresholds

Note: This implementation is restricted to the binary classification task.
The precision is the ratio $\frac{tp}{tp + fp}$ where tp is the number of true positives and fp the number of false positives. The precision intuitively the ability of the classifier not to label as positive a sample that is negative. The recall is the ratio $\frac{tp}{tp + fn}$ where tp is the number of true positives and fn the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The last precision and recall values are 1. and 0. respectively and do not have a corresponding threshold. This ensures that the graph starts on the x axis.

Parameters

- **pos_label** (Union[str, int]) – The class to report if average='binary'.
- **reduce_group** (Any) – the process group for DDP reduces (only needed for DDP training). Defaults to all processes (world)
- **reduce_op** (Any) – the operation to perform during reduction within DDP (only needed for DDP training). Defaults to sum.

forward(probas_pred, y_true, sample_weight=None)

Parameters

- **probas_pred** (ndarray) – Estimated probabilities or decision function.
- **y_true** (ndarray) – Ground truth (correct) target values.
- **sample_weight** (Optional[ndarray]) – Sample weights.

Returns

Precision values such that element i is the precision of predictions with score \geq thresholds[i] and the last element is 1.

recall: Decreasing recall values such that element i is the recall of predictions with score \geq thresholds[i] and the last element is 0.

thresholds: Increasing thresholds on the decision function used to compute precision and recall.

Return type

- precision

_device = None

_dtype = None

class pytorch_lightning.metrics.ROC(pos_label=1, reduce_group=None, reduce_op=None)

Bases: pytorch_lightning.metrics.metric.TensorCollectionMetric

Computes the Receiver Operator Characteristic (ROC)

Example

```python
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 2, 2])
>>> metric = ROC()
>>> fps, tps, thresholds = metric(pred, target)
>>> fps
tensor([0.0000, 0.3333, 0.6667, 0.6667, 1.0000])
>>> tps
```

```python
tensor([0., 0., 0., 1., 1.])
```

```python
>>> thresholds
tensor([4., 3., 2., 1., 0.])
```
Parameters

- `pos_label (int)` – positive label indicator
- `reduce_group (Optional[Any])` – the process group to reduce metric results from DDP
- `reduce_op (Optional[Any])` – the operation to perform for ddp reduction

`forward (pred, target, sample_weight=None)`

Actual metric computation

Parameters

- `pred (Tensor)` – predicted labels
- `target (Tensor)` – groundtruth labels
- `sample_weight (Optional[Sequence])` – the weights per sample

Return type `Tuple[Tensor, Tensor, Tensor]`

Returns

- false positive rate
- true positive rate
- thresholds

_class pytorch_lightning.metrics.Recall (num_classes=None, reduction='elementwise_mean', reduce_group=None, reduce_op=None)_

Bases: `pytorch_lightning.metrics.metric.TensorMetric`

Computes the recall score

Example

```python
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 2, 2])
>>> metric = Recall()
>>> metric(pred, target)
tensor(0.6250)
```

Parameters

- `num_classes (Optional[int])` – number of classes
- `reduction (str)` – a method for reducing accuracies over labels (default: takes the mean)
 Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements
- `reduce_group (Optional[Any])` – the process group to reduce metric results from DDP
- `reduce_op (Optional[Any])` – the operation to perform for ddp reduction

`forward (pred, target)`

Actual metric computation
Parameters

- `pred (Tensor)` – predicted labels
- `target (Tensor)` – ground truth labels

Return type `Tensor`

Returns A Tensor with the classification score.

```python
_device = None
_ddtype = None
class pytorch_lightning.metrics.IOU(remove_bg=False, reduction='elementwise_mean')
Bases: pytorch_lightning.metrics.metric.TensorMetric
Computes the intersection over union.

Example

```python
>>> pred = torch.tensor([[0, 0, 0, 0, 0, 0, 0, 0],
 ... [0, 0, 1, 1, 1, 0, 0, 0],
 ... [0, 0, 0, 0, 0, 0, 0, 0]])
>>> target = torch.tensor([[0, 0, 0, 0, 0, 0, 0, 0],
 ... [0, 0, 0, 1, 1, 1, 0, 0],
 ... [0, 0, 0, 0, 0, 0, 0, 0]])
>>> metric = IoU()
>>> metric(pred, target)
tensor(0.7045)
```

Parameters

- `remove_bg` (bool) – Flag to state whether a background class has been included within input parameters. If true, will remove background class. If false, return IoU over all classes. Assumes that background is ‘0’ class in input tensor
- `reduction` (str) – a method for reducing IoU over labels (default: takes the mean) Available reduction methods:
  - `elementwise_mean`: takes the mean
  - `none`: pass array
  - `sum`: add elements

```python
forward(y_pred, y_true, sample_weight=None)
Actual metric calculation.
```

```python
_device = None
_ddtype = None
class pytorch_lightning.metrics.SklearnMetric(metric_name, reduce_group=reduce_group.reduces_world, reduce_op=reduce_op.reduce_op.sum, **kwargs)
Bases: pytorch_lightning.metrics.metric.NumpyMetric
Bridge between PyTorch Lightning and scikit-learn metrics
```
**Warning:** Every metric call will cause a GPU synchronization, which may slow down your code

**Note:** The order of targets and predictions may be different from the order typically used in PyTorch

Parameters

- **metric_name (str)** – the metric name to import and compute from scikit-learn.metrics
- **reduce_group (Any)** – the process group for DDP reduces (only needed for DDP training). Defaults to all processes (world)
- **reduce_op (Any)** – the operation to perform during reduction within DDP (only needed for DDP training). Defaults to sum.
- ****kwargs – additional keyword arguments (will be forwarded to metric call)

`forward (*args, **kwargs)`

Carries the actual metric computation

Parameters

- ****args – Positional arguments forwarded to metric call (should be already converted to numpy)
- ****kwargs – keyword arguments forwarded to metric call (should be already converted to numpy)

Return type `Union[ndarray, int, float]`

Returns the metric value (will be converted to tensor by baseclass)

```
_device = None
_dtype = None

property metric_fn
```

### 37.4.1 Subpackages

**pytorch_lightning.metrics.functional package**

**Submodules**

**pytorch_lightning.metrics.functional.classification module**

`pytorch_lightning.metrics.functional.classification._binary_clf_curve (pred, target, sample_weight=None, pos_label=1.0)`

Return type `Tuple[Tensor, Tensor, Tensor]`

adapted from https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/_ranking.py

37.4. **pytorch_lightning.metrics package**
pytorch_lightning.metrics.functional.classification.accuracy(pred, target, num_classes=None, reduction='elementwise_mean')

Computes the accuracy classification score

Parameters

- **pred** (Tensor) – predicted labels
- **target** (Tensor) – ground truth labels
- **num_classes** (Optional[int]) – number of classes
- **reduction** – a method for reducing accuracies over labels (default: takes the mean) Available reduction methods:
  - elementwise_mean: takes the mean
  - none: pass array
  - sum: add elements

Return type **Tensor**

Returns A Tensor with the classification score.

Example

```python
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> accuracy(x, y)
tensor(0.7500)
```

pytorch_lightning.metrics.functional.classification.auc(x, y, reorder=True)

Computes Area Under the Curve (AUC) using the trapezoidal rule

Parameters

- **x** (Tensor) – x-coordinates
- **y** (Tensor) – y-coordinates
- **reorder** (bool) – reorder coordinates, so they are increasing.

Return type **Tensor**

Returns Tensor containing AUC score (float)

Example

```python
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> auc(x, y)
tensor(4.)
```

pytorch_lightning.metrics.functional.classification.auc_decorator(reorder=True)

Return type **Callable**
pytorch_lightning.metrics.functional.classification.auroc(pred, target, sample_weight=None, pos_label=1.0)

Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores

Parameters

- **pred (Tensor)** – estimated probabilities
- **target (Tensor)** – ground-truth labels
- **sample_weight (Optional[Sequence])** – sample weights
- **pos_label (int)** – the label for the positive class (default: 1.)

Example

```python
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> auroc(x, y)
tensor(0.3333)
```

Return type **Tensor**

---

pytorch_lightning.metrics.functional.classification.average_precision(pred, target, sample_weight=None, pos_label=1.0)

Parameters

- **pred (Tensor)** – estimated probabilities
- **target (Tensor)** – ground-truth labels
- **sample_weight (Optional[Sequence])** – sample weights
- **pos_label (int)** – the label for the positive class (default: 1.)

Example

```python
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> average_precision(x, y)
tensor(0.3333)
```

Return type **Tensor**

---

pytorch_lightning.metrics.functional.classification.confusion_matrix(pred, target, normalize=False)

Computes the confusion matrix $C$ where each entry $C_{ij}$ is the number of observations in group $i$ that were predicted in group $j$.
Parameters

- **pred** (Tensor) – estimated targets
- **target** (Tensor) – ground truth labels
- **normalize** (bool) – normalizes confusion matrix

Return type: Tensor

Returns: Tensor, confusion matrix C [num_classes, num_classes]

Example

```
>>> x = torch.tensor([1, 2, 3])
>>> y = torch.tensor([0, 2, 3])
>>> confusion_matrix(x, y)
```

```
tensor([[0., 1., 0., 0.],
 [0., 0., 0., 0.],
 [0., 0., 1., 0.],
 [0., 0., 0., 1.]])
```

```
pytorch_lightning.metrics.functional.classification.dice_score(pred, target, bg=False, nan_score=0.0, no_fg_score=0.0, reduction='elementwise_mean')
```

Parameters

- **pred** (Tensor) – estimated probabilities
- **target** (Tensor) – ground-truth labels
- **bg** (bool) – whether to also compute dice for the background
- **nan_score** (float) – score to return, if a NaN occurs during computation (denom zero)
- **no_fg_score** (float) – score to return, if no foreground pixel was found in target
- **reduction** (str) – a method for reducing accuracies over labels (default: takes the mean)
  
  Available reduction methods:
  
  - elementwise_mean: takes the mean
  - none: pass array
  - sum: add elements

Example

```
>>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05],
 [0.05, 0.85, 0.05, 0.05],
 [0.05, 0.05, 0.85, 0.05],
 [0.05, 0.05, 0.05, 0.85]])
>>> target = torch.tensor([[0, 1, 3, 2]])
>>> average_precision(pred, target)
tensor(0.2500)
```
Computes the F1-score (a.k.a F-measure), which is the harmonic mean of the precision and recall. It ranges between 1 and 0, where 1 is perfect and the worst value is 0.

Parameters

- `pred` (Tensor) – estimated probabilities
- `target` (Tensor) – ground-truth labels
- `num_classes` (Optional[int]) – number of classes
- `reduction` – method for reducing F1-score (default: takes the mean) Available reduction methods:
  - `elementwise_mean`: takes the mean
  - `none`: pass array
  - `sum`: add elements.

Returns Tensor containing F1-score

Example

```python
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> f1_score(x, y)
tensor(0.6667)
```

Computes the F-beta score which is a weighted harmonic mean of precision and recall. It ranges between 1 and 0, where 1 is perfect and the worst value is 0.

Parameters

- `pred` (Tensor) – estimated probabilities
- `target` (Tensor) – ground-truth labels
- `beta` (float) – weights recall when combining the score. beta < 1: more weight to precision. beta > 1 more weight to recall beta = 0: only precision beta -> inf: only recall
- `num_classes` (Optional[int]) – number of classes
- `reduction` (str) – method for reducing F-score (default: takes the mean) Available reduction methods:
  - `elementwise_mean`: takes the mean
  - `none`: pass array
– sum: add elements.

**Return type** Tensor

**Returns** Tensor with the value of F-score. It is a value between 0-1.

**Example**

```python
global_iou = torch.tensor([0, 1, 2, 3])
global_target = torch.tensor([0, 1, 2, 2])
global_iou = iou(global_iou, global_target)
tensor(0.7407)
```

**pytorch_lightning.metrics.functional.classification.get_num_classes**

Returns the number of classes for a given prediction and target tensor.

**Args:**
- **pred**: predicted values
- **target**: true labels
- **num_classes**: number of classes if known (default: None)

**Return:** An integer that represents the number of classes.

**Return type** int

**pytorch_lightning.metrics.functional.classification.iou**

Intersection over union, or Jaccard index calculation.

**Parameters**

- **pred** *(Tensor)* – Tensor containing predictions
- **target** *(Tensor)* – Tensor containing targets
- **num_classes** *(Optional[int]*) – Optionally specify the number of classes
- **remove_bg** *(bool)* – Flag to state whether a background class has been included within input parameters. If true, will remove background class. If false, return IoU over all classes. Assumes that background is ‘0’ class in input tensor
- **reduction** *(str)* – a method for reducing IoU over labels (default: takes the mean) Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements

**Returns** Tensor containing single value if reduction is ‘elementwise_mean’, or number of classes if reduction is ‘none’

**Return type** IoU score
Example

```python
>>> target = torch.randint(0, 1, (10, 25, 25))
>>> pred = torch.tensor(target)
>>> iou(pred, target)
tensor(0.4914)
```

`pytorch_lightning.metrics.functional.classification.multiclass_auc_decorator` (reorder=True)

**Return type** Callable

`pytorch_lightning.metrics.functional.classification.multiclass_precision_recall_curve`(pred, target, sample_weight=None, num_classes=None)

Computes precision-recall pairs for different thresholds given a multiclass scores.

**Parameters**
- `pred` (Tensor) – estimated probabilities
- `target` (Tensor) – ground-truth labels
- `sample_weight` (Optional[Sequence]) – sample weight
- `num_classes` (Optional[int]) – number of classes

**Return type** Tuple[Tensor, Tensor, Tensor, Tensor]

**Returns** number of classes, precision, recall, thresholds

Example

```python
>>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05],
... [0.05, 0.85, 0.05, 0.05],
... [0.05, 0.05, 0.85, 0.05],
... [0.05, 0.05, 0.05, 0.85]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> nb_classes, precision, recall, thresholds = multiclass_precision_recall_curve(pred, target)
>>> nb_classes
(tensor([1., 1.]), tensor([1., 0.]), tensor([0.8500]))
>>> precision
(tensor([1., 1.]), tensor([1., 0.]), tensor([0.8500]))
>>> recall
(tensor([0.2500, 0.0000, 1.0000]), tensor([1., 0., 0.]), tensor([0.0500, 0.8500]))
>>> thresholds
(tensor([0.2500, 0.0000, 1.0000]), tensor([1., 0., 0.]), tensor([0.0500, 0.8500]))
```

`pytorch_lightning.metrics.functional.classification.multiclass_roc`(pred, target, sample_weight=None, num_classes=None)

Computes the Receiver Operating Characteristic (ROC) for multiclass predictors.

**Parameters**
• `pred` (Tensor) – estimated probabilities
• `target` (Tensor) – ground-truth labels
• `sample_weight` (Optional[Sequence]) – sample weights
• `num_classes` (Optional[int]) – number of classes (default: None, computes automatically from data)

**Return type** `Tuple[Tuple[Tensor, Tensor, Tensor]]`

**Returns** returns roc for each class. Number of classes, false-positive rate (fpr), true-positive rate (tpr), thresholds

**Example**

```python
>>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05],
... [0.05, 0.85, 0.05, 0.05],
... [0.05, 0.05, 0.85, 0.05],
... [0.05, 0.05, 0.05, 0.85]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> multiclass_roc(pred, target)
(tensor([0., 0., 1.]), tensor([0., 1., 1.]), tensor([1.8500, 0.8500, 0.0500]),
 tensor([0., 0., 1.]), tensor([1.8500, 0.8500, 0.0500]))
```

`pytorch_lightning.metrics.functional.classification.precision(pred, target, num_classes=None, reduction='elementwise_mean')`

Computes precision score.

**Parameters**

• `pred` (Tensor) – estimated probabilities
• `target` (Tensor) – ground-truth labels
• `num_classes` (Optional[int]) – number of classes
• `reduction` (str) – method for reducing precision values (default: takes the mean) Available reduction methods:
  – elementwise_mean: takes the mean
  – none: pass array
  – sum: add elements

**Return type** `Tensor`

**Returns** Tensor with precision.
Example

```python
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> precision(x, y)
tensor(0.7500)
```

```python
pytorch_lightning.metrics.functional.classification.precision_recall(pred, target, num_classes=None, reduction='elementwise_mean')
```

Computes precision and recall for different thresholds.

Parameters

- `pred (Tensor)` – estimated probabilities
- `target (Tensor)` – ground-truth labels
- `num_classes (Optional[int])` – number of classes
- `reduction (str)` – method for reducing precision-recall values (default: takes the mean)

Available reduction methods:

- `elementwise_mean`: takes the mean
- `none`: pass array
- `sum`: add elements

Return type `Tuple[Tensor, Tensor]`

Returns Tensor with precision and recall

Example

```python
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> precision_recall(x, y)
tensor(0.7500), tensor(0.6250)
```

```python
pytorch_lightning.metrics.functional.classification.precision_recall_curve(pred, target, sample_weight=None, pos_label=1.0)
```

Computes precision-recall pairs for different thresholds.

Parameters

- `pred (Tensor)` – estimated probabilities
- `target (Tensor)` – ground-truth labels
- `sample_weight (Optional[Sequence])` – sample weights
- `pos_label (int)` – the label for the positive class (default: 1.)

Return type `Tuple[Tensor, Tensor, Tensor]`
Returns precision, recall, thresholds

Example

```python
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 2, 2])
>>> precision, recall, thresholds = precision_recall_curve(pred, target)
>>> precision
tensor([0.3333, 0.0000, 0.0000, 1.0000])
>>> recall
tensor([1., 0., 0., 0.])
>>> thresholds
tensor([1, 2, 3])
```

Computes recall score.

**Parameters**

- `pred` (Tensor) – estimated probabilities
- `target` (Tensor) – ground-truth labels
- `num_classes` (Optional[int]) – number of classes
- `reduction` (str) – method for reducing recall values (default: takes the mean)

**Return type** Tensor

**Returns** Tensor with recall.

Example

```python
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> recall(x, y)
tensor(0.6250)
```

Computes the Receiver Operating Characteristic (ROC). It assumes classifier is binary.

**Parameters**

- `pred` (Tensor) – estimated probabilities
- `target` (Tensor) – ground-truth labels
- `sample_weight` (Optional[Sequence]) – sample weights

```python
pytorch_lightning.metrics.functional.classification.roc(pred, target, sample_weight=None, pos_label=1.0)
```
• \texttt{pos\_label} (int) – the label for the positive class (default: 1)

\textbf{Return type} \texttt{Tuple[Tensor, Tensor, Tensor]}

\textbf{Returns} false-positive rate (fpr), true-positive rate (tpr), thresholds

\textbf{Example}

```python
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> fpr, tpr, thresholds = roc(x, y)
>>> fpr
tensor([0.0000, 0.3333, 0.6667, 0.6667, 1.0000])
>>> tpr
tensor([0., 0., 0., 1., 1.])
>>> thresholds
tensor([4, 3, 2, 1, 0])
```

\textbf{pytorch_lightning.metrics.functional.classification.stat_scores (pred, target, class_index, argmax_dim=1)}

Calculates the number of true positive, false positive, true negative and false negative for a specific class

\textbf{Parameters}

• \texttt{pred} (Tensor) – prediction tensor

• \texttt{target} (Tensor) – target tensor

• \texttt{class\_index} (int) – class to calculate over

• \texttt{argmax\_dim} (int) – if \texttt{pred} is a tensor of probabilities, this indicates the axis the argmax transformation will be applied over

\textbf{Return type} \texttt{Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]}

\textbf{Returns} True Positive, False Positive, True Negative, False Negative

\textbf{Example}

```python
>>> x = torch.tensor([1, 2, 3])
>>> y = torch.tensor([0, 2, 3])
>>> tp, fp, tn, fn, sup = stat_scores(x, y, class_index=1)
>>> tp, fp, tn, fn, sup
(tensor(0), tensor(1), tensor(2), tensor(0), tensor(0))
```

\textbf{pytorch_lightning.metrics.functional.classification.stat_scores\_multiple\_classes (pred, target, num\_classes, argmax\_dim=1)}

Calls the \texttt{stat_scores} function iteratively for all classes, thus calculating the number of true positive, false positive, true negative and false negative for each class

\textbf{Parameters}

• \texttt{pred} (Tensor) – prediction tensor

• \texttt{target} (Tensor) – target tensor
• **class_index** – class to calculate over
  • **argmax_dim**(int) – if pred is a tensor of probabilities, this indicates the axis the argmax transformation will be applied over

**Return type** Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]

**Returns** True Positive, False Positive, True Negative, False Negative

**Example**

```python
>>> x = torch.tensor([1, 2, 3])
>>> y = torch.tensor([0, 2, 3])
>>> tps, fps, tns, fns, sups = stat_scores_multiple_classes(x, y)
>>> tps
tensor([0., 0., 1., 1.])
>>> fps
tensor([0., 1., 0., 0.])
>>> tns
tensor([2., 2., 2., 2.])
>>> fns
tensor([1., 0., 0., 0.])
>>> sups
tensor([1., 0., 1., 1.])
```

```python
pytorch_lightning.metrics.functional.classification.to_categorical(tensor, argmax_dim=1)
```

Converts a tensor of probabilities to a dense label tensor

**Parameters**

• **tensor**(Tensor) – probabilities to get the categorical label [N, d1, d2, ...]
  • **argmax_dim**(int) – dimension to apply (default: 1)

**Return type** Tensor

**Returns** A tensor with categorical labels [N, d2, ...]

**Example**

```python
>>> x = torch.tensor([[0.2, 0.5], [0.9, 0.1]])
>>> to_categorical(x)
tensor([1, 0])
```

```python
pytorch_lightning.metrics.functional.classification.to_onehot(tensor, n_classes=None)
```

Converts a dense label tensor to one-hot format

**Parameters**

• **tensor**(Tensor) – dense label tensor, with shape [N, d1, d2, ...]
  • **n_classes**(Optional[int]) – number of classes C

**Output:** A sparse label tensor with shape [N, C, d1, d2, ...]
Example

```python
>>> x = torch.tensor([1, 2, 3])
>>> to_onehot(x)
tensor([[0, 1, 0, 0],
 [0, 0, 1, 0],
 [0, 0, 0, 1]])
```

Return type: Tensor

**pytorch_lightning.metrics.functional.reduction module**

`pytorch_lightning.metrics.functional.reduction.reduce` *(to_reduce, reduction)*

Reduces a given tensor by a given reduction method

Parameters

- `to_reduce` (Tensor) – the tensor, which shall be reduced
- `reduction` : a string specifying the reduction method ('elementwise_mean', 'none', 'sum')

Return type: Tensor

Returns: reduced Tensor

Raise: ValueError if an invalid reduction parameter was given

### 37.4.2 Submodules

**pytorch_lightning.metrics.classification module**

`class pytorch_lightning.metrics.classification.AUROC(pos_label=1, reduce_group=None, reduce_op=None)`

Bases: `pytorch_lightning.metrics.metric.TensorMetric`

Computes the area under curve (AUC) of the receiver operator characteristic (ROC)

Example

```python
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 2, 2])
>>> metric = AUROC()
>>> metric(pred, target)
tensor(0.3333)
```

Parameters

- `pos_label` (int) – positive label indicator
- `reduce_group` (Optional[Any]) – the process group to reduce metric results from DDP
- `reduce_op` (Optional[Any]) – the operation to perform for ddp reduction

`forward(pred, target, sample_weight=None)`

Actual metric computation
Parameters

- **pred (Tensor)** – predicted labels
- **target (Tensor)** – ground truth labels
- **sample_weight (Optional[Sequence])** – the weights per sample

Returns  classification score

Return type  torch.Tensor

```python
_device = None
_dtype = None

class pytorch_lightning.metrics.classification.Accuracy(num_classes=None, reduction='elementwise_mean', reduce_group=None, reduce_op=None)

Bases: pytorch_lightning.metrics.metric.TensorMetric

Computes the accuracy classification score

Example

```python
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 2, 2])
>>> metric = Accuracy()
>>> metric(pred, target)
tensor(0.7500)
```

Parameters

- **num_classes (Optional[int])** – number of classes
- **reduction (str)** – a method for reducing accuracies over labels (default: takes the mean)
 Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements
- **reduce_group (Optional[Any])** – the process group to reduce metric results from DDP
- **reduce_op (Optional[Any])** – the operation to perform for ddp reduction

```python
forward(pred, target)

Actual metric computation

Parameters

- **pred (Tensor)** – predicted labels
- **target (Tensor)** – ground truth labels

Return type  Tensor

Returns  A Tensor with the classification score.
```
class pytorch_lightning.metrics.classification.AveragePrecision(pos_label=1, reduce_group=None, reduce_op=None)

Bases: pytorch_lightning.metrics.metric.TensorMetric

Computes the average precision score

Example

```python
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 2, 2])
>>> metric = AveragePrecision()
>>> metric(pred, target)
tensor(0.3333)
```

Parameters

- **pos_label** (int) – positive label indicator
- **reduce_group** (Optional[Any]) – the process group to reduce metric results from DDP
- **reduce_op** (Optional[Any]) – the operation to perform for ddp reduction

forward(pred, target, sample_weight=None)

Actual metric computation

Parameters

- **pred** (Tensor) – predicted labels
- **target** (Tensor) – groundtruth labels
- **sample_weight** (Optional[Sequence]) – the weights per sample

Returns classification score

Return type torch.Tensor

_class = None

_dtype = None

class pytorch_lightning.metrics.classification.ConfusionMatrix(normalize=False, reduce_group=None, reduce_op=None)

Bases: pytorch_lightning.metrics.metric.TensorMetric

Computes the confusion matrix C where each entry $C_{i,j}$ is the number of observations in group i that were predicted in group j.
Example

```python
>>> pred = torch.tensor([0, 1, 2, 2])
>>> target = torch.tensor([0, 1, 2, 2])
>>> metric = ConfusionMatrix()
>>> metric(pred, target)
tensor([[1., 0., 0.],
        [0., 1., 0.],
        [0., 0., 2.]])
```

Parameters

- `normalize` (bool) – whether to compute a normalized confusion matrix
- `reduce_group` (Optional[Any]) – the process group to reduce metric results from DDP
- `reduce_op` (Optional[Any]) – the operation to perform for ddp reduction

`forward(pred, target)`

Actual metric computation

Parameters

- `pred` (Tensor) – predicted labels
- `target` (Tensor) – ground truth labels

Return type: Tensor

Returns: A Tensor with the confusion matrix.

```python
_device = None
dtype = None
class pytorch_lightning.metrics.classification.DiceCoefficient(include_background=False, nan_score=0.0, no_fg_score=0.0, reduction='elementwise_mean', reduce_group=None, reduce_op=None)
```

Bases: `pytorch_lightning.metrics.metric.TensorMetric`

Computes the dice coefficient

Example

```python
>>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05],
                        [0.05, 0.85, 0.05, 0.05],
                        [0.05, 0.05, 0.85, 0.05],
                        [0.05, 0.05, 0.05, 0.85]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> metric = DiceCoefficient()
>>> metric(pred, target)
tensor(0.3333)
```
Parameters

- **include_background** (bool) – whether to also compute dice for the background
- **nan_score** (float) – score to return, if a NaN occurs during computation (denom zero)
- **no_fg_score** (float) – score to return, if no foreground pixel was found in target
- **reduction** (str) – a method for reducing accuracies over labels (default: takes the mean)
 Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements
- **reduce_group** (Optional[Any]) – the process group to reduce metric results from DDP
- **reduce_op** (Optional[Any]) – the operation to perform for ddp reduction

forward *(pred, target)*

Actual metric computation

Parameters

- **pred** (Tensor) – predicted probability for each label
- **target** (Tensor) – groundtruth labels

Returns the calculated dice coefficient

Return type torch.Tensor

_class pytorch_lightning.metrics.classification.F1(num_classes=None, reduction='elementwise_mean', reduce_group=None, reduce_op=None)_

Bases: pytorch_lightning.metrics.metric.TensorMetric

Computes the F1 score, which is the harmonic mean of the precision and recall. It ranges between 1 and 0, where 1 is perfect and the worst value is 0.

Example

```python
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 2, 2])
>>> metric = F1()
>>> metric(pred, target)
tensor(0.6667)
```

Parameters

- **num_classes** (Optional[int]) – number of classes
- **reduction** (str) – a method for reducing accuracies over labels (default: takes the mean)
 Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements
- **reduce_group** (Optional[Any]) – the process group to reduce metric results from DDP
- **reduce_op** (Optional[Any]) – the operation to perform for ddp reduction
forward(pred, target)
 Actual metric computation

 Parameters
 * pred (Tensor) – predicted labels
 * target (Tensor) – groundtruth labels

 Returns classification score

 Return type torch.Tensor

_device = None
_device = None

class pytorch_lightning.metrics.classification.FBeta(betanum_classes=None, reduction='elementwise_mean', reduce_group=None, reduce_op=None)

Bases: pytorch_lightning.metrics.metric.TensorMetric

Computes the FBeta Score, which is the weighted harmonic mean of precision and recall. It ranges between 1 and 0, where 1 is perfect and the worst value is 0.

Example

```python
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 2, 2])
>>> metric = FBeta(0.25)
>>> metric(pred, target)
tensor(0.7361)
```

Parameters

- **beta (float)** – determines the weight of recall in the combined score.
- **num_classes (Optional[int])** – number of classes
- **reduction (str)** – a method for reducing accuracies over labels (default: takes the mean)
 Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements
- **reduce_group (Optional[Any])** – the process group to reduce metric results from DDP
- **reduce_op (Optional[Any])** – the operation to perform for DDP reduction

forward(pred, target)
 Actual metric computation

 Parameters
 * pred (Tensor) – predicted labels
 * target (Tensor) – groundtruth labels

 Returns classification score

 Return type torch.Tensor

_device = None
__class = None

class pytorch_lightning.metrics.classification.IoU(remove_bg=False, reduction='elementwise_mean')

Bases: pytorch_lightning.metrics.metric.TensorMetric

Computes the intersection over union.

Example

```python
>>> pred = torch.tensor([[0, 0, 0, 0, 0, 0, 0, 0],
... [0, 1, 1, 1, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0, 0, 0]])
>>> target = torch.tensor([[0, 0, 0, 0, 0, 0, 0, 0],
... [0, 0, 0, 1, 1, 1, 0, 0],
... [0, 0, 0, 0, 0, 0, 0, 0]])
>>> metric = IoU()
>>> metric(pred, target)
tensor(0.7045)
```

Parameters

- **remove_bg** (bool) – Flag to state whether a background class has been included within input parameters. If true, will remove background class. If false, return IoU over all classes. Assumes that background is ‘0’ class in input tensor

- **reduction** (str) – a method for reducing IoU over labels (default: takes the mean)

Available reduction methods:

- elementwise_mean: takes the mean
- none: pass array
- sum: add elements

```python
forward(y_pred, y_true, sample_weight=None)
```

Actual metric calculation.

__device = None

__dtype = None

class pytorch_lightning.metrics.classification.MulticlassPrecisionRecall(num_classes=None, reduce_group=None, reduce_op=None)

Bases: pytorch_lightning.metrics.metric.TensorCollectionMetric

Computes the multiclass PR Curve
Example

```python
>>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05],
...                       [0.05, 0.85, 0.05, 0.05],
...                       [0.05, 0.05, 0.85, 0.05],
...                       [0.05, 0.05, 0.05, 0.85]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> metric = MulticlassPrecisionRecall()
>>> metric(pred, target)
(tensor([1., 1.]), tensor([1., 0.]), tensor([0.8500]),
(tensor([1., 1.]), tensor([1., 0.]), tensor([0.8500]),
(tensor([0.2500, 0.0000, 1.0000]), tensor([1., 0., 0.]), tensor([0.0500, 0.
... 8500]),
(tensor([0.2500, 0.0000, 1.0000]), tensor([1., 0., 0.]), tensor([0.0500, 0.
... 8500])))
```

Parameters

- **num_classes** *(Optional[int]*) – number of classes
- **reduction** – a method for reducing accuracies over labels (default: takes the mean) Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements
- **reduce_group** *(Optional[Any]*) – the process group to reduce metric results from DDP
- **reduce_op** *(Optional[Any]*) – the operation to perform for ddp reduction

forward(pred, target, sample_weight=None)

Actual metric computation

Parameters

- **pred** *(Tensor)* – predicted probability for each label
- **target** *(Tensor)* – groundtruth labels
- **sample_weight** *(Optional[Sequence]*) – Weights for each sample defining the sample’s impact on the score

Returns A tuple consisting of one tuple per class, holding precision, recall and thresholds

Return type tuple

_class pytorch_lightning.metrics.classification.MulticlassROC(num_classes=None, reduce_group=None, reduce_op=None)

Bases: *pytorch_lightning.metrics.metric.TensorCollectionMetric*

Computes the multiclass ROC
Example

```python
>>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05],
... [0.05, 0.85, 0.05, 0.05],
... [0.05, 0.05, 0.85, 0.05],
... [0.05, 0.05, 0.05, 0.85]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> metric = MulticlassROC()
>>> classes_roc = metric(pred, target)
>>> metric(pred, target)
((tensor([0., 0., 1.]), tensor([0., 1., 1.]), tensor([1.8500, 0.8500, 0.0500])),
(tensor([0., 0., 1.]), tensor([0., 1., 1.]), tensor([1.8500, 0.8500, 0.0500])),
(tensor([0.0000, 0.3333, 1.0000]), tensor([0., 0., 1.]), tensor([1.8500, 0.8500, 0.0500])),
(tensor([0.0000, 0.3333, 1.0000]), tensor([0., 0., 1.]), tensor([1.8500, 0.8500, 0.0500])))
```

Parameters

- **num_classes** *(Optional[int]) – number of classes*
- **reduction** – a method for reducing accuracies over labels (default: takes the mean) Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements
- **reduce_group** *(Optional[Any]) – the process group to reduce metric results from DDP*
- **reduce_op** *(Optional[Any]) – the operation to perform for ddp reduction*

```python
def forward(pred, target, sample_weight=None)
    """Actual metric computation""
    Parameters
    • **pred** *(Tensor)* – predicted probability for each label
    • **target** *(Tensor)* – groundtruth labels
    • **sample_weight** *(Optional[Sequence]) – Weights for each sample defining the sample’s impact on the score"

    Returns A tuple consisting of one tuple per class, holding false positive rate, true positive rate and thresholds

    Return type tuple
```

```python
_class = None
_dtype = None

class pytorch_lightning.metrics.classification.Precision(num_classes=None,
   reduction='elementwise_mean',
   reduce_group=None, reduce_op=None)
```

Bases: `pytorch_lightning.metrics.metric.TensorMetric`
Computes the precision score
Example

```python
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 2, 2])
>>> metric = Precision(num_classes=4)
>>> metric(pred, target)
tensor(0.7500)
```

Parameters

- **num_classes** (`Optional[int]`) – number of classes
- **reduction** (`str`) – a method for reducing accuracies over labels (default: takes the mean)

 Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements

- **reduce_group** (`Optional[Any]`) – the process group to reduce metric results from DDP

- **reduce_op** (`Optional[Any]`) – the operation to perform for ddp reduction

forward(*pred, target*)

Actual metric computation

Parameters

- **pred** (`Tensor`) – predicted labels
- **target** (`Tensor`) – ground truth labels

Return type **Tensor**

Returns A Tensor with the classification score.

phins._device = None

phins._dtype = None

class pytorch_lightning.metrics.classification.PrecisionRecall(pos_label=1, reduce_group=None, reduce_op=None)

Bases: `pytorch_lightning.metrics.metric.TensorCollectionMetric`

Computes the precision recall curve

Example

```python
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 2, 2])
>>> metric = PrecisionRecall()
>>> prec, recall, thr = metric(pred, target)
>>> prec
tensor([0.3333, 0.0000, 0.0000, 1.0000])
>>> recall
tensor([1., 0., 0., 0.])
>>> thr
tensor([1., 2., 3.])
```
• **pos_label** (int) – positive label indicator
• **reduce_group** (Optional[Any]) – the process group to reduce metric results from DDP
• **reduce_op** (Optional[Any]) – the operation to perform for ddp reduction

```python
forward(pred, target, sample_weight=None)
```

Actual metric computation

- **Parameters**
 - **pred** (Tensor) – predicted labels
 - **target** (Tensor) – groundtruth labels
 - **sample_weight** (Optional[Sequence]) – the weights per sample

- **Return type** Tuple[Tensor, Tensor, Tensor]

- **Returns**
 - precision values
 - recall values
 - threshold values

```python
_class = None
_dtype = None
```

```python
class pytorch_lightning.metrics.classification.ROC(pos_label=1, reduce_group=None, reduce_op=None)
```

Bases: `pytorch_lightning.metrics.metric.TensorCollectionMetric`

Computes the Receiver Operator Characteristic (ROC)

Example

```python
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 2, 2])
>>> metric = ROC()
>>> fps, tps, thresholds = metric(pred, target)
>>> fps
tensor([0.0000, 0.3333, 0.6667, 0.6667, 1.0000])
>>> tps
tensor([0., 0., 0., 1., 1.])
>>> thresholds
tensor([4., 3., 2., 1., 0.])
```

- **Parameters**
 - **pos_label** (int) – positive label indicator
 - **reduce_group** (Optional[Any]) – the process group to reduce metric results from DDP
 - **reduce_op** (Optional[Any]) – the operation to perform for ddp reduction
forward \((\text{pred}, \text{target}, \text{sample_weight}=\text{None}) \)

Actual metric computation

Parameters

- \(\text{pred} \) (Tensor) – predicted labels
- \(\text{target} \) (Tensor) – groundtruth labels
- \(\text{sample_weight} \) (Optional[Sequence]) – the weights per sample

Returns

- false positive rate
- true positive rate
- thresholds

_class pytorch_lightning.metrics.classification.Recall (num_classes=None, reduction='elementwise_mean', reduce_group=None, reduce_op=None)

Bases: pytorch_lightning.metrics.metric.TensorMetric

Computes the recall score

Example

```python
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 2, 2])
>>> metric = Recall()
>>> metric(pred, target)
tensor(0.6250)
```

Parameters

- \(\text{num_classes} \) (Optional[int]) – number of classes
- \(\text{reduction} \) (str) – a method for reducing accuracies over labels (default: takes the mean)
 Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements
- \(\text{reduce_group} \) (Optional[Any]) – the process group to reduce metric results from DDP
- \(\text{reduce_op} \) (Optional[Any]) – the operation to perform for ddp reduction

forward \((\text{pred}, \text{target}) \)

Actual metric computation

Parameters

- \(\text{pred} \) (Tensor) – predicted labels
- \(\text{target} \) (Tensor) – ground truth labels

Return type Tensor
Returns A Tensor with the classification score.

_device = None
_dtype = None

pytorch_lightning.metrics.converters module

This file provides functions and decorators for automated input and output conversion to/from `numpy.ndarray` and `torch.Tensor` as well as utilities to sync tensors between different processes in a DDP scenario, when needed.

pytorch_lightning.metrics.converters._apply_to_inputs(func_to_apply, *dec_args,
**dec_kwargs)

Decorator function to apply a function to all inputs of a function.

Parameters

• func_to_apply (Callable) – the function to apply to the inputs
• *dec_args – positional arguments for the function to be applied
• **dec_kwargs – keyword arguments for the function to be applied

Return type Callable

Returns the decorated function

pytorch_lightning.metrics.converters._apply_to_outputs(func_to_apply, *dec_args,
**dec_kwargs)

Decorator function to apply a function to all outputs of a function.

Parameters

• func_to_apply (Callable) – the function to apply to the outputs
• *dec_args – positional arguments for the function to be applied
• **dec_kwargs – keyword arguments for the function to be applied

Return type Callable

Returns the decorated function

pytorch_lightning.metrics.converters._convert_to_numpy(data)

Convert all tensors and numpy arrays to numpy arrays.

Parameters data (Union[Tensor, ndarray, Number]) – the tensor or array to convert to numpy

Return type ndarray

Returns the resulting numpy array

pytorch_lightning.metrics.converters._convert_to_tensor(data)

Maps all kind of collections and numbers to tensors.

Parameters data (Any) – the data to convert to tensor

Return type Any

Returns the converted data

pytorch_lightning.metrics.converters._numpy_metric_conversion(func_to_decorate)

Decorator handling the argument conversion for metrics working on numpy. All inputs of the decorated function will be converted to numpy and all outputs will be converted to tensors.
Parameters `func_to_decorate` (*Callable*) – the function whose inputs and outputs shall be converted

Return type `Callable`

Returns the decorated function

`pytorch_lightning.metrics.converters._numpy_metric_input_conversion(func_to_decorate)`

Decorator converting all inputs of a function to numpy

Parameters `func_to_decorate` (*Callable*) – the function whose inputs shall be converted

Returns the decorated function

Return type `Callable`

`pytorch_lightning.metrics.converters._sync_ddp_if_available(result, group=None, reduce_op=None)`

Function to reduce the tensors from several ddp processes to one master process

Parameters

- `result` (*Tensor*) – the value to sync and reduce (typically tensor or number)
- `group` (*Optional*[Any]) – the process group to gather results from. Defaults to all processes (world)
- `reduce_op` (*Optional*[ReduceOp]) – the reduction operation. Defaults to sum.

Return type `Tensor`

Returns reduced value

`pytorch_lightning.metrics.converters._tensor_collection_metric_conversion(func_to_decorate)`

Decorator Handling the argument conversion for metrics working on tensors. All inputs of the decorated function and all numpy arrays and numbers in it’s outputs will be converted to tensors

Parameters `func_to_decorate` (*Callable*) – the function whose inputs and outputs shall be converted

Return type `Callable`

Returns the decorated function

`pytorch_lightning.metrics.converters._tensor_collection_metric_output_conversion(func_to_decorate)`

Decorator converting all numpy arrays and numbers occurring in the outputs of a function to tensors

Parameters `func_to_decorate` (*Callable*) – the function whose outputs shall be converted

Returns the decorated function

Return type `Callable`

`pytorch_lightning.metrics.converters._tensor_metric_conversion(func_to_decorate)`

Decorator Handling the argument conversion for metrics working on tensors. All inputs and outputs of the decorated function will be converted to tensors

Parameters `func_to_decorate` (*Callable*) – the function whose inputs and outputs shall be converted

Return type `Callable`

Returns the decorated function

`pytorch_lightning.metrics.converters._tensor_metric_input_conversion(func_to_decorate)`

Decorator converting all inputs of a function to tensors

Parameters `func_to_decorate` (*Callable*) – the function whose inputs shall be converted

Return type `Callable`
Returns the decorated function

Return type Callable

`pytorch_lightning.metrics.converters._tensor_metric_output_conversion(func_to_decorate)`

Decorator converting all outputs of a function to tensors

Parameters

`func_to_decorate (Callable)` – the function whose outputs shall be converted

Returns the decorated function

Return type Callable

`pytorch_lightning.metrics.converters.numpy_metric(group=None, reduce_op=None)`

This decorator shall be used on all function metrics working on numpy arrays. It handles the argument conversion and DDP reduction for metrics working on numpy. All inputs of the decorated function will be converted to numpy and all outputs will be converted to tensors. In DDP Training all output tensors will be reduced according to the given rules.

Parameters

- `group (Optional[Any])` – the process group to gather results from. Defaults to all processes (world)
- `reduce_op (Optional[ReduceOp])` – the reduction operation. Defaults to sum

Return type Callable

Returns the decorated function

`pytorch_lightning.metrics.converters.sync_ddp(group=None, reduce_op=None)`

This decorator syncs a functions outputs across different processes for DDP.

Parameters

- `group (Optional[Any])` – the process group to gather results from. Defaults to all processes (world)
- `reduce_op (Optional[ReduceOp])` – the reduction operation. Defaults to sum

Return type Callable

Returns the decorated function

`pytorch_lightning.metrics.converters.tensor_collection_metric(group=None, reduce_op=None)`

This decorator shall be used on all function metrics working on tensors and returning collections that cannot be converted to tensors. It handles the argument conversion and DDP reduction for metrics working on tensors. All inputs and outputs of the decorated function will be converted to tensors. In DDP Training all output tensors will be reduced according to the given rules.

Parameters

- `group (Optional[Any])` – the process group to gather results from. Defaults to all processes (world)
- `reduce_op (Optional[ReduceOp])` – the reduction operation. Defaults to sum

Return type Callable

Returns the decorated function

`pytorch_lightning.metrics.converters.tensor_metric(group=None, reduce_op=None)`

This decorator shall be used on all function metrics working on tensors. It handles the argument conversion and DDP reduction for metrics working on tensors. All inputs and outputs of the decorated function will be converted to tensors. In DDP Training all output tensors will be reduced according to the given rules.
Parameters

- **group** (Optional[Any]) – the process group to gather results from. Defaults to all processes (world)
- **reduce_op** (Optional[ReduceOp]) – the reduction operation. Defaults to sum

Return type Callable

Returns the decorated function

pytorch_lightning.metrics.metric module

```python
class pytorch_lightning.metrics.metric.Metric(name)

Abstract base class for metric implementation.
Should be used to implement metrics that 1. Return multiple Outputs 2. Handle their own DDP sync

Parameters name (str) – the metric’s name

abstract forward(*args, **kwargs)
    Implements the actual metric computation.

Return type Tensor

Returns metric value

/device = None
/dtype = None
```

```python
class pytorch_lightning.metrics.metric.NumpyMetric(name, reduce_group=None, reduce_op=None)
    Bases: pytorch_lightning.metrics.metric.Metric

Base class for metric implementation operating on numpy arrays. All inputs will be casted to numpy if necessary and all outputs will be casted to tensors if necessary. Already handles DDP sync and input/output conversions.

Parameters

- name (str) – the metric’s name
- reduce_group (Optional[Any]) – the process group for DDP reduces (only needed for DDP training). Defaults to all processes (world)
- reduce_op (Optional[Any]) – the operation to perform during reduction within DDP (only needed for DDP training). Defaults to sum.

__call__(*args, **kwargs)
    Call self as a function.

Return type Tensor

/device = None
/dtype = None
```

```python
class pytorch_lightning.metrics.metric.TensorCollectionMetric(name, reduce_group=None, reduce_op=None)
    Bases: pytorch_lightning.metrics.metric.Metric
```

Returns the decorated function
Base class for metric implementation operating directly on tensors. All inputs will be casted to tensors if necessary. Outputs won’t be casted. Already handles DDP sync and input conversions.

This class differs from `TensorMetric`, as it assumes all outputs to be collections of tensors and does not explicitly convert them. This is necessary, since some collections (like for ROC, Precision-Recall Curve etc.) cannot be converted to tensors at the highest level. All numpy arrays and numbers occurring in these outputs will still be converted.

Use this class as a baseclass, whenever you want to ensure inputs are tensors and outputs cannot be converted to tensors automatically.

Parameters

- `name` (*str*) – the metric’s name
- `reduce_group` (*Optional[Any]*) – the process group for DDP reduces (only needed for DDP training). Defaults to all processes (world)
- `reduce_op` (*Optional[Any]*) – the operation to perform during reduction within DDP (only needed for DDP training). Defaults to sum.

__call__ (*args, **kwargs*)

Call self as a function.

Return type `Tensor`

_.device = None

_dtype = None

```python
class pytorch_lightning.metrics.metric.TensorMetric(name, reduce_group=None, reduce_op=None)
```
class pytorch_lightning.metrics.regression.MSE(reduction='elementwise_mean')
Bases: pytorch_lightning.metrics.metric.Metric

Computes the mean squared loss.

Parameters reduction (str) – a method for reducing mse over labels (default: takes the mean)
Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements

Example

```python
>>> pred = torch.tensor([0., 1, 2, 3])
>>> target = torch.tensor([0., 1, 2, 2])
>>> metric = MSE()
>>> metric(pred, target)
tensor(0.2500)
```

forward (pred, target)
Actual metric computation

Parameters
• pred (Tensor) – predicted labels
• target (Tensor) – ground truth labels

Return type Tensor

Returns A Tensor with the mse loss.

_device = None
_dtype = None

class pytorch_lightning.metrics.regression.RMSE(reduction='elementwise_mean')
Bases: pytorch_lightning.metrics.metric.Metric

Computes the root mean squared loss.

Parameters reduction (str) – a method for reducing mse over labels (default: takes the mean)
Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements

Example

```python
>>> pred = torch.tensor([0., 1, 2, 3])
>>> target = torch.tensor([0., 1, 2, 2])
>>> metric = RMSE()
>>> metric(pred, target)
tensor(0.5000)
```

forward (pred, target)
Actual metric computation

Parameters
• pred (Tensor) – predicted labels
• **target** (Tensor) – ground truth labels

 Return type Tensor

 Returns A Tensor with the rmse loss.

```python
_device = None
 Dtype = None
```

```python
class pytorch_lightning.metrics.regression.MAE(reduction='elementwise_mean')
Bases: pytorch_lightning.metrics.metric.Metric
```

Computes the root mean absolute loss or L1-loss.

 Parameters **reduction** (str) – a method for reducing mse over labels (default: takes the mean)

 Available reduction methods:
 - elementwise_mean: takes the mean
 - none: pass array
 - sum: add elements

Example

```python
>>> pred = torch.tensor([0., 1, 2, 3])
>>> target = torch.tensor([0., 1, 2, 2])
>>> metric = MAE()
>>> metric(pred, target)
tensor(0.2500)
```

```python
def forward(pred, target)
  Actual metric computation

  **Parameters**

  • **pred** (Tensor) – predicted labels

  • **target** (Tensor) – ground truth labels

  **Return type** Tensor

  **Returns** A Tensor with the mae loss.

```python
_device = None
 Dtype = None
```

```python
class pytorch_lightning.metrics.regression.RMSLE(reduction='elementwise_mean')
Bases: pytorch_lightning.metrics.metric.Metric
```

Computes the root mean squared log loss.

  **Parameters** **reduction** (str) – a method for reducing mse over labels (default: takes the mean)

  Available reduction methods:
  - elementwise_mean: takes the mean
  - none: pass array
  - sum: add elements
Example

```python
>>> pred = torch.tensor([0., 1, 2, 3])
>>> target = torch.tensor([0., 1, 2, 2])
>>> metric = RMSLE()
>>> metric(pred, target)
tensor(0.0207)
```

```python
forward(pred, target)
```
Actual metric computation

Parameters

- `pred` (Tensor) – predicted labels
- `target` (Tensor) – ground truth labels

Returns

A Tensor with the rmsle loss.

```python
_device = None
_ddtype = None
```

**pytorch_lightning.metrics.sklearns module**

```python
class pytorch_lightning.metrics.sklearns.AUC(reduce_group=torch.distributed.group.WORLD,
reduce_op=torch.distributed.ReduceOp.SUM)
```

Bases: `pytorch_lightning.metrics.sklearns.SklearnMetric`

Calculates the Area Under the Curve using the trapoezoidal rule

**Warning:** Every metric call will cause a GPU synchronization, which may slow down your code

**Example**

```python
>>> y_pred = torch.tensor([0, 1, 2, 3])
>>> y_true = torch.tensor([0, 1, 2, 2])
>>> metric = AUC()
>>> metric(y_pred, y_true)
tensor([4.])
```

Parameters

- `reduce_group` (Any) – the process group for DDP reduces (only needed for DDP training). Defaults to all processes (world)
- `reduce_op` (Any) – the operation to perform during reduction within DDP (only needed for DDP training). Defaults to sum.

```python
forward(x, y)
```
Computes the AUC

Parameters

- `x` (ndarray) – x coordinates.
• `y (ndarray)` – y coordinates.

**Return type** `float`

**Returns** AUC calculated with trapezoidal rule

```python
_class = None
_dtype = None

class pytorch_lightning.metrics.sklearns.AUROC(
 average='macro',
 reduce_group=torch.distributed.group.WORLD,
 reduce_op=torch.distributed.ReduceOp.SUM
)

Bases: pytorch_lightning.metrics.sklearns.SklearnMetric

Compute Area Under the Curve (AUC) from prediction scores

Note: this implementation is restricted to the binary classification task or multilabel classification task in label indicator format.

Parameters

• `average (Optional[str])` – If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data:
 – If ‘micro’: Calculate metrics globally by considering each element of the label indicator matrix as a label.
 – If ‘macro’: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
 – If ‘weighted’: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label).
 – If ‘samples’: Calculate metrics for each instance, and find their average.

• `reduce_group (Any)` – the process group for DDP reduces (only needed for DDP training). Defaults to all processes (world)

• `reduce_op (Any)` – the operation to perform during reduction within DDP (only needed for DDP training). Defaults to sum.

forward *(y_score, y_true, sample_weight=None)*

Parameters

• `y_score (ndarray)` – Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions.

• `y_true (ndarray)` – True binary labels in binary label indicators.

• `sample_weight (Optional[ndarray])` – Sample weights.

Return type `float`

Returns Area Under Receiver Operating Characteristic Curve

```python
_class = None
_dtype = None
```
class pytorch_lightning.metrics.sklearns.Accuracy(normalize=True, reduce_group=torch.distributed.group.WORLD, reduce_op=torch.distributed.ReduceOp.SUM)

Bases: pytorch_lightning.metrics.sklearns.SklearnMetric

Calculates the Accuracy Score

Warning: Every metric call will cause a GPU synchronization, which may slow down your code

Example

```python
>>> y_pred = torch.tensor([0, 1, 2, 3])
>>> y_true = torch.tensor([0, 1, 2, 2])
>>> metric = Accuracy()
>>> metric(y_pred, y_true)
tensor([0.7500])
```

Parameters

- `normalize` (bool) – If False, return the number of correctly classified samples. Otherwise, return the fraction of correctly classified samples.
- `reduce_group` (Any) – the process group for DDP reduces (only needed for DDP training). Defaults to all processes (world)
- `reduce_op` (Any) – the operation to perform during reduction within DDP (only needed for DDP training). Defaults to sum.

forward

```python
def forward(y_pred, y_true, sample_weight=None):
    Computes the accuracy
```

Parameters

- `y_pred` (ndarray) – the array containing the predictions (already in categorical form)
- `y_true` (ndarray) – the array containing the targets (in categorical form)
- `sample_weight` (Optional[ndarray]) – Sample weights.

Return type float

Returns Accuracy Score

_device = None

_dtype = None

class pytorch_lightning.metrics.sklearns.AveragePrecision(average='macro', reduce_group=torch.distributed.group.WORLD, reduce_op=torch.distributed.ReduceOp.SUM)

Bases: pytorch_lightning.metrics.sklearns.SklearnMetric

Calculates the average precision (AP) score.

Parameters

- `average` (Optional[str]) – If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data:
- If ‘micro’: Calculate metrics globally by considering each element of the label indicator matrix as a label.
- If ‘macro’: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
- If ‘weighted’: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label).
- If ‘samples’: Calculate metrics for each instance, and find their average.

- **reduce_group (Any)** – the process group for DDP reduces (only needed for DDP training). Defaults to all processes (world)
- **reduce_op (Any)** – the operation to perform during reduction within DDP (only needed for DDP training). Defaults to sum.

```python
forward(y_score, y_true, sample_weight=None)
```

Parameters

- **y_score (ndarray)** – Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions.
- **y_true (ndarray)** – True binary labels in binary label indicators.
- **sample_weight (Optional[ndarray])** – Sample weights.

Return type float

Returns average precision score

```python
_device = None
_dtype = None
```

```python
class pytorch_lightning.metrics.sklearns.ConfusionMatrix(labels=None, reduce_group=torch.distributed.group.WORLD, reduce_op=torch.distributed.ReduceOp.SUM)
```

Bases: pytorch_lightning.metrics.sklearns.SklearnMetric

Compute confusion matrix to evaluate the accuracy of a classification By definition a confusion matrix C is such that $C_{i,j}$ is equal to the number of observations known to be in group i but predicted to be in group j.

Example

```python
>>> y_pred = torch.tensor([0, 1, 2, 1])
>>> y_true = torch.tensor([0, 1, 2, 2])
>>> metric = ConfusionMatrix()
>>> metric(y_pred, y_true)
tensor([[1., 0., 0.],
        [0., 1., 0.],
        [0., 1., 1.]])
```

Parameters

- **labels (Optional[Sequence])** – List of labels to index the matrix. This may be used to reorder or select a subset of labels. If none is given, those that appear at least once in y_true or y_pred are used in sorted order.
• **reduce_group** *(Any)* – the process group for DDP reduces (only needed for DDP training). Defaults to all processes (world).

• **reduce_op** *(Any)* – the operation to perform during reduction within DDP (only needed for DDP training). Defaults to sum.

```python
forward(y_pred, y_true)
```

Parameters

- **y_pred** *(ndarray)* – Estimated targets as returned by a classifier.
- **y_true** *(ndarray)* – Ground truth (correct) target values.

Return type *ndarray*

Returns Confusion matrix (array of shape \([n_{classes}, n_{classes}]\))

```
_device = None
_dtype = None
```

```python
class pytorch_lightning.metrics.sklearns.F1(labels=None, pos_label=1, average='macro', reduce_group=torch.distributed.group.WORLD, reduce_op=torch.distributed.ReduceOp.SUM):
Bases: pytorch_lightning.metrics.sklearns.SklearnMetric
```

Compute the F1 score, also known as balanced F-score or F-measure. The F1 score can be interpreted as a weighted average of the precision and recall, where an F1 score reaches its best value at 1 and worst score at 0. The relative contribution of precision and recall to the F1 score are equal. The formula for the F1 score is:

\[
F_1 = \frac{2 \cdot \text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}
\]

In the multi-class and multi-label case, this is the weighted average of the F1 score of each class.

Example

```python
>>> y_pred = torch.tensor([0, 1, 2, 3])
>>> y_true = torch.tensor([0, 1, 2, 2])
>>> metric = F1()
>>> metric(y_pred, y_true)
tensor([0.6667])
```

References

- [1] Wikipedia entry for the F1-score

Parameters

- **labels** *(Optional[Sequence])* – Integer array of labels.
- **pos_label** *(Union[str, int])* – The class to report if **average**='binary'.
- **average** *(Optional[str])* – This parameter is required for multiclass/multilabel targets. If **None**, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data:
 - 'binary': Only report results for the class specified by **pos_label**. This is applicable only if targets (y_{true,pred}) are binary.
- 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.
- 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
- 'weighted': Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters ‘macro’ to account for label imbalance; it can result in an F-score that is not between precision and recall.
- 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from accuracy_score()).

Note that if pos_label is given in binary classification with average != 'binary', only that positive class is reported. This behavior is deprecated and will change in version 0.18.

- **reduce_group** (Any) – the process group for DDP reduces (only needed for DDP training). Defaults to all processes (world)
- **reduce_op** (Any) – the operation to perform during reduction within DDP (only needed for DDP training). Defaults to sum.

```python
forward(y_pred, y_true, sample_weight=None)
```

Parameters

- **y_pred** (ndarray) – Estimated targets as returned by a classifier.
- **y_true** (ndarray) – Ground truth (correct) target values.
- **sample_weight** (Optional[ndarray]) – Sample weights.

Return type Union[ndarray, float]

Returns F1 score of the positive class in binary classification or weighted average of the F1 scores of each class for the multiclass task.

```python
__device = None
__dtype = None
```

```python
class pytorch_lightning.metrics.sklearns.FBeta(beta, labels=None, pos_label=1, average='macro', reduce_group=torch.distributed.group.WORLD, reduce_op=torch.distributed.ReduceOp.SUM)
```

Bases: pytorch_lightning.metrics.sklearns.SklearnMetric

Compute the F-beta score. The beta parameter determines the weight of precision in the combined score. beta < 1 lends more weight to precision, while beta > 1 favors recall (beta -> 0 considers only precision, beta -> inf only recall).

Example

```python
>>> y_pred = torch.tensor([0, 1, 2, 3])
>>> y_true = torch.tensor([0, 1, 2, 2])
>>> metric = FBeta(beta=0.25)
>>> metric(y_pred, y_true)
tensor([0.7361])
```
References

Parameters

• **beta** *(float)* – Weight of precision in harmonic mean.

• **labels** *(Optional[Sequence])* – Integer array of labels.

• **pos_label** *(Union[str, int])* – The class to report if `average='binary'`.

• **average** *(Optional[str])* – This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data:

 - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if targets \(y_{true,\text{pred}}\) are binary.

 - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.

 - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.

 - 'weighted': Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters ‘macro’ to account for label imbalance; it can result in an F-score that is not between precision and recall.

 - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from `accuracy_score()`).

Note that if `pos_label` is given in binary classification with `average != 'binary'`, only that positive class is reported. This behavior is deprecated and will change in version 0.18.

• **reduce_group** *(Any)* – the process group for DDP reduces (only needed for DDP training). Defaults to all processes (world)

• **reduce_op** *(Any)* – the operation to perform during reduction within DDP (only needed for DDP training). Defaults to sum.

```
forward(y_pred, y_true, sample_weight=None)
```

Parameters

• **y_pred** *(ndarray)* – Estimated targets as returned by a classifier.

• **y_true** *(ndarray)* – Ground truth (correct) target values.

• **sample_weight** *(Optional[ndarray])* – Sample weights.

Return type *Union[ndarray, float]*

Returns *FBeta score of the positive class in binary classification or weighted average of the FBeta scores of each class for the multiclass task.*

```python
_device = None
_dtype = None
```
class pytorch_lightning.metrics.sklearns.Precision(labels=None, pos_label=1, average='macro', reduce_group=torch.distributed.group.WORLD, reduce_op=torch.distributed.ReduceOp.SUM)

Bases: pytorch_lightning.metrics.sklearns.SklearnMetric

Compute the precision The precision is the ratio $\frac{tp}{tp + fp}$ where tp is the number of true positives and fp the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The best value is 1 and the worst value is 0.

Example

```python
>>> y_pred = torch.tensor([0, 1, 2, 3])
>>> y_true = torch.tensor([0, 1, 2, 2])
>>> metric = Precision()
>>> metric(y_pred, y_true)
tensor([0.7500])
```

Parameters

- **labels (Optional[Sequence])** – Integer array of labels.
- **pos_label (Union[str, int])** – The class to report if average='binary'.
- **average (Optional[str])** – This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data:
 - 'binary': Only report results for the class specified by pos_label. This is applicable only if targets ($y_{true,pred}$) are binary.
 - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.
 - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
 - 'weighted': Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters ‘macro’ to account for label imbalance; it can result in an F-score that is not between precision and recall.
 - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from accuracy_score()).

Note that if pos_label is given in binary classification with average != 'binary', only that positive class is reported. This behavior is deprecated and will change in version 0.18.

- **reduce_group (Any)** – the process group for DDP reduces (only needed for DDP training). Defaults to all processes (world)
- **reduce_op (Any)** – the operation to perform during reduction within DDP (only needed for DDP training). Defaults to sum.

forward(y_pred, y_true, sample_weight=None)

Parameters

- **y_pred (ndarray)** – Estimated targets as returned by a classifier.
- **y_true (ndarray)** – Ground truth (correct) target values.
• `sample_weight` (Optional`[ndarray]`) – Sample weights.

Return type `Union[ndarray, float]`

Returns Precision of the positive class in binary classification or weighted average of the precision of each class for the multiclass task.

```python
class pytorch_lightning.metrics.sklearns.PrecisionRecallCurve(pos_label=1, reduce_group=torch.distributed.group.WORLD, reduce_op=torch.distributed.ReduceOp.SUM)

Bases: `pytorch_lightning.metrics.sklearns.SklearnMetric`

Compute precision-recall pairs for different probability thresholds

**Note:** This implementation is restricted to the binary classification task.

The precision is the ratio \( \frac{tp}{tp + fp} \) where \( tp \) is the number of true positives and \( fp \) the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The recall is the ratio \( \frac{tp}{tp + fn} \) where \( tp \) is the number of true positives and \( fn \) the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The last precision and recall values are 1. and 0. respectively and do not have a corresponding threshold. This ensures that the graph starts on the x axis.

**Parameters**

• `pos_label` (Union`[str, int]`) – The class to report if `average='binary'`.

• `reduce_group` (Any) – the process group for DDP reduces (only needed for DDP training). Defaults to all processes (world)

• `reduce_op` (Any) – the operation to perform during reduction within DDP (only needed for DDP training). Defaults to sum.

**forward** (probas_pred, y_true, sample_weight=None)

**Parameters**

• `probas_pred` (ndarray) – Estimated probabilities or decision function.

• `y_true` (ndarray) – Ground truth (correct) target values.

• `sample_weight` (Optional`[ndarray]`) – Sample weights.

**Returns**

**Precision values such that element i is the precision of** predictions with score >= thresholds[-i] and the last element is 1.

**recall**: Decreasing recall values such that element i is the recall of predictions with score >= thresholds[-i] and the last element is 0.

**thresholds**: Increasing thresholds on the decision function used to compute precision and recall.

**Return type** precision

```python
class _device = None
_class_dtype = None
```
class pytorch_lightning.metrics.sklearns.ROC (pos_label=1, reduce_group=torch.distributed.group.WORLD, reduce_op=torch.distributed.ReduceOp.SUM)

Bases: pytorch_lightning.metrics.sklearns.SklearnMetric

Compute Receiver operating characteristic (ROC)

Note: this implementation is restricted to the binary classification task.

Example

```python
>>> y_pred = torch.tensor([0, 1, 2, 3])
>>> y_true = torch.tensor([0, 1, 2, 2])
>>> metric = ROC()
>>> fps, tps = metric(y_pred, y_true)
>>> fps
 tensor([0.0000, 0.3333, 0.6667, 0.6667, 1.0000])
>>> tps
 tensor([0., 0., 0., 1., 1.])
```

References

• [1] Wikipedia entry for the Receiver operating characteristic

Parameters

• `pos_labels` – The class to report if average='binary'.

• `reduce_group` (Any) – the process group for DDP reduces (only needed for DDP training). Defaults to all processes (world)

• `reduce_op` (Any) – the operation to perform during reduction within DDP (only needed for DDP training). Defaults to sum.

forward (y_score, y_true, sample_weight=None)

Parameters

• `y_score` (ndarray) – Target scores, can either be probability estimates of the positive class or confidence values.

• `y_true` (ndarray) – Ground truth (correct) target values.

• `sample_weight` (Optional[ndarray]) – Sample weights.

Returns

**Increasing false positive rates such that element i is the false** positive rate of predictions with score >= thresholds[i].

**tpr**: Increasing true positive rates such that element i is the true positive rate of predictions with score >= thresholds[i].

**thresholds**: Decreasing thresholds on the decision function used to compute fpr and tpr. `thresholds[0]` represents no instances being predicted and is arbitrarily set to `max(y_score) + 1`.

Return type fpr
class pytorch_lightning.metrics.sklearns.Recall

Bases: pytorch_lightning.metrics.sklearns.SklearnMetric

Compute the recall The recall is the ratio \( \frac{tp}{tp + fn} \) where \( tp \) is the number of true positives and \( fn \) the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The best value is 1 and the worst value is 0.

Example

```python
>>> y_pred = torch.tensor([0, 1, 2, 3])
>>> y_true = torch.tensor([0, 1, 2, 2])
>>> metric = Recall()
>>> metric(y_pred, y_true)
tensor([0.6250])
```

Parameters

- **labels** (*Optional[Sequence]*) – Integer array of labels.
- **pos_label** (*Union[str, int]*) – The class to report if `average='binary'`. If \( pos_label \) is given in binary classification with \( average \neq 'binary' \), only that positive class is reported. This behavior is deprecated and will change in version 0.18.
- **average** (*Optional[str]*) – This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data:
  - 'binary': Only report results for the class specified by \( pos_label \). This is applicable only if targets \( (y_{true}, y_{pred}) \) are binary.
  - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.
  - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
  - 'weighted': Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall.
  - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from `accuracy_score()`).

Note that if \( pos_label \) is given in binary classification with \( average \neq 'binary' \), only that positive class is reported. This behavior is deprecated and will change in version 0.18.
- **reduce_group** (*Any*) – the process group for DDP reduces (only needed for DDP training). Defaults to all processes (world)
- **reduce_op** (*Any*) – the operation to perform during reduction within DDP (only needed for DDP training). Defaults to sum.

forward (*y_pred, y_true, sample_weight=None*)

Parameters
- **$y_{\text{pred}}$** (ndarray) – Estimated targets as returned by a classifier.
- **$y_{\text{true}}$** (ndarray) – Ground truth (correct) target values.
- **sample_weight** (Optional[ndarray]) – Sample weights.

**Return type** Union[ndarray, float]

**Returns** Recall of the positive class in binary classification or weighted average of the recall of each class for the multiclass task.

```python
_device = None
_dtype = None
class pytorch_lightning.metrics.sklearns.SklearnMetric(
 metric_name,
 reduce_group=torch.distributed.group.WORLD,
 reduce_op=torch.distributed.ReduceOp.SUM,
 **kwargs)
```

**Bases:** pytorch_lightning.metrics.metric.NumpyMetric

Bridge between PyTorch Lightning and scikit-learn metrics

**Warning:** Every metric call will cause a GPU synchronization, which may slow down your code

**Note:** The order of targets and predictions may be different from the order typically used in PyTorch

**Parameters**

- **metric_name** (str) – the metric name to import and compute from scikit-learn.metrics

- **reduce_group** (Any) – the process group for DDP reduces (only needed for DDP training). Defaults to all processes (world)

- **reduce_op** (Any) – the operation to perform during reduction within DDP (only needed for DDP training). Defaults to sum.

- ****kwargs** – additonal keyword arguments (will be forwarded to metric call)

```python
forward(*args, **kwargs)
```

Carries the actual metric computation

**Parameters**

- ***args** – Positional arguments forwarded to metric call (should be already converted to numpy)

- ****kwargs** – keyword arguments forwarded to metric call (should be already converted to numpy)

**Return type** Union[ndarray, int, float]

**Returns** the metric value (will be converted to tensor by baseclass)

```python
_device = None
_dtype = None
property metric_fn
```
### 37.5 pytorch_lightning.overrides package

#### 37.5.1 Submodules

**pytorch_lightning.overrides.data_parallel module**

```python
class pytorch_lightning.overrides.data_parallel.LightingDataParallel(*args, **kwargs)
 Bases: torch.nn.DataParallel
 Override the forward call in lightning so it goes to training and validation step respectively
 forward(*inputs, **kwargs)
 parallel_apply(replicas, inputs, kwargs)

class pytorch_lightning.overrides.data_parallel.LightingDistributedDataParallel(*args, **kwargs)
 Bases: torch.nn.parallel.DistributedDataParallel
 Override the forward call in lightning so it goes to training and validation step respectively
 forward(*inputs, **kwargs)
 parallel_apply(replicas, inputs, kwargs)
```

**pytorch_lightning.overrides.data_parallel._find_tensors**

Recursive find all tensors contained in the specified object.

**pytorch_lightning.overrides.data_parallel.auto_squeeze_dim_zeros**

In DP or DDP2 we need to unsqueeze dim 0:

```python
def auto_squeeze_dim_zeros(output):
 return:
```

**pytorch_lightning.overrides.data_parallel.get_a_var**

Recursively find all tensors contained in the specified object.

**pytorch_lightning.overrides.data_parallel.parallel_apply**

Applies each module in modules in parallel on arguments contained in inputs (positional) and
kwarg_tup (keyword) on each of devices.

**Parameters**

- **modules** (Module) – modules to be parallelized
- **inputs** (tensor) – inputs to the modules
- **devices** (list of int or torch.device) – CUDA devices

modules, inputs, kwarg_tup (if given), and devices (if given) should all have same length. Moreover,
each element of inputs can either be a single object as the only argument to a module, or a collection of
positional arguments.
37.6 `pytorch_lightning.profiler` package

Profiling your training run can help you understand if there are any bottlenecks in your code.

37.6.1 Built-in checks

PyTorch Lightning supports profiling standard actions in the training loop out of the box, including:

- `on_epoch_start`
- `on_epoch_end`
- `on_batch_start`
- `tbptt_split_batch`
- `model_forward`
- `model_backward`
- `on_after_backward`
- `optimizer_step`
- `on_batch_end`
- `training_step_end`
- `on_training_end`

37.6.2 Enable simple profiling

If you only wish to profile the standard actions, you can set `profiler=True` when constructing your `Trainer` object.

```python
trainer = Trainer(..., profiler=True)
```

The profiler’s results will be printed at the completion of a training `fit()`.

<table>
<thead>
<tr>
<th>Action</th>
<th>Mean duration (s)</th>
<th>Total time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>on_epoch_start</td>
<td>5.993e-06</td>
<td>5.993e-06</td>
</tr>
<tr>
<td>get_train_batch</td>
<td>0.0087412</td>
<td>16.398</td>
</tr>
<tr>
<td>on_batch_start</td>
<td>5.0865e-06</td>
<td>0.0095372</td>
</tr>
<tr>
<td>model_forward</td>
<td>0.0017818</td>
<td>3.3408</td>
</tr>
<tr>
<td>model_backward</td>
<td>0.0018283</td>
<td>3.4282</td>
</tr>
<tr>
<td>on_after_backward</td>
<td>4.2862e-06</td>
<td>0.0080366</td>
</tr>
<tr>
<td>optimizer_step</td>
<td>0.0011072</td>
<td>2.0759</td>
</tr>
<tr>
<td>on_batch_end</td>
<td>4.5202e-06</td>
<td>0.0084753</td>
</tr>
<tr>
<td>on_epoch_end</td>
<td>3.919e-06</td>
<td>3.919e-06</td>
</tr>
<tr>
<td>on_train_end</td>
<td>5.449e-06</td>
<td>5.449e-06</td>
</tr>
</tbody>
</table>
37.6.3 Advanced Profiling

If you want more information on the functions called during each event, you can use the AdvancedProfiler. This option uses Python’s cProfiler to provide a report of time spent on each function called within your code.

```python
profiler = AdvancedProfiler()
trainer = Trainer(..., profiler=profiler)
```

The profiler’s results will be printed at the completion of a training fit(). This profiler report can be quite long, so you can also specify an output_filename to save the report instead of logging it to the output in your terminal. The output below shows the profiling for the action get_train_batch.

```
Profiler Report
Profile stats for: get_train_batch
 4869394 function calls (4863767 primitive calls) in 18.893 seconds
Ordered by: cumulative time
List reduced from 76 to 10 due to restriction <10>
ncalls tottime percall cumtime percall filename:lineno(function)
3752/1876 0.011 0.000 18.887 0.010 {built-in method builtins.next}
1876 0.008 0.000 18.877 0.010 dataloader.py:344(__next__)
1876 0.074 0.000 18.869 0.010 dataloader.py:383(_next_data)
1875 0.012 0.000 18.721 0.010 fetch.py:42(fetch)
1875 0.084 0.000 18.290 0.010 fetch.py:44(<listcomp>)
60000 1.759 0.000 18.206 0.000 mnist.py:80(__getitem__)
60000 0.267 0.000 13.022 0.000 transforms.py:68(__call__)
60000 0.182 0.000 7.020 0.000 transforms.py:93(__call__)
60000 1.651 0.000 5.734 0.000 functional.py:42(to_tensor)
60000 0.260 0.000 5.734 0.000 transforms.py:167(__call__)
```

You can also reference this profiler in your LightningModule to profile specific actions of interest. If you don’t want to always have the profiler turned on, you can optionally pass a PassThroughProfiler which will allow you to skip profiling without having to make any code changes. Each profiler has a method profile() which returns a context handler. Simply pass in the name of your action that you want to track and the profiler will record performance for code executed within this context.

```python
from pytorch_lightning.profiler import Profiler, PassThroughProfiler

class MyModel(LightningModule):
 def __init__(self, profiler=None):
 self.profiler = profiler or PassThroughProfiler()

 def custom_processing_step(self, data):
 with self.profiler.profile('my_custom_action'):
 # custom processing step
 return data

profiler = Profiler()
model = MyModel(profiler)
trainer = Trainer(profiler=profiler, max_epochs=1)
```

You can also reference this profiler in your LightningModule to profile specific actions of interest. If you don’t want to always have the profiler turned on, you can optionally pass a PassThroughProfiler which will allow you to skip profiling without having to make any code changes. Each profiler has a method profile() which returns a context handler. Simply pass in the name of your action that you want to track and the profiler will record performance for code executed within this context.

```python
class pytorch_lightning.profiler.BaseProfiler(output_streams=None)
 Bases: abc.ABC

 If you wish to write a custom profiler, you should inhereit from this class.

 Params: stream_out: callable
```
describe()
Logs a profile report after the conclusion of the training run.

    Return type  None
profile(action_name)
Yields a context manager to encapsulate the scope of a profiled action.

Example:

    with self.profile('load training data'):
        # load training data code

The profiler will start once you’ve entered the context and will automatically stop once you exit the code
block.

    Return type  None
profile_iterable(iterable, action_name)

    Return type  None
abstract start(action_name)
Defines how to start recording an action.

    Return type  None
abstract stop(action_name)
Defines how to record the duration once an action is complete.

    Return type  None
abstract summary()
Create profiler summary in text format.

    Return type  str
class pytorch_lightning.profiler.SimpleProfiler(output_filename=None)
    Bases: pytorch_lightning.profiler.profilers.BaseProfiler

This profiler simply records the duration of actions (in seconds) and reports the mean duration of each action
and the total time spent over the entire training run.

    Params:
        output_filename (str): optionally save profile results to file instead of printing to std out when training
        is finished.

describe()
Logs a profile report after the conclusion of the training run.

start(action_name)
Defines how to start recording an action.

    Return type  None
stop(action_name)
Defines how to record the duration once an action is complete.

    Return type  None
summary()
Create profiler summary in text format.

    Return type  str
class pytorch_lightning.profiler.AdvancedProfiler(output_filename=None, line_count_restriction=1.0)

Bases: pytorch_lightning.profiler.profilers.BaseProfiler

This profiler uses Python’s cProfile to record more detailed information about time spent in each function call recorded during a given action. The output is quite verbose and you should only use this if you want very detailed reports.

Parameters

- **output_filename** (Optional[str]) – optionally save profile results to file instead of printing to std out when training is finished.

- **line_count_restriction** (float) – this can be used to limit the number of functions reported for each action. either an integer (to select a count of lines), or a decimal fraction between 0.0 and 1.0 inclusive (to select a percentage of lines)

describe()

Logs a profile report after the conclusion of the training run.

start(action_name)

Defines how to start recording an action.

Return type None

stop(action_name)

Defines how to record the duration once an action is complete.

Return type None

summary()

Create profiler summary in text format.

Return type str

class pytorch_lightning.profiler.PassThroughProfiler

Bases: pytorch_lightning.profiler.profilers.BaseProfiler

This class should be used when you don’t want the (small) overhead of profiling. The Trainer uses this class by default.

Params: stream_out: callable

start(action_name)

Defines how to start recording an action.

Return type None

stop(action_name)

Defines how to record the duration once an action is complete.

Return type None

summary()

Create profiler summary in text format.

Return type str
37.6.4 Submodules

**pytorch_lightning.profiler.profilers module**

class pytorch_lightning.profiler.profilers.AdvancedProfiler (output_filename=None, line_count_restriction=1.0)

Bases: pytorch_lightning.profiler.profilers.BaseProfiler

This profiler uses Python’s cProfiler to record more detailed information about time spent in each function call recorded during a given action. The output is quite verbose and you should only use this if you want very detailed reports.

Parameters

- **output_filename** (Optional[str]) – optionally save profile results to file instead of printing to std out when training is finished.
- **line_count_restriction** (float) – this can be used to limit the number of functions reported for each action. either an integer (to select a count of lines), or a decimal fraction between 0.0 and 1.0 inclusive (to select a percentage of lines)

**describe()**

Logs a profile report after the conclusion of the training run.

**start**(action_name)

Defines how to start recording an action.

**Return type** None

**stop**(action_name)

Defines how to record the duration once an action is complete.

**Return type** None

**summary()**

Create profiler summary in text format.

**Return type** str

class pytorch_lightning.profiler.profilers.BaseProfiler (output_streams=None)

Bases: abc.ABC

If you wish to write a custom profiler, you should inhereit from this class.

**Params:** stream_out: callable

**describe()**

Logs a profile report after the conclusion of the training run.

**Return type** None

**profile**(action_name)

Yields a context manager to encapsulate the scope of a profiled action.

Example:

```python
with self.profile('load training data'):
 # load training data code
```

The profiler will start once you’ve entered the context and will automatically stop once you exit the code block.

**Return type** None

37.6. pytorch_lightning.profiler package 459
profile_iterable(iterable, action_name)
    Return type  None

abstract start(action_name)
    Defines how to start recording an action.
    Return type  None

abstract stop(action_name)
    Defines how to record the duration once an action is complete.
    Return type  None

abstract summary()
    Create profiler summary in text format.
    Return type  str

class pytorch_lightning.profilerprofilers.PassThroughProfiler
    Bases: pytorch_lightning.profiler.profilers.BaseProfiler

This class should be used when you don’t want the (small) overhead of profiling. The Trainer uses this class by default.

Params: stream_out: callable

start(action_name)
    Defines how to start recording an action.
    Return type  None

stop(action_name)
    Defines how to record the duration once an action is complete.
    Return type  None

summary()
    Create profiler summary in text format.
    Return type  str

class pytorch_lightning.profilerprofilers.SimpleProfiler(output_filename=None)
    Bases: pytorch_lightning.profiler.profilers.BaseProfiler

This profiler simply records the duration of actions (in seconds) and reports the mean duration of each action and the total time spent over the entire training run.

Params:

output_filename (str): optionally save profile results to file instead of printing to std out when training is finished.

describe()
    Logs a profile report after the conclusion of the training run.

start(action_name)
    Defines how to start recording an action.
    Return type  None

stop(action_name)
    Defines how to record the duration once an action is complete.
    Return type  None
summary()  
Create profiler summary in text format.

Return type `str`

### 37.7 pytorch_lightning.trainer package

Once you’ve organized your PyTorch code into a LightningModule, the Trainer automates everything else.

This abstraction achieves the following:

1. You maintain control over all aspects via PyTorch code without an added abstraction.
2. The trainer uses best practices embedded by contributors and users from top AI labs such as Facebook AI Research, NYU, MIT, Stanford, etc…
3. The trainer allows overriding any key part that you don’t want automated.
### 37.7.1 Basic use

This is the basic use of the trainer:

```python
model = MyLightningModule()
trainer = Trainer()
trainer.fit(model)
```

### 37.7.2 Best Practices

For cluster computing, it’s recommended you structure your main.py file this way

```python
from argparse import ArgumentParser
def main(hparams):
 model = LightningModule()
 trainer = Trainer(gpus=hparams.gpus)
 trainer.fit(model)

if __name__ == '__main__':
 parser = ArgumentParser()
 parser.add_argument('--gpus', default=None)
 args = parser.parse_args()
 main(args)
```

So you can run it like so:

```
python main.py --gpus 2
```

**Note:** If you want to stop a training run early, you can press “Ctrl + C” on your keyboard. The trainer will catch the `KeyboardInterrupt` and attempt a graceful shutdown, including running callbacks such as `on_train_end`. The trainer object will also set an attribute `interrupted` to `True` in such cases. If you have a callback which shuts down compute resources, for example, you can conditionally run the shutdown logic for only uninterrupted runs.

### 37.7.3 Testing

Once you’re done training, feel free to run the test set! (Only right before publishing your paper or pushing to production)

```python
trainer.test()
```
37.7.4 Deployment / prediction

You just trained a LightningModule which is also just a torch.nn.Module. Use it to do whatever!

```python
load model
pretrained_model = LightningModule.load_from_checkpoint(PATH)
pretrained_model.freeze()

use it for finetuning
def forward(self, x):
 features = pretrained_model(x)
 classes = classifier(features)

or for prediction
out = pretrained_model(x)
api_write({'response': out})
```

You may wish to run the model on a variety of devices. Instead of moving the data manually to the correct device, decorate the forward method (or any other method you use for inference) with `auto_move_data()` and Lightning will take care of the rest.

37.7.5 Reproducibility

To ensure full reproducibility from run to run you need to set seeds for pseudo-random generators, and set `deterministic` flag in Trainer.

Example:

```python
from pytorch_lightning import Trainer, seed_everything

seed_everything(42) # sets seeds for numpy, torch, python.random and PYTHONHASHSEED.
model = Model()
trainer = Trainer(deterministic=True)
```

37.7.6 Trainer flags

`accumulate_grad_batches`

Accumulates grads every k batches or as set up in the dict.

```python
default used by the Trainer (no accumulation)
trainer = Trainer(accumulate_grad_batches=1)
```

Example:

```python
accumulate every 4 batches (effective batch size is batch*4)
trainer = Trainer(accumulate_grad_batches=4)
```

```python
no accumulation for epochs 1-4. accumulate 3 for epochs 5-10. accumulate 20 after that
trainer = Trainer(accumulate_grad_batches=(5: 3, 10: 20))
```
The optimization level to use (O1, O2, etc...) for 16-bit GPU precision (using NVIDIA apex under the hood). Check NVIDIA apex docs for level

Example:

```python
default used by the Trainer
trainer = Trainer(amp_level='O1')
```

Automatically tries to find the largest batch size that fits into memory, before any training.

Example:

```python
default used by the Trainer (no scaling of batch size)
trainer = Trainer(auto_scale_batch_size=None)

run batch size scaling, result overrides hparams.batch_size
trainer = Trainer(auto_scale_batch_size='binsearch')
```

Runs a learning rate finder algorithm (see this paper) before any training, to find optimal initial learning rate.

Example:

```python
default used by the Trainer (no learning rate finder)
trainer = Trainer(auto_lr_find=False)

run learning rate finder, results override hparams.learning_rate
trainer = Trainer(auto_lr_find=True)

run learning rate finder, results override hparams.my_lr_arg
trainer = Trainer(auto_lr_find='my_lr_arg')
```

Note: See the learning rate finder guide

If true enables cudnn.benchmark. This flag is likely to increase the speed of your system if your input sizes don’t change. However, if it does, then it will likely make your system slower.

The speedup comes from allowing the cudnn auto-tuner to find the best algorithm for the hardware [see discussion here].

Example:

```python
default used by the Trainer
trainer = Trainer(benchmark=False)
```
deterministic

If true enables cudnn.deterministic. Might make your system slower, but ensures reproducibility. Also sets $\text{HOROVOD\_FUSION\_THRESHOLD}=0$.

For more info check [pytorch docs](https://pytorch.org/docs/).

Example:

```python
default used by the Trainer
trainer = Trainer(deterministic=False)
```

callbacks

Add a list of user defined callbacks. These callbacks DO NOT replace the explicit callbacks (loggers, EarlyStopping or ModelCheckpoint).

**Note:** Only user defined callbacks (ie: Not EarlyStopping or ModelCheckpoint)

```python
a list of callbacks
callbacks = [PrintCallback()]
trainer = Trainer(callbacks=callbacks)
```

Example:

```python
from pytorch_lightning.callbacks import Callback
class PrintCallback(Callback):
 def on_train_start(self, trainer, pl_module):
 print("Training is started!")
 def on_train_end(self, trainer, pl_module):
 print("Training is done.")
```

check_val_every_n_epoch

Check val every n train epochs.

Example:

```python
default used by the Trainer
trainer = Trainer(check_val_every_n_epoch=1)

run val loop every 10 training epochs
trainer = Trainer(check_val_every_n_epoch=10)
```
checkpoint_callback

Callback for checkpointing.

```python
from pytorch_lightning.callbacks import ModelCheckpoint
trainer = Trainer(checkpoint_callback=ModelCheckpoint())
```

Example:

```python
from pytorch_lightning.callbacks import ModelCheckpoint

default used by the Trainer
checkpoint_callback = ModelCheckpoint(
 filepath=os.getcwd(),
 save_top_k=True,
 verbose=True,
 monitor='val_loss',
 mode='min',
 prefix='',
)
```

default_root_dir

Default path for logs and weights when no logger or `pytorch_lightning.callbacks.ModelCheckpoint` callback passed. On certain clusters you might want to separate where logs and checkpoints are stored. If you don’t then use this method for convenience.

Example:

```python
default used by the Trainer
trainer = Trainer(default_root_path=os.getcwd())
```

distributed_backend

The distributed backend to use.

- (`dp`) is DataParallel (split batch among GPUs of same machine)
- (`ddp`) is DistributedDataParallel (each gpu on each node trains, and syncs grads)
- (`ddp_cpu`) is DistributedDataParallel on CPU (same as `ddp`, but does not use GPUs. Useful for multi-node CPU training or single-node debugging. Note that this will not give a speedup on a single node, since Torch already makes efficient use of multiple CPUs on a single machine.)
- (`ddp2`) **dp on node, ddp across nodes. Useful for things like increasing** the number of negative samples

```python
default used by the Trainer
trainer = Trainer(distributed_backend='None')
```

Example:

```python
dp = DataParallel
trainer = Trainer(gpus=2, distributed_backend='dp')

ddp = DistributedDataParallel
trainer = Trainer(gpus=2, num_nodes=2, distributed_backend='ddp')
```
# ddp2 = DistributedDataParallel + dp
trainer = Trainer(gpus=2, num_nodes=2, distributed_backend='ddp2')

**Note:** this option does not apply to TPU. TPUs use `dp` by default (over each core)

**See also:**
- Multi-GPU training guide
- Multi-node (SLURM) guide

**early_stop_callback**


- **True:** A default callback monitoring `'val_loss'` is created. Will raise an error if `'val_loss'` is not found.
- **False:** Early stopping will be disabled.
- **None:** The default callback monitoring `'val_loss'` is created.
- **Default:** None.

```python
from pytorch_lightning.callbacks import EarlyStopping

default used by the Trainer
early_stop = EarlyStopping(
 monitor='val_loss',
 patience=3,
 strict=False,
 verbose=False,
 mode='min'
)
trainer = Trainer(early_stop_callback=early_stop)
```

**Note:** If `'val_loss'` is not found will work as if early stopping is disabled.

**fast_dev_run**

Runs 1 batch of train, test and val to find any bugs (ie: a sort of unit test).

Under the hood the pseudocode looks like this:

```python
loading
__init__()
prepare_data

test training step
training_batch = next(train_dataloader)
training_step(training_batch)
```
```python
test val step
val_batch = next(val_dataloader)
out = validation_step(val_batch)
validation_epoch_end([out])
```

```python
default used by the Trainer
trainer = Trainer(fast_dev_run=False)

runs 1 train, val, test batch and program ends
trainer = Trainer(fast_dev_run=True)
```

**gpus**

- Number of GPUs to train on
- or Which GPUs to train on
- can handle strings

```python
default used by the Trainer (ie: train on CPU)
trainer = Trainer(gpus=None)
```

Example:

```python
int: train on 2 gpus
trainer = Trainer(gpus=2)

list: train on GPUs 1, 4 (by bus ordering)
trainer = Trainer(gpus=[1, 4])
trainer = Trainer(gpus='1, 4') # equivalent

-1: train on all gpus
trainer = Trainer(gpus=-1)
trainer = Trainer(gpus='1') # equivalent

combine with num_nodes to train on multiple GPUs across nodes
uses 8 gpus in total
trainer = Trainer(gpus=2, num_nodes=4)
```

**See also:**

- Multi-GPU training guide

**gradient_clip_val**

Gradient clipping value

- 0 means don’t clip.

```python
default used by the Trainer
trainer = Trainer(gradient_clip_val=0.0)
```
**limit_test_batches**

How much of test dataset to check.

```python
default used by the Trainer
trainer = Trainer(limit_test_batches=1.0)

run through only 25% of the test set each epoch
trainer = Trainer(limit_test_batches=0.25)

run for only 10 batches
trainer = Trainer(limit_test_batches=10)
```

**limit_val_batches**

How much of validation dataset to check. Useful when debugging or testing something that happens at the end of an epoch.

```python
default used by the Trainer
trainer = Trainer(limit_val_batches=1.0)

run through only 25% of the validation set each epoch
trainer = Trainer(limit_val_batches=0.25)

run for only 10 batches
trainer = Trainer(limit_val_batches=10)
```

**log_gpu_memory**

Options:

- None
- 'min_max'
- 'all'

```python
default used by the Trainer
trainer = Trainer(log_gpu_memory=None)

log all the GPUs (on master node only)
trainer = Trainer(log_gpu_memory='all')

log only the min and max memory on the master node
trainer = Trainer(log_gpu_memory='min_max')
```

**Note:** Might slow performance because it uses the output of nvidia-smi.
**log_save_interval**

Writes logs to disk this often.

```python
default used by the Trainer
trainer = Trainer(log_save_interval=100)
```

**logger**

Logger (or iterable collection of loggers) for experiment tracking.

```python
from pytorch_lightning.loggers import TensorBoardLogger

default logger used by trainer
logger = TensorBoardLogger(
 save_dir=os.getcwd(),
 version=1,
 name='lightning_logs'
)
trainer = Trainer(logger=logger)
```

**max_epochs**

Stop training once this number of epochs is reached

```python
default used by the Trainer
trainer = Trainer(max_epochs=1000)
```

**min_epochs**

Force training for at least these many epochs

```python
default used by the Trainer
trainer = Trainer(min_epochs=1)
```

**max_steps**

Stop training after this number of steps Training will stop if max_steps or max_epochs have reached (earliest).

```python
Default (disabled)
trainer = Trainer(max_steps=None)

Stop after 100 steps
trainer = Trainer(max_steps=100)
```
**min_steps**

Force training for at least these number of steps. Trainer will train model for at least min_steps or min_epochs (latest).

```python
Default (disabled)
trainer = Trainer(min_steps=None)

Run at least for 100 steps (disable min_epochs)
trainer = Trainer(min_steps=100, min_epochs=0)
```

**num_nodes**

Number of GPU nodes for distributed training.

```python
default used by the Trainer
trainer = Trainer(num_nodes=1)

to train on 8 nodes
trainer = Trainer(num_nodes=8)
```

**num_processes**

Number of processes to train with. Automatically set to the number of GPUs when using `distributed_backend="ddp"`. Set to a number greater than 1 when using `distributed_backend="ddp_cpu"` to mimic distributed training on a machine without GPUs. This is useful for debugging, but will not provide any speedup, since single-process Torch already makes efficient use of multiple CPUs.

```python
Simulate DDP for debugging on your GPU-less laptop
trainer = Trainer(distributed_backend="ddp_cpu", num_processes=2)
```

**num_sanity_val_steps**

Sanity check runs n batches of val before starting the training routine. This catches any bugs in your validation without having to wait for the first validation check. The Trainer uses 5 steps by default. Turn it off or modify it here.

```python
default used by the Trainer
trainer = Trainer(num_sanity_val_steps=5)

turn it off
trainer = Trainer(num_sanity_val_steps=0)
```

**num_tpu_cores**

**Warning:** Deprecated since version 0.7.6.

Use `tpu_cores` instead. Will remove 0.9.0.

Example:
python -m torch_xla.distributed.xla_dist
--tpu=$TPU_POD_NAME
--conda-env=torch-xla-nightly
--env=XLA_USE_BF16=1
-- python your_trainer_file.py

**prepare_data_per_node**

If True will call `prepare_data()` on LOCAL_RANK=0 for every node. If False will only call from NODE_RANK=0, LOCAL_RANK=0

```python
default
Trainer(prepare_data_per_node=True)

use only NODE_RANK=0, LOCAL_RANK=0
Trainer(prepare_data_per_node=False)
```

**tpu_cores**

- How many TPU cores to train on (1 or 8).
- Which TPU core to train on [1-8]

A single TPU v2 or v3 has 8 cores. A TPU pod has up to 2048 cores. A slice of a POD means you get as many cores as you request.

Your effective batch size is batch_size * total tpu cores.

**Note:** No need to add a DistributedDataSampler, Lightning automatically does it for you.

This parameter can be either 1 or 8.

```python
your_trainer_file.py

default used by the Trainer (ie: train on CPU)
trainer = Trainer(tpu_cores=None)

int: train on a single core
trainer = Trainer(tpu_cores=1)

list: train on a single selected core
trainer = Trainer(tpu_cores=[2])

int: train on all cores few cores
trainer = Trainer(tpu_cores=8)

for 8+ cores must submit via xla script with
a max of 8 cores specified. The XLA script
will duplicate script onto each TPU in the POD
trainer = Trainer(tpu_cores=8)
```

To train on more than 8 cores (ie: a POD), submit this script using the xla_dist script.

Example:
```python
python -m torch_xla.distributed.xla_dist
--tpu=$TPU_POD_NAME
--conda-env=torch-xla-nightly
--env=XLA_USE_BF16=1
-- python your_trainer_file.py
```

**overfit_pct**

**Warning:** Deprecated since version 0.8.0.

Use `overfit_batches`. Will remove 1.0.0.

**overfit_batches**

Uses this much data of the training set. If will use the same training set for validation and testing. If the training Dataloaders (shuffle=True), Lightning will automatically disable it.

Useful for quickly debugging or trying to overfit on purpose.

```python
default used by the Trainer
trainer = Trainer(overfit_batches=0.0)

use only 1% of the train set (and use the train set for val and test)
trainer = Trainer(overfit_batches=0.01)

overfit on 10 of the same batches
trainer = Trainer(overfit_batches=10)
```

**precision**

Full precision (32), half precision (16). Can be used on CPU, GPU or TPUs.

If used on TPU will use torch.bfloat16 but tensor printing will still show torch.float32.

```python
default used by the Trainer
trainer = Trainer(precision=32)

16-bit precision
trainer = Trainer(precision=16)
```

Example:

```python
one day
trainer = Trainer(precision=8|4|2)
```
print_nan_grads

**Warning:** Deprecated since version 0.7.2.
Has no effect. When detected, NaN grads will be printed automatically. Will remove 0.9.0.

process_position

Orders the progress bar. Useful when running multiple trainers on the same node.

```python
default used by the Trainer
trainer = Trainer(process_position=0)
```

**Note:** This argument is ignored if a custom callback is passed to `callbacks`.

profiler

To profile individual steps during training and assist in identifying bottlenecks.

See the profiler documentation, for more details.

```python
from pytorch_lightning.profiler import SimpleProfiler, AdvancedProfiler

default used by the Trainer
trainer = Trainer(profiler=None)

to profile standard training events
trainer = Trainer(profiler=True)

equivalent to profiler=True
trainer = Trainer(profiler=SimpleProfiler())

advanced profiler for function-level stats
trainer = Trainer(profiler=AdvancedProfiler())
```

progress_bar_refresh_rate

How often to refresh progress bar (in steps). In notebooks, faster refresh rates (lower number) is known to crash them because of their screen refresh rates, so raise it to 50 or more.

```python
default used by the Trainer
trainer = Trainer(progress_bar_refresh_rate=1)

disable progress bar
trainer = Trainer(progress_bar_refresh_rate=0)
```

**Note:** This argument is ignored if a custom callback is passed to `callbacks`. 
**reload_dataloaders_every_epoch**

Set to True to reload dataloaders every epoch.

```python
if False (default)
train_loader = model.train_dataloader()
for epoch in epochs:
 for batch in train_loader:
 ...

if True
for epoch in epochs:
 train_loader = model.train_dataloader()
 for batch in train_loader:
```

**replace_sampler_ddp**

Enables auto adding of distributed sampler.

```python
default used by the Trainer
trainer = Trainer(replace_sampler_ddp=True)
```

By setting to False, you have to add your own distributed sampler:

```python
default used by the Trainer
sampler = torch.utils.data.distributed.DistributedSampler(dataset, shuffle=True)
dataloader = DataLoader(dataset, batch_size=32, sampler=sampler)
```

**resume_from_checkpoint**

To resume training from a specific checkpoint pass in the path here.

```python
default used by the Trainer
trainer = Trainer(resume_from_checkpoint=None)

resume from a specific checkpoint
trainer = Trainer(resume_from_checkpoint='some/path/to/my_checkpoint.ckpt')
```

**row_log_interval**

How often to add logging rows (does not write to disk)

```python
default used by the Trainer
trainer = Trainer(row_log_interval=50)
```

**use_amp:**

*Warning:* Deprecated since version 0.7.0. Use *precision* instead. Will remove 0.9.0.
show_progress_bar

**Warning:** Deprecated since version 0.7.2.
Set `progress_bar_refresh_rate` to 0 instead. Will remove 0.9.0.

val_percent_check

**Warning:** deprecated in v0.8.0 please use `limit_val_batches`. Will remove in 0.10.0

test_percent_check

**Warning:** deprecated in v0.8.0 please use `limit_test_batches`. Will remove in 0.10.0

train_percent_check

**Warning:** deprecated in v0.8.0 please use `limit_train_batches`. Will remove in 0.10.0

track_grad_norm

- no tracking (-1)
- Otherwise tracks that norm (2 for 2-norm)

```python
default used by the Trainer
trainer = Trainer(track_grad_norm=-1)

track the 2-norm
trainer = Trainer(track_grad_norm=2)
```

limit_train_batches

How much of training dataset to check. Useful when debugging or testing something that happens at the end of an epoch.

```python
default used by the Trainer
trainer = Trainer(limit_train_batches=1.0)
```

Example:

```python
default used by the Trainer
trainer = Trainer(limit_train_batches=1.0)

run through only 25% of the training set each epoch
trainer = Trainer(limit_train_batches=0.25)

run through only 10 batches of the training set each epoch
trainer = Trainer(limit_train_batches=10)
```
**truncated_bptt_steps**

Truncated back prop breaks performs backprop every k steps of a much longer sequence.

If this is enabled, your batches will automatically get truncated and the trainer will apply Truncated Backprop to it. (Williams et al. “An efficient gradient-based algorithm for on-line training of recurrent network trajectories.”)

```python
default used by the Trainer (ie: disabled)
trainer = Trainer(truncated_bptt_steps=\texttt{None})

backprop every 5 steps in a batch
trainer = Trainer(truncated_bptt_steps=5)
```

**Note:** Make sure your batches have a sequence dimension.

Lightning takes care to split your batch along the time-dimension.

```python
we use the second as the time dimension
(batch, time, ...)
sub_batch = batch[0, 0:t, ...]
```

Using this feature requires updating your LightningModule’s `pytorch_lightning.core.LightningModule.training_step()` to include a `hiddens` arg with the hidden

```python
Truncated back-propagation through time
def training_step(self, batch, batch_idx, hiddens):
 # hiddens are the hiddens from the previous truncated backprop step
 out, hiddens = self.lstm(data, hiddens)

 return {
 "loss": ...,
 "hiddens": hiddens # remember to detach() this
 }
```

To modify how the batch is split, override `pytorch_lightning.core.LightningModule.tbptt_split_batch()`:

```python
class LitMNIST(LightningModule):
 def tbptt_split_batch(self, batch, split_size):
 # do your own splitting on the batch
 return splits
```

**val_check_interval**

How often within one training epoch to check the validation set. Can specify as float or int.

- use (float) to check within a training epoch
- use (int) to check every n steps (batches)

```python
default used by the Trainer
trainer = Trainer(val_check_interval=1.0)

check validation set 4 times during a training epoch
trainer = Trainer(val_check_interval=0.25)
```

(continues on next page)
# check validation set every 1000 training batches
# use this when using iterableDataset and your dataset has no length
# (ie: production cases with streaming data)
trainer = Trainer(val_check_interval=1000)

weights_save_path

Directory of where to save weights if specified.

```python
default used by the Trainer
trainer = Trainer(weights_save_path=os.getcwd())

save to your custom path
trainer = Trainer(weights_save_path='my/path')
```

Example:

```python
if checkpoint callback used, then overrides the weights path
**NOTE: this saves weights to some/path NOT my/path
checkpoint = ModelCheckpoint(filepath='some/path')
trainer = Trainer(
 checkpoint_callback=checkpoint,
 weights_save_path='my/path')
```

weights_summary

Prints a summary of the weights when training begins. Options: ‘full’, ‘top’, None.

```python
default used by the Trainer (ie: print summary of top level modules)
trainer = Trainer(weights_summary='top')

print full summary of all modules and submodules
trainer = Trainer(weights_summary='full')

don't print a summary
trainer = Trainer(weights_summary=None)
```
37.7.7 Trainer class

```python
class pytorch_lightning.trainer.Trainer(
 logger=True, # Flag to use a logger
 checkpoint_callback=True, # Flag to use a checkpoint callback
 early_stop_callback=False, # Flag to use an early stopping callback
 callbacks=None, # Callbacks to use
 default_root_dir=None, # Default root directory
 gradient_clip_val=0, # Gradient clipping value
 process_position=0, # Process position
 num_nodes=1, # Number of nodes
 num_processes=1, # Number of processes
 gpus=None, # GPUs to use
 auto_select_gpus=False, # Flag to automatically select GPUs
 tpu_cores=None, # TPU cores to use
 log_gpu_memory=None, # Log GPU memory
 progress_bar_refresh_rate=1, # Progress bar refresh rate
 overfit_batches=0.0, # Number of batches to overfit
 track_grad_norm=-1, # Track gradient norm
 check_val_every_n_epoch=1, # Check validation every n epochs
 fast_dev_run=False, # Fast development run
 accumulate_grad_batches=1, # Accumulate gradients
 max_epochs=1000, # Maximum number of epochs
 min_epochs=1, # Minimum number of epochs
 max_steps=None, # Maximum number of steps
 min_steps=None, # Minimum number of steps
 limit_train_batches=1.0, # Limit number of training batches
 limit_val_batches=1.0, # Limit number of validation batches
 limit_test_batches=1.0, # Limit number of test batches
 val_check_interval=1.0, # Validation check interval
 log_save_interval=100, # Log save interval
 row_log_interval=50, # Row log interval
 distributed_backend=None, # Distributed backend
 precision=32, # Precision
 print_nan_grads=False, # Print NaN gradients
 weights_summary='top', # Weights summary
 weights_save_path=None, # Weights save path
 num_sanity_val_steps=2, # Number of sanity validation steps
 truncated_bptt_steps=None, # Truncated backprop steps
 resume_from_checkpoint=None, # Resume checkpoint
 profiler=None, # Profiler
 benchmark=False, # Benchmark
 deterministic=False, # Deterministic
 reload_dataloaders_every_epoch=False, # Reload dataloaders
 auto_lr_find=False, # Auto learning rate finding
 replace_sampler_ddp=True, # Replace sampler
 terminate_on_nan=False, # Terminate on NaN
 auto_scale_batch_size=False, # Auto scale batch size
 prepare_data_per_node=True, # Prepare data per node
 amp_level='O1', # AMP level
 num_tpu_cores=None, # Number of TPU cores
 use_amp=None, # Use AMP
 show_progress_bar=None, # Show progress bar
 val_percent_check=None, # Validation percent check
 test_percent_check=None, # Test percent check
 train_percent_check=None, # Train percent check
 overfit_pct=None # Overfit percentage
)
```

Bases:
- pytorch_lightning.trainer.training_io.TrainerIOMixin
- pytorch_lightning.trainer.optimizers.TrainerOptimizersMixin
- pytorch_lightning.trainer.auto_mix_precision.TrainerAMPMixin
- pytorch_lightning.trainer.distrib_parts.TrainerDPMixin
- pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin
- pytorch_lightning.trainer.logging.TrainerLoggingMixin
- pytorch_lightning.trainer.model_hooks.TrainerModelHooksMixin
- pytorch_lightning.trainer.training_tricks.TrainerTrainingTricksMixin
- pytorch_lightning.trainer.data_loading.TrainerDataLoadingMixin
- pytorch_lightning.trainer.evaluation_loop.TrainerEvaluationLoopMixin
- pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin
- pytorch_lightning.trainer.callback_config.TrainerCallbackConfigMixin
- pytorch_lightning.trainer.callback_hook.TrainerCallbackHookMixin
- pytorch_lightning.trainer.lr_finder.TrainerLRFinderMixin
- pytorch_lightning.trainer.deprecated_api.TrainerDeprecatedAPITillVer0_9
- pytorch_lightning.trainer.deprecated_api.TrainerDeprecatedAPITillVer0_10

Customize every aspect of training via flags

Parameters

37.7. pytorch_lightning.trainer package
• **logger** (Union[LightningLoggerBase, Iterable[LightningLoggerBase], bool]) – Logger (or iterable collection of loggers) for experiment tracking.

• **checkpoint_callback** (Union[ModelCheckpoint, bool]) – Callback for checkpointing.

• **early_stop_callback** (pytorch_lightning.callbacks.EarlyStopping)

• **callbacks** (Optional[List[Callback]]) – Add a list of callbacks.

• **default_root_dir** (Optional[str]) – Default path for logs and weights when no logger/ckpt_callback passed

• **gradient_clip_val** (float) – 0 means don’t clip.

• **gradient_clip** –

  Warning: Deprecated since version 0.7.0.

  Use gradient_clip_val instead. Will remove 0.9.0.

• **process_position** (int) – orders the progress bar when running multiple models on same machine.

• **num_nodes** (int) – number of GPU nodes for distributed training.

• **nb_gpu_nodes** –

  Warning: Deprecated since version 0.7.0.

  Use num_nodes instead. Will remove 0.9.0.

• **gpus** (Union[int, str, List[int], None]) – Which GPUs to train on.

• **auto_select_gpus** (bool) – If enabled and gpus is an integer, pick available gpus automatically. This is especially useful when GPUs are configured to be in “exclusive mode”, such that only one process at a time can access them.

• **tpu_cores** (Union[List[int], int, None]) – How many TPU cores to train on (1 or 8) / Single TPU to train on [1]

• **num_tpu_cores** (Optional[int]) – How many TPU cores to train on (1 or 8) .. warning:: .. deprecated::: 0.7.6. Will remove 0.9.0.

• **log_gpu_memory** (Optional[str]) – None, ‘min_max’, ‘all’. Might slow performance

• **show_progress_bar** –

  Warning: Deprecated since version 0.7.2.

  Set progress_bar_refresh_rate to positive integer to enable. Will remove 0.9.0.

• **progress_bar_refresh_rate** (int) – How often to refresh progress bar (in steps).

  Value 0 disables progress bar. Ignored when a custom callback is passed to callbacks.
• `overfit_batches` (Union[int, float]) – Overfit a percent of training data (float) or a set number of batches (int).

• `overfit_pct` (Optional[float]) –

  Warning: Deprecated since version 0.8.0.
  Use `overfit_batches` instead. Will remove 0.10.0.

• `track_grad_norm` (Union[int, float, str]) – 1 no tracking. Otherwise tracks that p-norm. May be set to ‘inf’ infinity-norm.

• `check_val_every_n_epoch` (int) – Check val every n train epochs.

• `fast_dev_run` (bool) – runs 1 batch of train, test and val to find any bugs (ie: a sort of unit test).

• `accumulate_grad_batches` (Union[int, Dict[int, int], List[list]]) – Accumulates grads every k batches or as set up in the dict.

• `max_epochs` (int) – Stop training once this number of epochs is reached.

• `max_nb_epochs` –

  Warning: Deprecated since version 0.7.0.
  Use `max_epochs` instead. Will remove 0.9.0.

• `min_epochs` (int) – Force training for at least these many epochs

• `min_nb_epochs` –

  Warning: Deprecated since version 0.7.0.
  Use `min_epochs` instead. Will remove 0.9.0.

• `max_steps` (Optional[int]) – Stop training after this number of steps. Disabled by default (None).

• `min_steps` (Optional[int]) – Force training for at least these number of steps. Disabled by default (None).

• `limit_train_batches` (Union[int, float]) – How much of training dataset to check.

• `limit_val_batches` (Union[int, float]) – How much of validation dataset to check (floats = percent, int = num_batches)

• `limit_test_batches` (Union[int, float]) – How much of test dataset to check (floats = percent, int = num_batches)

• `train_percent_check` (Optional[float]) –

  Warning: Deprecated since version 0.8.0.
  Use `limit_train_batches` instead. Will remove v0.10.0.
PyTorch-Lightning Documentation, Release 0.8.1

• **val_percent_check** *(Optional[float])* –

  **Warning:** Deprecated since version 0.8.0.
  Use `limit_val_batches` instead. Will remove v0.10.0.

• **test_percent_check** *(Optional[float])* –

  **Warning:** Deprecated since version 0.8.0.
  Use `limit_test_batches` instead. Will remove v0.10.0.

• **val_check_interval** *(Union[int, float])* – How often within one training epoch to check the validation set

• **log_save_interval** *(int)* – Writes logs to disk this often

• **row_log_interval** *(int)* – How often to add logging rows (does not write to disk)

• **add_row_log_interval** –

  **Warning:** Deprecated since version 0.7.0.
  Use `row_log_interval` instead. Will remove 0.9.0.

• **distributed_backend** *(Optional[str])* – The distributed backend to use (dp, ddp, ddp2, ddp_spawn)

• **use_amp** –

  **Warning:** Deprecated since version 0.7.0.
  Use `precision` instead. Will remove 0.9.0.

• **precision** *(int)* – Full precision (32), half precision (16).

• **print_nan_grads** *(bool)* –

  **Warning:** Deprecated since version 0.7.2.
  Has no effect. When detected, NaN grads will be printed automatically. Will remove 0.9.0.

• **weights_summary** *(Optional[str])* – Prints a summary of the weights when training begins.

• **weights_save_path** *(Optional[str])* – Where to save weights if specified. Will override `default_root_dir` for checkpoints only. Use this if for whatever reason you need the checkpoints stored in a different place than the logs written in `default_root_dir`.

• **amp_level** *(str)* – The optimization level to use (O1, O2, etc…).

• **num_sanity_val_steps** *(int)* – Sanity check runs n batches of val before starting the training routine.
• **truncated_bptt_steps** *(Optional[int])* – Truncated back prop breaks performs backprop every k steps of

• **resume_from_checkpoint** *(Optional[str])* – To resume training from a specific checkpoint pass in the path here. This can be a URL.

• **profiler** *(Union[BaseProfiler, bool, None])* – To profile individual steps during training and assist in

• **reload_dataloaders_every_epoch** *(bool)* – Set to True to reload dataloaders every epoch

• **auto_lr_find** *(Union[bool, str])* – If set to True, will *initially* run a learning rate finder, trying to optimize initial learning for faster convergence. Sets learning rate in self.lr or self.learning_rate in the LightningModule. To use a different key, set a string instead of True with the key name.

• **replace_sampler_ddp** *(bool)* – Explicitly enables or disables sampler replacement. If not specified this will toggled automatically ddp is used

• **benchmark** *(bool)* – If true enables cudnn.benchmark.

• **deterministic** *(bool)* – If true enables cudnn.deterministic

• **terminate_on_nan** *(bool)* – If set to True, will terminate training (by raising a `ValueError`) at the end of each training batch, if any of the parameters or the loss are NaN or +/-inf.

• **auto_scale_batch_size** *(Union[str, bool])* – If set to True, will *initially* run a batch size finder trying to find the largest batch size that fits into memory. The result will be stored in self.batch_size in the LightningModule. Additionally, can be set to either power that estimates the batch size through a power search or binsearch that estimates the batch size through a binary search.

• **prepare_data_per_node** *(bool)* – If True, each LOCAL_RANK=0 will call prepare data. Otherwise only NODE_RANK=0, LOCAL_RANK=0 will prepare data

```python
_Trainer__attach_dataloaders (model, train_dataloader=None, val_dataloaders=None, test_dataloaders=None)

_allowed_type ()

Return type Union[int, str]

_arg_default ()

Return type Union[int, str]
```

**classmethod add_argparse_args**(parent_parser)

Extends existing argparse by default Trainer attributes.

Parameters **parent_parser** *(ArgumentParser)* – The custom cli arguments parser, which will be extended by the Trainer default arguments.

Only arguments of the allowed types (str, float, int, bool) will extend the parent_parser.
Examples

```python
>>> import argparse
>>> import pprint
>>> parser = argparse.ArgumentParser()
>>> parser = Trainer.add_argparse_args(parser)
>>> args = parser.parse_args([])
>>> pprint.pprint(vars(args))
{...
'check_val_every_n_epoch': 1,
'checkpoint_callback': True,
'default_root_dir': None,
'deterministic': False,
'distributed_backend': None,
'early_stop_callback': False,
...
'check_model_configuration (model)
Checks that the model is configured correctly before training or testing is started.

Parameters

• model (LightningModule) – The model to check the configuration.

classmethod default_attributes ()

fit (model, train_dataloader=None, val_dataloaders=None)
Runs the full optimization routine.

Parameters

• model (LightningModule) – Model to fit.

• train_dataloader (Optional[DataLoader]) – A Pytorch DataLoader with training samples. If the model has a predefined train_dataloader method this will be skipped.

• val_dataloaders (Union[DataLoader, List[DataLoader], None]) – Either a single Pytorch Dataloader or a list of them, specifying validation samples. If the model has a predefined val_dataloaders method this will be skipped.

Example:

Option 1,
Define the train_dataloader() and val_dataloader() fxs
in the lightningModule
RECOMMENDED FOR MOST RESEARCH AND APPLICATIONS TO MAINTAIN READABILITY

(continues on next page)
trainer = Trainer()
model = LightningModule()
trainer.fit(model)

Option 2
in production cases we might want to pass different datasets to the same
model
Recommended for PRODUCTION SYSTEMS
train, val = DataLoader(...), DataLoader(...)
trainer = Trainer()
model = LightningModule()
trainer.fit(model, train_dataloader=train, val_dataloaders=val)

Option 1 & 2 can be mixed, for example the training set can be
defined as part of the model, and validation can then be fed to .fit()

```python
classmethod from_argparse_args(args, **kwargs)

Create an instance from CLI arguments.

Parameters

• args (Union[Namespace, ArgumentParser]) – The parser or namespace to take
  arguments from. Only known arguments will be parsed and passed to the Trainer.

• **kwargs – Additional keyword arguments that may override ones in the parser or
  namespace. These must be valid Trainer arguments.

Example

>>> parser = ArgumentParser(add_help=False)
>>> parser = Trainer.add_argparse_args(parser)
>>> parser.add_argument('--my_custom_arg', default='something')
>>> args = Trainer.parse_argparser(parser.parse_args(''))
>>> trainer = Trainer.from_argparse_args(args, logger=False)
```

Return type Trainer

```python
classmethod get_deprecated_arg_names()

Returns a list with deprecated Trainer arguments.

Return type List
```

```python
classmethod get_init_arguments_and_types()

Scans the Trainer signature and returns argument names, types and default values.

Returns (argument name, set with argument types, argument default value).

Return type List with tuples of 3 values
```
Examples

```python
>>> args = Trainer.get_init_arguments_and_types()
>>> import pprint
>>> pprint.pprint(sorted(args))
[('accumulate_grad_batches',
  (<class 'int'>, typing.Dict[int, int], typing.List[list]),
  1),
  ...
('callbacks',
  (typing.List[pytorch_lightning.callbacks.base.Callback],
   <class 'NoneType'>),
   None),
('check_val_every_n_epoch', (<class 'int'>), 1),
  ...
('max_epochs', (<class 'int'>), 1000),
  ...
('precision', (<class 'int'>), 32),
('prepare_data_per_node', (<class 'bool'>), True),
('print_nan_grads', (<class 'bool'>), False),
('process_position', (<class 'int'>), 0),
('profiler',
  (<class 'pytorch_lightning.profilerprofilers.BaseProfiler'>,
   <class 'bool'>,
   <class 'NoneType'>),
   None),
  ...
```

```python
static parse_argparser(arg_parser)
  Parse CLI arguments, required for custom bool types.
  Return type Namespace
```

```python
run_pretrain_routine(model)
  Sanity check a few things before starting actual training.
  Parameters model (LightningModule) – The model to run sanity test on.
```

```python
test (model=None, test_dataloaders=None, ckpt_path='best')
  Separates from fit to make sure you never run on your test set until you want to.
  Parameters
    • model (Optional[LightningModule]) – The model to test.
    • test_dataloaders (Union[DataLoader, List[DataLoader], None]) – Either a single Pytorch Dataloader or a list of them, specifying validation samples.
    • ckpt_path (Optional[str]) – Either best or path to the checkpoint you wish to test. If None, use the weights from the last epoch to test. Default to best.
```

Example:

```python
# Option 1
# run test with the best checkpoint from `ModelCheckpoint` after fitting.
import pytorch_lightning as pl
import torch
from torch.utils.data import DataLoader

# Define your model
class Model(pl.LightningModule):
   ...

# Define your data loader
train_data = ...
train_loader = DataLoader(train_data)

# Create a trainer
trainer = Trainer()

# Example of testing
trainer.test(model=Model(), test_dataloaders=train_loader)
```

(continues on next page)
trainer.test(test_dataloaders=test)

Option 2
run test with the specified checkpoint after fitting
test = DataLoader(...)
trainer = Trainer()
model = LightningModule()

trainer.fit(model)
trainer.test(test_dataloaders=test, ckpt_path='path/to/checkpoint.ckpt')

Option 3
run test with the weights from the end of training after fitting
test = DataLoader(...)
trainer = Trainer()
model = LightningModule()

trainer.fit(model)
trainer.test(test_dataloaders=test, ckpt_path=None)

Option 4
run test from a loaded model. `ckpt_path` is ignored in this case.
test = DataLoader(...)
model = LightningModule.load_from_checkpoint('path/to/checkpoint.ckpt')
trainer = Trainer()
trainer.test(model, test_dataloaders=test)
on_tpu = None
optimizers = None

property progress_bar_callback

property progress_bar_dict
 Read-only for progress bar metrics.

 Return type dict

resume_from_checkpoint = None
root_gpu = None
scaler = None

property slurm_job_id
 this is just empty shell for code implemented in other class.

 Type Warning

 Return type Optional[int]

use_ddp = None
use_ddp2 = None
use_horovod = None
use_native_amp = None
weights_save_path = None

pytorch_lightning.trainer.seed_everything(seed=None)
Function that sets seed for pseudo-random number generators in: pytorch, numpy, python.random and sets PYTHONHASHSEED environment variable.

 Return type int

37.7.8 Submodules

pytorch_lightning.trainer.auto_mix_precision module

class pytorch_lightning.trainer.auto_mix_precision.TrainerAMPMixin
 Bases: abc.ABC

 init_amp(use_amp)

 precision: int = None
 property use_amp

 Return type bool

 use_native_amp: bool = None
pytorch_lightning.trainer.callback_config module

```python
class pytorch_lightning.trainer.callback_config.TrainerCallbackConfigMixin
    Bases: abc.ABC

    configure_checkpoint_callback()
    Weight path set in this priority: Checkpoint_callback’s path (if passed in). User provided weights_saved_path Otherwise use os.getcwdb()

    configure_early_stopping(early_stop_callback)

    configure_progress_bar(refresh_rate=1, process_position=0)

    abstract is_overridden(*args)
    Warning: this is just empty shell for code implemented in other class.

    abstract save_checkpoint(*args)
    Warning: this is just empty shell for code implemented in other class.

    callbacks: List[Callback] = None

    checkpoint_callback: Optional[ModelCheckpoint] = None

    ckpt_path: str = None

    default_root_dir: str = None

    logger: LightningLoggerBase = None

    abstract property slurm_job_id
    this is just empty shell for code implemented in other class.

    Type Warning

    Return type int

    weights_save_path: Optional[str] = None
```

pytorch_lightning.trainer.callback_hook module

```python
class pytorch_lightning.trainer.callback_hook.TrainerCallbackHookMixin
    Bases: abc.ABC

    on_batch_end()
    Called when the training batch ends.

    on_batch_start()
    Called when the training batch begins.

    on_epoch_end()
    Called when the epoch ends.

    on_epoch_start()
    Called when the epoch begins.

    on_fit_end()
    Called when the trainer initialization begins, model has not yet been set.

    on_fit_start()
    Called when the trainer initialization begins, model has not yet been set.

    on_init_end()
    Called when the trainer initialization ends, model has not yet been set.
```
on_init_start ()
 Called when the trainer initialization begins, model has not yet been set.

on_keyboard_interrupt ()
 Called when the training is interrupted by KeyboardInterrupt.

on_sanity_check_end ()
 Called when the validation sanity check ends.

on_sanity_check_start ()
 Called when the validation sanity check starts.

on_test_batch_end ()
 Called when the test batch ends.

on_test_batch_start ()
 Called when the test batch begins.

on_test_end ()
 Called when the test ends.

on_test_start ()
 Called when the test begins.

on_train_end ()
 Called when the train ends.

on_train_start ()
 Called when the train begins.

on_validation_batch_end ()
 Called when the validation batch ends.

on_validation_batch_start ()
 Called when the validation batch begins.

on_validation_end ()
 Called when the validation loop ends.

on_validation_start ()
 Called when the validation loop begins.

setup (stage)
 Called in the beginning of fit and test

tear down (stage)
 Called at the end of fit and test

callbacks: List[pytorch_lightning.callbacks.base.Callback] = []
get_model: Callable = Ellipsis
pytorch_lightning.trainer.data_loading module

```python
class pytorch_lightning.trainer.data_loading.TrainerDataLoadingMixin(Bases: abc.ABC)

_check_batch_limits(name)
    Return type: None

_get_distributed_sampler(dataloader)

_reset_eval_dataloader(model, mode)
    Generic method to reset a dataloader for evaluation.

    Parameters
    - model (LightningModule) – The current LightningModule
    - mode (str) – Either ‘val’ or ‘test’

    Return type: Tuple[List[Union[int, float]], List[DataLoader]]

    Returns: Tuple (num_batches, dataloaders)

_worker_check(dataloader, name)
    Return type: None

auto_add_sampler(dataloader, train)
    Return type: DataLoader

determine_data_use_amount(overfit_batches)
    Use less data for debugging purposes

    Return type: None

abstract is_overridden(*args)
    Warning: this is just empty shell for code implemented in other class.

replace_sampler(dataloader, sampler)

request_dataloader(dataloader_fx)
    Handles downloading data in the GPU or TPU case.

    Parameters: dataloader_fx (Callable) – The bound dataloader getter

    Return type: DataLoader

    Returns: The dataloader

reset_test_dataloader(model)
    Resets the validation dataloader and determines the number of batches.

    Parameters: model – The current LightningModule

    Return type: None

reset_train_dataloader(model)
    Resets the train dataloader and initialises required variables (number of batches, when to validate, etc.).

    Parameters: model (LightningModule) – The current LightningModule

    Return type: None

reset_val_dataloader(model)
    Resets the validation dataloader and determines the number of batches.
```
Parameters `model (LightningModule)` – The current `LightningModule`

Return type `None`

distributed_backend: Optional[str] = None
global_rank: int = None
limit_test_batches: Union[int, float] = None
limit_train_batches: Union[int, float] = None
limit_val_batches: Union[int, float] = None
num_nodes: int = None
num_processes: int = None
num_test_batches: List[Union[int, float]] = None
num_training_batches: Union[int, float] = None
num_val_batches: List[Union[int, float]] = None
replace_sampler_ddp: bool = None
shown_warnings: ... = None
test_dataloaders: List[DataLoader] = None
tpu_local_core_rank: int = None
train_dataloader: DataLoader = None
use_ddp: bool = None
use_ddp2: bool = None
use_horovod: bool = None
use_tpu: bool = None
val_check_batch: ... = None
val_check_interval: float = None
val_dataloaders: List[DataLoader] = None

`pytorch_lightning.trainer.data_loading._has_len(dataloader)`
Checks if a given Dataloader has `__len__` method implemented i.e. if it is a finite dataloader or infinite dataloader

Return type `bool`

`pytorch_lightning.trainer.deprecated_api module`

Mirroring deprecated API

class `pytorch_lightning.trainer.deprecated_api.TrainerDeprecatedAPITillVer0_10`
Bases: `abc.ABC`

limit_test_batches: Union[int, float] = None
limit_train_batches: Union[int, float] = None
limit_val_batches: Union[int, float] = None
overfit_batches: Union[int, float] = None
property overfit_pct
Back compatibility, will be removed in v0.10.0

 Return type Union[int, float]

property test_percent_check
Back compatibility, will be removed in v0.10.0

 Return type Union[int, float]

property train_percent_check
Back compatibility, will be removed in v0.10.0

 Return type Union[int, float]

property val_percent_check
Back compatibility, will be removed in v0.10.0

 Return type Union[int, float]

class pytorch_lightning.trainer.deprecated_api.TrainerDeprecatedAPITillVer0_9
Bases: abc.ABC

 property num_tpu_cores
 Back compatibility, will be removed in v0.9.0

 progress_bar_callback: ... = None

 progress_bar_dict: ... = None

 property show_progress_bar
 Back compatibility, will be removed in v0.9.0

 property training_tqdm_dict
 Back compatibility, will be removed in v0.9.0

pytorch_lightning.trainer.distrib_data_parallel module

Lightning supports model training on a cluster managed by SLURM in the following cases:

1. Training on a single cpu or single GPU.
2. Train on multiple GPUs on the same node using DataParallel or DistributedDataParallel
3. Training across multiple GPUs on multiple different nodes via DistributedDataParallel.

Note: A node means a machine with multiple GPUs

Running grid search on a cluster

To use lightning to run a hyperparameter search (grid-search or random-search) on a cluster do 4 things:

1. Define the parameters for the grid search

from test_tube import HyperOptArgumentParser

subclass of argparse
parser = HyperOptArgumentParser(strategy='random_search')
parser.add_argument('--learning_rate', default=0.002, type=float, help='the learning_ rate')
let's enable optimizing over the number of layers in the network
parser.opt_list('--nb_layers', default=2, type=int, tunable=True, options=[2, 4, 8])
hparams = parser.parse_args()

Note: You must set `Tunable=True` for that argument to be considered in the permutation set. Otherwise test-tube will use the default value. This flag is useful when you don’t want to search over an argument and want to use the default instead.

(2). Define the cluster options in the **SlurmCluster** object (over 5 nodes and 8 gpus)

```python
from test_tube.hpc import SlurmCluster

# hyperparameters is a test-tube hyper params object
# see https://williamfalcon.github.io/test-tube/hyperparameter_optimization/
# HyperOptArgumentParser/
hyperparams = args.parse()

# init cluster
cluster = SlurmCluster(
    hyperparam_optimizer=hyperparams,
    log_path='/path/to/log/results/to',
    python_cmd='python3'
)

# let the cluster know where to email for a change in job status (ie: complete, fail, etc...)
cluster.notify_job_status(email='some@email.com', on_done=True, on_fail=True)

# set the job options. In this instance, we'll run 20 different models
# each with its own set of hyperparameters giving each one 1 GPU (ie: taking up 20
# GPUs)
cluster.per_experiment_nb_gpus = 8
cluster.per_experiment_nb_nodes = 5

# we'll request 10GB of memory per node
cluster.memory_mb_per_node = 10000

# set a walltime of 10 minutes
cluster.job_time = '10:00'
```

(3). Make a main function with your model and trainer. Each job will call this function with a particular hparams configuration:

```python
from pytorch_lightning import Trainer

def train_fx(trial_hparams, cluster_manager, _):
    # hparams has a specific set of hyperparams
    my_model = MyLightningModel()

    # give the trainer the cluster object
    trainer = Trainer()
```

(continues on next page)
trainer.fit(my_model)

Note: \textit{nb_trials} specifies how many of the possible permutations to use. If using \textit{grid_search} it will use the depth first ordering. If using \textit{random_search} it will use the first k shuffled options. FYI, random search has been shown to be just as good as any Bayesian optimization method when using a reasonable number of samples (60), see this paper for more information.

Walltime auto-resubmit

Lightning automatically resubmits jobs when they reach the walltime. Make sure to set the SIGUSR1 signal in your SLURM script:

```bash
# 90 seconds before training ends
#SBATCH --signal=SIGUSR1@90
```

When lightning receives the SIGUSR1 signal it will: 1. save a checkpoint with ‘hpc_ckpt’ in the name. 2. resubmit the job using the SLURM_JOB_ID

When the script starts again, Lightning will: 1. search for a ‘hpc_ckpt’ checkpoint. 2. restore the model, optimizers, schedulers, epoch, etc...

```python
class pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin
    Bases: abc.ABC
    
    _set_horovod_backend()
    
    check_horovod()
        Raises a \textit{MisconfigurationException} if the Trainer is not configured correctly for Horovod.
    
    configure_slurm_ddp(num\_gpu\_nodes)
    
    abstract copy\_trainer\_model\_properties(*args)
        Warning: this is just empty shell for code implemented in other class.
    
    ddp\_train(process\_idx, model, is\_master=False, proc\_offset=0)
        Entry point into a DP thread
```

```
    determine\_ddp\_node\_rank()
    
    determine\_local\_rank()
```
static has_horovodrun()
Returns True if running with horovodrun using Gloo or OpenMPI.

abstract init_optimizers(*args)
Warning: this is just empty shell for code implemented in other class.

Return type Tuple[List,List,List]

init_tpu()

load_spawn_weights(original_model)
Load the temp weights saved in the process To recover the trained model from the ddp process we load the saved weights :param _sphinx_paramlinks_pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin.load_spawn_weights.model:
:return:

abstract reinit_scheduler_properties(*args)
Warning: this is just empty shell for code implemented in other class.

resolve_root_node_address(root_node)

abstract run_pretrain_routine(*args)
Warning: this is just empty shell for code implemented in other class.

abstract save_checkpoint(*args)
Warning: this is just empty shell for code implemented in other class.

save_spawn_weights(model)
Dump a temporary checkpoint after ddp ends to get weights out of the process :param _sphinx_paramlinks_pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin.save_spawn_weights.model:
:return:

set_distributed_mode(distributed_backend)

set_nvidia_flags(is_slurm_managing_tasks, data_parallel_device_ids)

set_random_port()
When running DDP NOT managed by SLURM, the ports might collide

spawn_ddp_children(model)

amp_level: str = None

checkpoint_callback: Union[ModelCheckpoint, bool] = None

data_parallel_device_ids: ... = None

default_root_dir: str = None

distributed_backend: Optional[str] = None

gpus: List[int] = None

property is_global_zero
this is just empty shell for code implemented in other class.

Type Warning

Return type int

logger: Union[LightningLoggerBase, bool] = None

default_root_dir: str = None

distributed_backend: Optional[int] = None

node_rank: int = None

num_gpu_nodes: int = None
abstract property num_gpus
 this is just empty shell for code implemented in other class.
 Type Warning
 Return type int

num_nodes: int = None
num_processes: int = None
on_gpu: bool = None
progress_bar_callback: ... = None
tpu_cores: int = None

abstract property use_amp
 this is just empty shell for code implemented in other class.
 Type Warning
 Return type bool

use_native_amp: bool = None
use_tpu: bool = None

pytorch_lightning.trainer.distrib_parts module

Root module for all distributed operations in Lightning. Currently supports training on CPU, GPU (dp, ddp, ddp2, horovod) and TPU.

```python
class pytorch_lightning.trainer.distrib_parts.TrainerDPMixin
    Bases: abc.ABC

    _TrainerDPMixin__transfer_batch_to_device(batch, device)
    copy_trainer_model_properties(model)
    dp_train(model)
    abstract get_model()
        Warning: this is just empty shell for code implemented in other class.
        Return type LightningModule
    horovod_train(model)
    abstract init_optimizers(*args)
        Warning: this is just empty shell for code implemented in other class.
        Return type Tuple[List, List, List]
    abstract reinit_scheduler_properties(*args)
        Warning: this is just empty shell for code implemented in other class.
    abstract run_pretrain_routine(*args)
        Warning: this is just empty shell for code implemented in other class.
    single_gpu_train(model)
    tpu_train(tpu_core_idx, model)
    transfer_batch_to_gpu(batch, gpu_id=None)
        Transfers the data to the GPU.
```
Parameters

• **batch** (*Any*) – A tensor or collection of tensors.

• **gpu_id** (*Optional*[int]) – The id of the GPU device. If omitted, the first available GPU is chosen.

Returns the tensor on the GPU device.

See also:

• **move_data_to_device()**

`transfer_batch_to_tpu(batch, tpu_id=None)`

Transfers the data to the TPU.

Parameters

• **batch** (*Any*) – A tensor or collection of tensors.

• **tpu_id** (*Optional*[int]) – The id of the TPU core. If omitted, the first available core is chosen.

Returns the tensor on the TPU device.

See also:

• **move_data_to_device()**

`amp_level: str = None`

`data_parallel_device_ids: ... = None`

`global_rank: int = None`

`on_colab_kaggle: str = None`

`on_gpu: bool = None`

`precision: ... = None`

`progress_bar_callback: ... = None`

`root_gpu: ... = None`

`save_spawn_weights: Callable = None`

`single_gpu: bool = None`

`testing: bool = None`

`tpu_global_core_rank: int = None`

`tpu_id: Optional*[int] = None`

`tpu_local_core_rank: int = None`

abstract property use_amp

this is just empty shell for code implemented in other class.

Type **Warning**

Return type **bool**

`use_ddp: bool = None`

`use_ddp2: bool = None`
use_dp: bool = None
use_native_amp: bool = None
use_tpu: bool = None

torch_lightning.trainer.distrib_parts.check_gpus_data_type(gpus)
Checks that the gpus argument is one of: None, Int, String or List. Raises a MisconfigurationException otherwise.

Parameters gpus (Any) – parameter as passed to the Trainer
Return type None

torch_lightning.trainer.distrib_parts.determine_root_gpu_device(gpus)

Parameters gpus (List[int]) – non-empty list of ints representing which gpus to use
Return type Optional[int]
Returns designated root GPU device id

torch_lightning.trainer.distrib_parts.get_all_available_gpus()

Return type List[int]
Returns a list of all available gpus

torch_lightning.trainer.distrib_parts.normalize_parse_gpu_input_to_list(gpus)

Return type Optional[List[int]]

torch_lightning.trainer.distrib_parts.normalize_parse_gpu_string_input(s)

Return type Union[int, List[int]]

torch_lightning.trainer.distrib_parts.parse_gpu_ids(gpus)

Parses the GPU ids given in the format as accepted by the Trainer.

Parameters gpus (Union[int, str, List[int], None]) – An int -1 or string ‘-1’ indicate that all available GPUs should be used. A list of ints or a string containing list of comma separated integers indicates specific GPUs to use. An int 0 means that no GPUs should be used. Any int N > 0 indicates that GPUs [0..N) should be used.

Return type Optional[List[int]]
Returns a list of gpus to be used or None if no GPUs were requested

If no GPUs are available but the value of gpus variable indicates request for GPUs then a MisconfigurationException is raised.

torch_lightning.trainer.distrib_parts.pick_multiple_gpus(nb)

torch_lightning.trainer.distrib_parts.pick_single_gpu(exclude_gpus)

torch_lightning.trainer.distrib_parts.retry_jittered_backoff(func,
num_retries=5,
cap_delay=1.0,
base_delay=0.01)

Retry jittered backoff.

Based on: https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/

Parameters

• func (Callable) – tested function
• num_retries (int) – number of tries
• **cap_delay** *(float)* – max sleep time

• **base_delay** *(float)* – initial sleep time is 10ms

`pytorch_lightning.trainer.distrib_parts.sanitize_gpu_ids(gpus)`

Checks that each of the GPUs in the list is actually available. Raises a MisconfigurationException if any of the GPUs is not available.

- Parameters **gpus** *(List[int])* – list of ints corresponding to GPU indices
- Return type **List[int]**
- Returns unmodified gpus variable

`pytorch_lightning.trainer.evaluation_loop module`

Validation loop

The lightning validation loop handles everything except the actual computations of your model. To decide what will happen in your validation loop, define the `validation_step` function. Below are all the things lightning automates for you in the validation loop.

Note: Lightning will run 5 steps of validation in the beginning of training as a sanity check so you don’t have to wait until a full epoch to catch possible validation issues.

Check validation every n epochs

If you have a small dataset you might want to check validation every n epochs

```python
# DEFAULT
trainer = Trainer(check_val_every_n_epoch=1)
```

Set how much of the validation set to check

If you don’t want to check 100% of the validation set (for debugging or if it’s huge), set this flag

`limit_val_batches` will be overwritten by `overfit_batches` if `overfit_batches > 0`

```python
# DEFAULT
trainer = Trainer(limit_val_batches=1.0)
```

```
# check 10% only
trainer = Trainer(limit_val_batches=0.1)
```
Set how much of the test set to check

If you don’t want to check 100% of the test set (for debugging or if it’s huge), set this flag limit_test_batches will be overwritten by overfit_batches if overfit_batches > 0

```python
# DEFAULT
trainer = Trainer(limit_test_batches=1.0)

# check 10% only
trainer = Trainer(limit_test_batches=0.1)
```

Set validation check frequency within 1 training epoch

For large datasets it’s often desirable to check validation multiple times within a training loop. Pass in a float to check that often within 1 training epoch. Pass in an int k to check every k training batches. Must use an int if using an IterableDataset.

```python
# DEFAULT
trainer = Trainer(val_check_interval=0.95)

# check every .25 of an epoch
trainer = Trainer(val_check_interval=0.25)

# check every 100 train batches (ie: for IterableDatasets or fixed frequency)
trainer = Trainer(val_check_interval=100)
```

Set the number of validation sanity steps

Lightning runs a few steps of validation in the beginning of training. This avoids crashing in the validation loop sometime deep into a lengthy training loop.

```python
# DEFAULT
trainer = Trainer(num_sanity_val_steps=5)
```

You can use Trainer(num_sanity_val_steps=0) to skip the sanity check.

Testing loop

To ensure you don’t accidentally use test data to guide training decisions Lightning makes running the test set deliberate.

test

You have two options to run the test set. First case is where you test right after a full training routine.

```python
# run full training
trainer.fit(model)

# run test set
trainer.test()
```

Second case is where you load a model and run the test set
model = MyLightningModule.load_from_checkpoint(
 checkpoint_path='/path/to/pytorch_checkpoint.ckpt',
 hparams_file='/path/to/test_tube/experiment/version/hparams.yaml',
 map_location=None
)

init trainer with whatever options
trainer = Trainer(...)

test (pass in the model)
trainer.test(model)

In this second case, the options you pass to trainer will be used when running the test set (i.e.: 16-bit, dp, ddp, etc...)

class pytorch_lightning.trainer.evaluation_loop.TrainerEvaluationLoopMixin
 Bases: abc.ABC

 _evaluate(model, dataloaders, max_batches, test_mode=False)
 Run evaluation code.

 Parameters

 • model (LightningModule) – PT model
 • dataloaders – list of PT dataloaders
 • max_batches (List[int]) – List of scalars
 • test_mode (bool)

 abstract add_progress_bar_metrics(*args)
 Warning: this is just empty shell for code implemented in other class.

 abstract copy_trainer_model_properties(*args)
 Warning: this is just empty shell for code implemented in other class.

 evaluation_forward(model, batch, batch_idx, dataloader_idx, test_mode=False)

 abstract get_model()
 Warning: this is just empty shell for code implemented in other class.

 Return type LightningModule

 abstract is_overridden(*args)
 Warning: this is just empty shell for code implemented in other class.

 abstract log_metrics(*args)
 Warning: this is just empty shell for code implemented in other class.

 abstract reset_test_dataloader(*args)
 Warning: this is just empty shell for code implemented in other class.

 abstract reset_val_dataloader(*args)
 Warning: this is just empty shell for code implemented in other class.

 run_evaluation(test_mode=False)

 abstract transfer_batch_to_gpu(*args)
 Warning: this is just empty shell for code implemented in other class.

 abstract transfer_batch_to_tpu(*args)
 Warning: this is just empty shell for code implemented in other class.
callback_metrics: ... = None
current_epoch: int = None
data_parallel_device_ids: ... = None
fast_dev_run: ... = None
global_rank: int = None
model: LightningModule = None
num_test_batches: List[int] = None
num_val_batches: int = None
on_gpu: bool = None
on_test_batch_end: Callable = None
on_test_batch_start: Callable = None
on_test_end: Callable = None
on_test_start: Callable = None
on_validation_batch_end: Callable = None
on_validation_batch_start: Callable = None
on_validation_end: Callable = None
on_validation_start: Callable = None
process_output: ... = None
progress_bar_dict: ... = None
reload_dataloaders_every_epoch: ... = None
single_gpu: bool = None
test_dataloaders: DataLoader = None
tpu_id: int = None
use_ddp: bool = None
use_ddp2: bool = None
use_dp: bool = None
use_horovod: bool = None
use_tpu: bool = None
val_dataloaders: DataLoader = None
pytorch_lightning.trainer.ignored_warnings module

pytorch_lightning.trainer.ignored_warnings.ignore_scalar_return_in_dp()

pytorch_lightning.trainer.logging module

class pytorch_lightning.trainer.logging.TrainerLoggingMixin
 Bases: abc.ABC

 add_progress_bar_metrics(metrics)

 configure_logger(logger)

 log_metrics(metrics, grad_norm_dic, step=None)
 Logs the metric dict passed in. If step parameter is None and step key is presented is metrics, uses metrics[“step”] as a step
 Parameters
 • metrics (dict) – Metric values
 • grad_norm_dic (dict) – Gradient norms
 • step (int) – Step for which metrics should be logged. Default value corresponds to self.global_step

 metrics_to_scalars(metrics)

 process_output(output, train=False)
 Reduces output according to the training mode.
 Separates loss from logging and progress bar metrics

 reduce_distributed_output(output, num_gpus)

 current_epoch: int = None

 default_root_dir: str = None

 global_rank: int = None

 global_step: int = None

 log_gpu_memory: ... = None

 logger: Union[LightningLoggerBase, bool] = None

 num_gpus: int = None

 on_gpu: bool = None

 progress_bar_metrics: ... = None

 slurm_job_id: int = None

 use_ddp2: bool = None

 use_dp: bool = None
pytorch_lightning.trainer.lr_finder module

Trainer Learning Rate Finder

class pytorch_lightning.trainer.lr_finder.TrainerLRFinderMixin

Bases: abc.ABC

__lr_finder_dump_params__(model)
__lr_finder_restore_params__(model)

_run_lr_finder_internally__(model)
Call lr finder internally during Trainer.fit()

abstract fit(*args)
Warning: this is just empty shell for code implemented in other class.

abstract init_optimizers(*args)
Warning: this is just empty shell for code implemented in other class.

Return type Tuple[List, List, List]

lr_find(model, train_dataloader=None, val_dataloaders=None, min_lr=1e-08, max_lr=1, num_training=100, mode='exponential', early_stop_threshold=4.0, num_accumulation_steps=None)

lr_find enables the user to do a range test of good initial learning rates, to reduce the amount of guesswork in picking a good starting learning rate.

Parameters

• model (LightningModule) – Model to do range testing for

• train_dataloader (Optional[DataLoader]) – A PyTorch DataLoader with training samples. If the model has a predefined train_dataloader method this will be skipped.

• min_lr (float) – minimum learning rate to investigate

• max_lr (float) – maximum learning rate to investigate

• num_training (int) – number of learning rates to test

• mode (str) – search strategy, either ‘linear’ or ‘exponential’. If set to ‘linear’ the learning rate will be searched by linearly increasing after each batch. If set to ‘exponential’, will increase learning rate exponentially.

• early_stop_threshold (float) – threshold for stopping the search. If the loss at any point is larger than early_stop_threshold*best_loss then the search is stopped. To disable, set to None.

• num_accumulation_steps – deprecated, number of batches to calculate loss over. Set trainer argument accumulate_grad_batches instead.

Example:

```python
# Setup model and trainer
model = MyModelClass(hparams)
trainer = pl.Trainer()

# Run lr finder
lr_finder = trainer.lr_find(model, ...)

# Inspect results
```

(continues on next page)
fig = lr_finder.plot(); fig.show()
suggested_lr = lr_finder.suggestion()

Overwrite lr and create new model
hparams.lr = suggested_lr
model = MyModelClass(hparams)

Ready to train with new learning rate
trainer.fit(model)

abstract restore(*args)
Warning: this is just empty shell for code implemented in other class.

abstract save_checkpoint(*args)
Warning: this is just empty shell for code implemented in other class.

default_root_dir: str = None
global_step: int = None
on_gpu: bool = None
progress_bar_callback: ... = None
total_batch_idx: int = None
class pytorch_lightning.trainer.lr_finder._ExponentialLR(optimizer, end_lr, num_iter, last_epoch=-1)
 Bases: torch.optim.lr_scheduler._LRScheduler
 Exponentially increases the learning rate between two boundaries over a number of iterations.
 Parameters
 • optimizer (Optimizer) – wrapped optimizer.
 • end_lr (float) – the final learning rate.
 • num_iter (int) – the number of iterations over which the test occurs.
 • last_epoch (int) – the index of last epoch. Default: -1.

 get_lr()
 base_lrs: Sequence = None
 last_epoch: int = None

 property lr

class pytorch_lightning.trainer.lr_finder._LRCallback(num_training, early_stop_threshold=4.0, progress_bar_refresh_rate=0, beta=0.98)
 Bases: pytorch_lightning.callbacks.base.Callback
 Special callback used by the learning rate finder. This callbacks log the learning rate before each batch and log the corresponding loss after each batch.
 Parameters
 • num_training (int) – number of iterations done by the learning rate finder
- **early_stop_threshold** (*float*) – threshold for stopping the search. If the loss at any point is larger than \(\text{early_stop_threshold} \times \text{best_loss} \) then the search is stopped. To disable, set to None.

- **progress_bar_refresh_rate** (*int*) – rate to refresh the progress bar for the learning rate finder

- **beta** (*float*) – smoothing value, the loss being logged is a running average of loss values logged until now. beta controls the forget rate i.e. if beta=0 all past information is ignored.

on_batch_end (*trainer, pl_module*)

Called when the training batch ends, logs the calculated loss

on_batch_start (*trainer, pl_module*)

Called before each training batch, logs the lr that will be used

class pytorch_lightning.trainer.lr_finder._LRFinder(*mode*, *lr_min*, *lr_max*, *num_training*)

Bases: object

LR finder object. This object stores the results of Trainer.lr_find().

Parameters

- **mode** (*str*) – either linear or exponential, how to increase lr after each step
- **lr_min** (*float*) – lr to start search from
- **lr_max** (*float*) – lr to stop search
- **num_training** (*int*) – number of steps to take between lr_min and lr_max

Example:

```python
# Run lr finder lr_finder = trainer.lr_find(model)

# Results stored in lr_finder.results
# Plot using lr_finder.plot()
# Get suggestion lr = lr_finder.suggestion()
```

_get_new_optimizer (*optimizer*)

Construct a new configure_optimizers() method, that has a optimizer with initial lr set to lr_min and a scheduler that will either linearly or exponentially increase the lr to lr_max in num_training steps.

Parameters

- **optimizer** (*Optimizer*) – instance of torch.optim.Optimizer

plot (*suggest=False, show=False*)

Plot results from lr_find run :

```python
bool :param _sphinx_paramlinks_pytorch_lightning.trainer.lr_finder._LRFinder.plot.suggest: if True, will mark suggested lr to use with a red point :type _sphinx_paramlinks_pytorch_lightning.trainer.lr_finder._LRFinder.plot.show: bool :param _sphinx_paramlinks_pytorch_lightning.trainer.lr_finder._LRFinder.plot.show: if True, will show figure
```

suggestion (*skip_begin=10, skip_end=1*)

This will propose a suggestion for choice of initial learning rate as the point with the steepest negative gradient.

Returns suggested initial learning rate to use skip_begin: how many samples to skip in the beginning. Prevent too naive estimates skip_end: how many samples to skip in the end. Prevent too optimistic estimates.
Return type lr

class pytorch_lightning.trainer.lr_finder._LinearLR(optimizer, end_lr, num_iter, last_epoch=-1)
Bases: torch.optim.lr_scheduler._LRScheduler

Linearly increases the learning rate between two boundaries over a number of iterations.

:type _sphinx_paramlinks_pytorch_lightning.trainer.lr_finder._LinearLR.optimizer: Optimizer
:param _sphinx_paramlinks_pytorch_lightning.trainer.lr_finder._LinearLR.optimizer: wrapped optimizer.
:type _sphinx_paramlinks_pytorch_lightning.trainer.lr_finder._LinearLR.end_lr: float
:param _sphinx_paramlinks_pytorch_lightning.trainer.lr_finder._LinearLR.end_lr: the final learning rate.
:type _sphinx_paramlinks_pytorch_lightning.trainer.lr_finder._LinearLR.num_iter: int
:param _sphinx_paramlinks_pytorch_lightning.trainer.lr_finder._LinearLR.num_iter: the number of iterations over
which the test occurs.
:type _sphinx_paramlinks_pytorch_lightning.trainer.lr_finder._LinearLR.last_epoch: int
:param _sphinx_paramlinks_pytorch_lightning.trainer.lr_finder._LinearLR.last_epoch: the index of last
epoch. Default: -1.

get_lr()

base_lrs: Sequence = None

last_epoch: int = None

property lr

pytorch_lightning.trainer.lr_finder._nested_hasattr(obj, path)

pytorch_lightning.trainer.lr_finder._nested_setattr(obj, path, val)

pytorch_lightning.trainer.model_hooks module

class pytorch_lightning.trainer.model_hooks.TrainerModelHooksMixin
Bases: abc.ABC

abstract get_model()

Warning: this is just empty shell for code implemented in other class.

Return type LightningModule

has_arg(f_name, arg_name)

is_function_implemented(f_name, model=None)

is_overridden(method_name, model=None)

Return type bool

pytorch_lightning.trainer.optimizers module

class pytorch_lightning.trainer.optimizers.TrainerOptimizersMixin
Bases: abc.ABC

configureSchedulers(schedulers)

init_optimizers(model)

Return type Tuple[List, List, List]

reinit_scheduler_properties(optimizers, schedulers)
class pytorch_lightning.trainer.optimizers._MockOptimizer
Bases: torch.optim.optimizer.Optimizer

The _MockOptimizer will be used in place of an optimizer in the event that None is returned from configure_optimizers.

add_param_group(param_group)
load_state_dict(state_dict)
state_dict()
step(closure=None)
zero_grad()

pytorch_lightning.trainer.supporters module

class pytorch_lightning.trainer.supporters.TensorRunningAccum(window_length)
Bases: object

Tracks a running accumulation values (min, max, mean) without graph references.

Examples

```python
>>> accum = TensorRunningAccum(5)
>>> accum.last(), accum.mean()
(None, None)
>>> accum.append(torch.tensor(1.5))
>>> accum.last(), accum.mean()
(tensor(1.5000), tensor(1.5000))
>>> accum.append(torch.tensor(2.5))
>>> accum.last(), accum.mean()
(tensor(2.5000), tensor(2.0000))
>>> accum.reset()
>>> _ = [accum.append(torch.tensor(i)) for i in range(13)]
>>> accum.last(), accum.mean(), accum.min(), accum.max()
(tensor(12.), tensor(10.), tensor(8.), tensor(12.))
```

_agg_memory(how)
append(x)
 Add an element to the accumulator.
last()
 Get the last added element.
max()
 Get maximal value from stored elements.
mean()
 Get mean value from stored elements.
min()
 Get minimal value from stored elements.
reset()
 Empty the accumulator.

Return type None
class pytorch_lightning.trainer.trainer.Tra
ner(logger=True, checkpoint_callback=True, early_stop_callback=False, callbacks=None, default_root_dir=None, gradient_clip_val=0, process_position=0, num_nodes=1, num_processes=1, gpus=None, auto_select_gpus=False, tpu_cores=None, log_gpu_memory=None, progress_bar_refresh_rate=1, overfit_batches=0.0, track_grad_norm=-1, check_val_every_n_epoch=1, fast_dev_run=False, accumulate_grad_batches=1, max_epochs=1000, min_epochs=1, max_steps=None, min_steps=None, limit_train_batches=1.0, limit_val_batches=1.0, limit_test_batches=1.0, val_check_interval=1.0, log_save_interval=100, row_log_interval=50, distributed_backend=None, precision=32, print_nan_grads=False, weights_summary='top', weights_save_path=None, num_sanity_val_steps=2, truncated_bptt_steps=None, resume_from_checkpoint=None, profiler=None, benchmark=False, deterministic=False, reload_dataloaders_every_epoch=False, auto_lr_find=False, replace_sampler_ddp=True, terminate_on_nan=False, auto_scale_batch_size=False, prepare_data_per_node=True, amp_level='O1', num_tpu_cores=None, use_amp=None, show_progress_bar=None, val_percent_check=None, test_percent_check=None, train_percent_check=None, overfit_pct=None)

Customize every aspect of training via flags

Parameters

- **logger** (Union[LightningLoggerBase, Iterable[LightningLoggerBase], bool]) – Logger (or iterable collection of loggers) for experiment tracking.
- **checkpoint_callback** (Union[ModelCheckpoint, bool]) – Callback for checkpointing.
- **early_stop_callback** (pytorch_lightning.callbacks.EarlyStopping) –
- **callbacks** (Optional[List[Callback]]) – Add a list of callbacks.
- **default_root_dir** (Optional[str]) – Default path for logs and weights when no logger/ckpt_callback passed
- **gradient_clip_val** (float) – 0 means don’t clip.
- **gradient_clip** –

 Warning: Deprecated since version 0.7.0.
 Use `gradient_clip_val` instead. Will remove 0.9.0.

- **process_position** (int) – orders the progress bar when running multiple models on same machine.
- **num_nodes** (int) – number of GPU nodes for distributed training.
- **nb_gpu_nodes** –

 Warning: Deprecated since version 0.7.0.
 Use `num_nodes` instead. Will remove 0.9.0.

- **gpus** (Union[int, str, List[int], None]) – Which GPUs to train on.
- **auto_select_gpus** (bool) – If enabled and gpus is an integer, pick available gpus automatically. This is especially useful when GPUs are configured to be in “exclusive mode”, such that only one process at a time can access them.
- **tpu_cores** (Union[List[int], int, None]) – How many TPU cores to train on (1 or 8) / Single TPU to train on [1]
- **num_tpu_cores** (Optional[int]) – How many TPU cores to train on (1 or 8) .. warning:: .. deprecated:: 0.7.6. Will remove 0.9.0.
- **log_gpu_memory** *(Optional[str]*) – None, ‘min_max’, ‘all’. Might slow performance

- **show_progress_bar** –

 Warning: Deprecated since version 0.7.2.
 Set *progress_bar_refresh_rate* to positive integer to enable. Will remove 0.9.0.

- **progress_bar_refresh_rate** *(int)* – How often to refresh progress bar (in steps). Value 0 disables progress bar. Ignored when a custom callback is passed to *callbacks*.

- **overfit_batches** *(Union[int, float]*) – Overfit a percent of training data (float) or a set number of batches (int).

- **overfit_pct** *(Optional[float]*) –

 Warning: Deprecated since version 0.8.0.
 Use *overfit_batches* instead. Will remove 0.10.0.

- **track_grad_norm** *(Union[int, float, str]*) – -1 no tracking. Otherwise tracks that p-norm. May be set to ‘inf’ infinity-norm.

- **check_val_every_n_epoch** *(int)* – Check val every n train epochs.

- **fast_dev_run** *(bool)* – runs 1 batch of train, test and val to find any bugs (ie: a sort of unit test).

- **accumulate_grad_batches** *(Union[int, Dict[int, int], List[list]])* – Accumulates grads every k batches or as set up in the dict.

- **max_epochs** *(int)* – Stop training once this number of epochs is reached.

- **max_nb_epochs** –

 Warning: Deprecated since version 0.7.0.
 Use *max_epochs* instead. Will remove 0.9.0.

- **min_epochs** *(int)* – Force training for at least these many epochs

- **min_nb_epochs** –

 Warning: Deprecated since version 0.7.0.
 Use *min_epochs* instead. Will remove 0.9.0.

- **max_steps** *(Optional[int])* – Stop training after this number of steps. Disabled by default (None).

- **min_steps** *(Optional[int])* – Force training for at least these number of steps. Disabled by default (None).

- **limit_train_batches** *(Union[int, float])* – How much of training dataset to check.
• **limit_val_batches** *(Union[int, float]*) – How much of validation dataset to check (floats = percent, int = num_batches)

• **limit_test_batches** *(Union[int, float]*) – How much of test dataset to check (floats = percent, int = num_batches)

• **train_percent_check** *(Optional[float]*) –

  ```markdown
  Warning: Deprecated since version 0.8.0.
  Use limit_train_batches instead. Will remove v0.10.0.
  ```

• **val_percent_check** *(Optional[float]*) –

  ```markdown
  Warning: Deprecated since version 0.8.0.
  Use limit_val_batches instead. Will remove v0.10.0.
  ```

• **test_percent_check** *(Optional[float]*) –

  ```markdown
  Warning: Deprecated since version 0.8.0.
  Use limit_test_batches instead. Will remove v0.10.0.
  ```

• **val_check_interval** *(Union[int, float]*) – How often within one training epoch to check the validation set

• **log_save_interval** *(int)* – Writes logs to disk this often

• **row_log_interval** *(int)* – How often to add logging rows (does not write to disk)

• **add_row_log_interval** –

  ```markdown
  Warning: Deprecated since version 0.7.0.
  Use row_log_interval instead. Will remove 0.9.0.
  ```

• **distributed_backend** *(Optional[str]*) – The distributed backend to use (dp, ddp, ddp2, ddp_spawn)

• **use_amp** –

  ```markdown
  Warning: Deprecated since version 0.7.0.
  Use precision instead. Will remove 0.9.0.
  ```

• **precision** *(int)* – Full precision (32), half precision (16).

• **print_nan_grads** *(bool)* –
Warning: Deprecated since version 0.7.2.
Has no effect. When detected, NaN grads will be printed automatically. Will remove 0.9.0.

- **weights_summary** *(Optional)*
 Prints a summary of the weights when training begins.

- **weights_save_path** *(Optional)*
 Where to save weights if specified. Will override `default_root_dir` for checkpoints only. Use this if for whatever reason you need the checkpoints stored in a different place than the logs written in `default_root_dir`.

- **amp_level** *(str)*
 The optimization level to use (O1, O2, etc...).

- **num_sanity_val_steps** *(int)*
 Sanity check runs n batches of val before starting the training routine.

- **truncated_bptt_steps** *(Optional)*
 Truncated back prop breaks performs backprop every k steps of

- **resume_from_checkpoint** *(Optional)*
 To resume training from a specific checkpoint pass in the path here. This can be a URL.

- **profiler** *(Union)*
 To profile individual steps during training and assist in

- **reload_dataloaders_every_epoch** *(bool)*
 Set to True to reload dataloaders every epoch

- **auto_lr_find** *(Union)*
 If set to True, will initially run a learning rate finder, trying to optimize initial learning for faster convergence. Sets learning rate in self.lr or self.learning_rate in the LightningModule. To use a different key, set a string instead of True with the key name.

- **replace_sampler_ddp** *(bool)*
 Explicitly enables or disables sampler replacement. If not specified this will toggled automatically ddp is used

- **benchmark** *(bool)*
 If true enables cudnn.benchmark.

- **deterministic** *(bool)*
 If true enables cudnn.deterministic

- **terminate_on_nan** *(bool)*
 If set to True, will terminate training (by raising a ValueError) at the end of each training batch, if any of the parameters or the loss are NaN or +/-inf.

- **auto_scale_batch_size** *(Union)*
 If set to True, will initially run a batch size finder trying to find the largest batch size that fits into memory. The result will be stored in self.batch_size in the LightningModule. Additionally, can be set to either power that estimates the batch size through a power search or binsearch that estimates the batch size through a binary search.

- **prepare_data_per_node** *(bool)*
 If True, each LOCAL_RANK=0 will call prepare data. Otherwise only NODE_RANK=0, LOCAL_RANK=0 will prepare data

```python
_Trainer__attach_dataloaders(model, train_dataloader=None, val_dataloaders=None, test_dataloaders=None)
```

Return type: Union[int, str]

```python
_arg_default()
```
Return type Union[int, str]

classmethod add_argparse_args(parent_parser)
 Extends existing argparse by default Trainer attributes.

 Parameters parent_parser (ArgumentParser) – The custom cli arguments parser, which will be extended by the Trainer default arguments.

 Only arguments of the allowed types (str, float, int, bool) will extend the parent_parser.

Examples

```python
>>> import argparse
>>> import pprint

>>> parser = argparse.ArgumentParser()

>>> parser = Trainer.add_argparse_args(parser)

>>> args = parser.parse_args([])

>>> pprint.pprint(vars(args))
{...
    'check_val_every_n_epoch': 1,
    'checkpoint_callback': True,
    'default_root_dir': None,
    'deterministic': False,
    'distributed_backend': None,
    'early_stop_callback': False,
    ...
    'logger': True,
    'max_epochs': 1000,
    'max_steps': None,
    'min_epochs': 1,
    'min_steps': None,
    ...
    'profiler': None,
    'progress_bar_refresh_rate': 1,
    ...
}
```

Return type ArgumentParser

barrier(name)

can_prepare_data()

check_model_configuration(model)
 Checks that the model is configured correctly before training or testing is started.

 Parameters model (LightningModule) – The model to check the configuration.

classmethod default_attributes()

fit(model, train_dataloader=None, val_dataloaders=None)
 Runs the full optimization routine.

 Parameters

 • model (LightningModule) – Model to fit.

 • train_dataloader (Optional[DataLoader]) – A Pytorch DataLoader with training samples. If the model has a predefined train_dataloader method this will be skipped.
• **val_dataloaders** ([Union[DataLoader, List[DataLoader], None]](Union[DataLoader, List[DataLoader], None])) – Either a single Pytorch Dataloader or a list of them, specifying validation samples. If the model has a predefined val_dataloaders method this will be skipped.

Example:

```python
# Option 1
# Define the train_dataloader() and val_dataloader() fxs
# in the LightningModule
# RECOMMENDED FOR MOST RESEARCH AND APPLICATIONS TO MAINTAIN READABILITY
trainer = Trainer()
model = LightningModule()
trainer.fit(model)

# Option 2
# in production cases we might want to pass different datasets to the same model
# Recommended for PRODUCTION SYSTEMS
train, val = DataLoader(...), DataLoader(...)
trainer = Trainer()
model = LightningModule()
trainer.fit(model, train_dataloader=train, val_dataloaders=val)

# Option 1 & 2 can be mixed, for example the training set can be defined as part of the model, and validation can then be feed to .fit()
```

classmethod from_argparse_args *(args, **kwargs)*

Create an instance from CLI arguments.

Parameters

- **args** ([Union[Namespace, ArgumentParser]](Union[Namespace, ArgumentParser])) – The parser or namespace to take arguments from. Only known arguments will be parsed and passed to the Trainer.

- **kwargs** – Additional keyword arguments that may override ones in the parser or namespace. These must be valid Trainer arguments.

Example

```python
>>> parser = ArgumentParser(add_help=False)
>>> parser = Trainer.add_argparse_args(parser)
>>> parser.add_argument('--my_custom_arg', default='something')
>>> args = Trainer.parse_argparser(parser.parse_args(''))
>>> trainer = Trainer.from_argparse_args(args, logger=False)
```

Return type Trainer

classmethod get_deprecated_arg_names *

Returns a list with deprecated Trainer arguments.

Return type List

classmethod get_init_arguments_and_types *

Scans the Trainer signature and returns argument names, types and default values.

Returns (argument name, set with argument types, argument default value).

Return type List with tuples of 3 values
Examples

```python
>>> args = Trainer.get_init_arguments_and_types()
>>> import pprint
>>>
>>> pprint.pprint(sorted(args))
[
('accumulate_grad_batches',
  (int, Dict[int, int], List[list]),
  1),
...
('callbacks',
  List[pytorch_lightning.callbacks.base.Callback],
  None),
('check_val_every_n_epoch', (int,), 1),
...
('max_epochs', (int,), 1000),
...
('precision', (int,), 32),
('prepare_data_per_node', (bool,), True),
('print_nan_grads', (bool,), False),
('process_position', (int,), 0),
('profiler',
  pytorch_lightning.profilerprofilers.BaseProfiler>,
  bool, None),
...
...
```  

static parse_argparser (arg_parser)

Parse CLI arguments, required for custom bool types.

Return type Namespace

run_pretrain_routine (model)

Sanity check a few things before starting actual training.

Parameters

model (**LightningModule**) – The model to run sanity test on.

test (**model=None, test_dataloaders=None, ckpt_path='best'**)

Separates from fit to make sure you never run on your test set until you want to.

Parameters

- **model** (**Optional[LightningModule]**) – The model to test.
- **test_dataloaders** (**Union[DataLoader, List[DataLoader], None]**) – Either a single Pytorch Dataloader or a list of them, specifying validation samples.
- **ckpt_path** (**Optional[str]**) – Either best or path to the checkpoint you wish to test. If None, use the weights from the last epoch to test. Default to best.

Example:

```bash
# Option 1
# run test with the best checkpoint from `ModelCheckpoint` after fitting.
test = DataLoader(...)  
trainer = Trainer()
model = LightningModule()

trainer.fit(model)  
```
trainer.test(test_dataloaders=test)

Option 2
run test with the specified checkpoint after fitting
 test = DataLoader(...)
 trainer = Trainer()
 model = LightningModule()

 trainer.fit(model)
 trainer.test(test_dataloaders=test, ckpt_path='path/to/checkpoint.ckpt')

Option 3
run test with the weights from the end of training after fitting
 test = DataLoader(...)
 trainer = Trainer()
 model = LightningModule()

 trainer.fit(model)
 trainer.test(test_dataloaders=test, ckpt_path=None)

Option 4
run test from a loaded model. `ckpt_path` is ignored in this case.
 test = DataLoader(...)
 model = LightningModule.load_from_checkpoint('path/to/checkpoint.ckpt')
 trainer = Trainer()
 trainer.test(model, test_dataloaders=test)

DEPRECATED_IN_0_9 = ('use_amp', 'show_progress_bar', 'training_tqdm_dict', 'num_tpu_cores')
accumulate_grad_batches = None
checkpoint_callback = None
property data_parallel
 Return type bool
 Type Warning
early_stop_callback = None
global_rank = None
property is_global_zero
 this is just empty shell for code implemented in other class.
 Type Warning
logger = None
lr_schedulers = None
model = None
property num_gpus
 this is just empty shell for code implemented in other class.
 Type Warning
 Return type int
num_training_batches = None
on_gpu = None
on_tpu = None
optimizers = None

property progress_bar_callback

property progress_bar_dict
 Read-only for progress bar metrics.

 Return type dict

resume_from_checkpoint = None
root_gpu = None
scaler = None

property slurm_job_id
 this is just empty shell for code implemented in other class.

 Type Warning

 Return type Optional[int]

use_ddp = None
use_ddp2 = None
use_horovod = None
use_native_amp = None
weights_save_path = None

class pytorch_lightning.trainer.trainer._PatchDataLoader (dataloader)
 Bases: object

 Callable object for patching dataloaders passed into trainer.fit(). Use this class to override model.*_dataloader() and be pickle-compatible.

 Parameters dataloader (Union[List[DataLoader], DataLoader]) – Dataloader object to return when called.

 __call__()

 Call self as a function.

 Return type Union[List[DataLoader], DataLoader]

pytorch_lightning.trainer.trainer._determine_limit_batches (batches)

 Return type Union[int, float]

pytorch_lightning.trainer.training_io module

Lightning can automate saving and loading checkpoints

Checkpointing is enabled by default to the current working directory. To change the checkpoint path pass in:

```
Trainer(default_root_dir='/your/path/to/save/checkpoints')
```

To modify the behavior of checkpointing pass in your own callback.
from pytorch_lightning.callbacks import ModelCheckpoint

```python
# DEFAULTS used by the Trainer
checkpoint_callback = ModelCheckpoint(
    filepath=os.getcwd(),
    save_top_k=1,
    verbose=True,
    monitor='val_loss',
    mode='min',
    prefix=''
)
```

trainer = Trainer(checkpoint_callback=checkpoint_callback)

Restoring training session

You might want to not only load a model but also continue training it. Use this method to restore the trainer state as well. This will continue from the epoch and global step you last left off. However, the dataloaders will start from the first batch again (if you shuffled it shouldn’t matter).

Lightning will restore the session if you pass a logger with the same version and there’s a saved checkpoint.

```python
from pytorch_lightning import Trainer
```

```python
trainer = Trainer(
    resume_from_checkpoint=PATH
)
```

```python
# this fit call loads model weights and trainer state
# the trainer continues seamlessly from where you left off
# without having to do anything else.
trainer.fit(model)
```

The trainer restores:

- global_step
- current_epoch
- All optimizers
- All lr_schedulers
- Model weights

You can even change the logic of your model as long as the weights and “architecture” of the system isn’t different. If you add a layer, for instance, it might not work.

At a rough level, here’s what happens inside Trainer `pytorch_lightning.base_module.saving.py`:

```python
self.global_step = checkpoint['global_step']
self.current_epoch = checkpoint['epoch']

# restore the optimizers
optimizer_states = checkpoint['optimizer_states']
for optimizer, opt_state in zip(self.optimizers, optimizer_states):
    optimizer.load_state_dict(opt_state)
```

(continues on next page)
```python
# restore the lr schedulers
lr_schedulers = checkpoint['lr_schedulers']
for scheduler, lrs_state in zip(self.lr_schedulers, lr_schedulers):
    scheduler['scheduler'].load_state_dict(lrs_state)

# uses the model you passed into trainer
model.load_state_dict(checkpoint['state_dict'])
```

```python
class pytorch_lightning.trainer.training_io.TrainerIOMixin
    Bases: abc.ABC

    _atomic_save(checkpoint, filepath)
    Saves a checkpoint atomically, avoiding the creation of incomplete checkpoints.
    This will create a temporary checkpoint with a suffix of .part, then copy it to the final location once
    saving is finished.

    Parameters
    • **checkpoint** – The object to save. Built to be used with the dump_checkpoint
      method, but can deal with anything which torch.save accepts.
    • **filepath** (str) – The path to which the checkpoint will be saved. This points to the
      file that the checkpoint will be stored in.

dump_checkpoint(weights_only=False)
Creating model checkpoint.

Parameters weights_only (bool) – saving model weights only

Return type **dict**

Returns structured dictionary

get_model()

hpc_load(folderpath, on_gpu)

hpc_save(folderpath, logger)

max_ckpt_in_folder(path, name_key='ckpt_')

register_slurm_signal_handlers()

restore(checkpoint_path, on_gpu)
Restore training state from checkpoint. Also restores all training state like: - epoch - callbacks - schedulers
- optimizer

restore_hpc_weights_if_needed(model)
If there is a set of hpc weights, use as signal to restore model.

restore_training_state(checkpoint)
Restore trainer state. Model will get its change to update :param
_sphinx_paramlinks_pytorch_lightning.trainer.training_io.TrainerIOMixin.restore_training_state.checkpoint:
:return:

restore_weights(model)
We attempt to restore weights in this order: 1. HPC weights. 2. if no HPC weights restore checkpoint_path
weights 3. otherwise don’t restore weights

save_checkpoint(filepath, weights_only=False)

sig_handler(signum, frame)
```

37.7. pytorch_lightning.trainer package 521
term_handler \((\text{signum}, \text{frame}) \)

accumulate_grad_batches: int = None
checkpoint_callback: ... = None
early_stop_callback: ... = None
global_rank: int = None
logger: LightningLoggerBase = None
lr_schedulers: ... = None
model: LightningModule = None
num_training_batches: int = None
on_gpu: bool = None
on_tpu: bool = None
optimizers: ... = None
resume_from_checkpoint: ... = None
root_gpu: ... = None
scaler: ... = None
use_amp: bool = None
use_ddp: bool = None
use_ddp2: bool = None
use_horovod: bool = None
use_native_amp: bool = None
weights_save_path: str = None

pytorch_lightning.trainer.training_loop module

The lightning training loop handles everything except the actual computations of your model. To decide what will happen in your training loop, define the training_step function.

Below are all the things lightning automates for you in the training loop.

Accumulated gradients

Accumulated gradients runs K small batches of size N before doing a backwards pass. The effect is a large effective batch size of size KxN.

```python
# DEFAULT (ie: no accumulated grads)
trainer = Trainer(accumulate_grad_batches=1)
```
Force training for min or max epochs

It can be useful to force training for a minimum number of epochs or limit to a max number.

```python
# DEFAULT
trainer = Trainer(min_epochs=1, max_epochs=1000)
```

Force disable early stop

To disable early stopping pass None to the `early_stop_callback`

```python
# DEFAULT
trainer = Trainer(early_stop_callback=None)
```

Gradient Clipping

Gradient clipping may be enabled to avoid exploding gradients. Specifically, this will clip the gradient norm computed over all model parameters together.

```python
# DEFAULT (ie: don't clip)
trainer = Trainer(gradient_clip_val=0)

# clip gradients with norm above 0.5
trainer = Trainer(gradient_clip_val=0.5)
```

Inspect gradient norms

Looking at grad norms can help you figure out where training might be going wrong.

```python
# DEFAULT (-1 doesn't track norms)
trainer = Trainer(track_grad_norm=-1)

# track the LP norm (P=2 here)
trainer = Trainer(track_grad_norm=2)
```

Set how much of the training set to check

If you don’t want to check 100% of the training set (for debugging or if it’s huge, set this flag. `limit_train_batches` will be overwritten by `overfit_batches` if `overfit_batches > 0`.

```python
# DEFAULT
trainer = Trainer(limit_train_batches=1.0)

# check 10% only
trainer = Trainer(limit_train_batches=0.1)

# check 10 batches only
trainer = Trainer(limit_train_batches=10)
```
Packed sequences as inputs

When using PackedSequence, do 2 things: 1. return either a padded tensor in dataset or a list of variable length tensors in the dataloader collate_fn (example above shows the list implementation). 2. Pack the sequence in forward or training and validation steps depending on use case.

```python
# For use in dataloader
def collate_fn(batch):
    x = [item[0] for item in batch]
    y = [item[1] for item in batch]
    return x, y

# In module
def training_step(self, batch, batch_idx):
    x = rnn.pack_sequence(batch[0], enforce_sorted=False)
    y = rnn.pack_sequence(batch[1], enforce_sorted=False)
```

Truncated Backpropagation Through Time

There are times when multiple backwards passes are needed for each batch. For example, it may save memory to use Truncated Backpropagation Through Time when training RNNs.

When this flag is enabled each batch is split into sequences of size `truncated_bptt_steps` and passed to `training_step(...)` separately. A default splitting function is provided, however, you can override it for more flexibility. See `tbptt_split_batch`.

```python
# DEFAULT (single backwards pass per batch)
trainer = Trainer(truncated_bptt_steps=None)

# (split batch into sequences of size 2)
trainer = Trainer(truncated_bptt_steps=2)
```

NaN detection and intervention

When the `terminate_on_nan` flag is enabled, after every forward pass during training, Lightning will check that

1. the loss you return in `training_step` is finite (not NaN and not +/-inf)
2. the model parameters have finite values.

Lightning will terminate the training loop with an error message if NaN or infinite values are detected. If this happens, you should investigate numerically unstable operations in your model.

```python
# DEFAULT (won't perform the NaN check)
trainer = Trainer(terminate_on_nan=False)

# (NaN check each batch and terminate on NaN or infinite values)
trainer = Trainer(terminate_on_nan=True)
```

```python
class pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin
    Bases: abc.ABC

    _get_optimizers_iterable()

    abstract add_progress_bar_metrics(*args)
        Warning: this is just empty shell for code implemented in other class.
```

524 Chapter 37. Indices and tables
call_checkpoint_callback()

abstract clip_gradients()
Warning: this is just empty shell for code implemented in other class.

abstract detect_nan_tensors(*args)
Warning: this is just empty shell for code implemented in other class.

abstract get_model()
Warning: this is just empty shell for code implemented in other class.

Return type LightningModule

abstract has_arg(*args)
Warning: this is just empty shell for code implemented in other class.

abstract is_function_implemented(*args, **kwargs)
Warning: this is just empty shell for code implemented in other class.

abstract is_overridden(*args)
Warning: this is just empty shell for code implemented in other class.

abstract log_metrics(*args)
Warning: this is just empty shell for code implemented in other class.

abstract process_output(*args)
Warning: this is just empty shell for code implemented in other class.

abstract reset_train_dataloader(*args)
Warning: this is just empty shell for code implemented in other class.

abstract reset_val_dataloader(model)
Warning: this is just empty shell for code implemented in other class.

abstract run_evaluation(*args)
Warning: this is just empty shell for code implemented in other class.

run_training_batch(batch, batch_idx)
run_training_epoch()
run_training_teardown()
train()

training_forward(batch, batch_idx, opt_idx, hiddens)
Handle forward for each training case (distributed, single gpu, etc...)
:param _sphinx_paramlinks_pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin.training_forward.batch:
:param _sphinx_paramlinks_pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin.training_forward.batch_idx:
:return:

abstract transfer_batch_to_gpu(*args)
Warning: this is just empty shell for code implemented in other class.

abstract transfer_batch_to_tpu(*args)
Warning: this is just empty shell for code implemented in other class.

update_learning_rates(interval)
Update learning rates.

Parameters interval (str) – either ‘epoch’ or ‘step’.

accumulate_grad_batches: int = None
accumulation_scheduler: ... = None
batch_idx: int = None
callback_metrics: ... = None
callbacks: List[Callback] = None
check_val_every_n_epoch: ... = None
checkpoint_callback: ... = None
data_parallel_device_ids: ... = None
disable_validation: bool = None
eyear_stop_callback: ... = None
enable_early_stop: ... = None
fast_dev_run: ... = None
global_rank: int = None
global_step: int = None
interactive_ddp_procs: ... = None
interrupted: bool = None
log_save_interval: float = None
logger: Union[LightningLoggerBase, bool] = None
lr_schedulers: ... = None
max_epochs: int = None
max_steps: int = None
min_epochs: int = None
min_steps: int = None
model: LightningModule = None
num_training_batches: int = None
num_val_batches: int = None
on_batch_end: Callable = None
on_batch_start: Callable = None
on_epoch_end: Callable = None
on_epoch_start: Callable = None
on_gpu: bool = None
on_keyboard_interrupt: Callable = None
on_train_end: Callable = None
on_train_start: Callable = None
on_validation_end: Callable = None
optimizer_frequencies: ... = None
optimizers: ... = None
precision: ... = None
profiler: ... = None
progress_bar_dict: ... = None
reduce_lr_on_plateau_scheduler: ... = None
reload_dataloaders_every_epoch: bool = None
row_log_interval: float = None
running_loss: ... = None
single_gpu: bool = None
terminate_on_nan: bool = None
testing: bool = None
total_batch_idx: int = None
tpu_id: int = None
track_grad_norm: ... = None
train_dataloader: DataLoader = None
truncated_bptt_steps: ... = None
use_ddp: bool = None
use_ddp2: bool = None
use_dp: bool = None
use_horovod: bool = None
use_tpu: bool = None
val_check_batch: ... = None

`pytorch_lightning.trainer.training_loop._with_is_last(iterable)`
Pass through values from the given iterable with an added boolean indicating if this is the last item. See https://stackoverflow.com/a/1630350

`pytorch_lightning.trainer.training_tricks module`

```python
class pytorch_lightning.trainer.training_tricks.TrainerTrainingTricksMixin
    Bases: abc.ABC

    _TrainerTrainingTricksMixin__scale_batch_dump_params()
    _TrainerTrainingTricksMixin__scale_batch_reset_params(model, steps_per_trial)
    _TrainerTrainingTricksMixin__scale_batch_restore_params()
    clip_gradients()
    configure_accumulated_gradients(accumulate_grad_batches)
    detect_nan_tensors(loss)

    Return type None

    abstract fit(*args)
    Warning: this is just empty shell for code implemented in other class.

    abstract get_model()
    Warning: this is just empty shell for code implemented in other class.
```
Return type LightningModule

print_nan_gradients()

Return type None

abstract restore(*args)
Warning: this is just empty shell for code implemented in other class.

abstract save_checkpoint(*args)
Warning: this is just empty shell for code implemented in other class.

scale_batch_size(model, mode='power', steps_per_trial=3, init_val=2, max_trials=25, batch_arg_name='batch_size')
Will iteratively try to find the largest batch size for a given model that does not give an out of memory (OOM) error.

Parameters

• model (LightningModule) – Model to fit.

• mode (str) – string setting the search mode. Either power or binsearch. If mode is power we keep multiplying the batch size by 2, until we get an OOM error. If mode is ‘binsearch’, we will initially also keep multiplying by 2 and after encountering an OOM error do a binary search between the last successful batch size and the batch size that failed.

• steps_per_trial (int) – number of steps to run with a given batch size. Idealy 1 should be enough to test if a OOM error occurs, however in practise a few are needed

• init_val (int) – initial batch size to start the search with

• max_trials (int) – max number of increase in batch size done before algorithm is terminated

default_root_dir: str = None
gradient_clip_val: ... = None
on_gpu: bool = None
precision: int = None
progress_bar_callback: ... = None

pytorch_lightning.trainer.training_tricks._adjust_batch_size(trainer, batch_arg_name='batch_size', factor=1.0, value=None, desc=None)

Function for adjusting the batch size. It is expected that the user has provided a model that has a hparam field called batch_size i.e. model.hparams.batch_size should exist.

Parameters

• trainer – instance of pytorch_lightning.Trainer

• batch_arg_name (str) – field where batch_size is stored in model.hparams

• factor (float) – value which the old batch size is multiplied by to get the new batch size

• value (Optional[int]) – if a value is given, will override the batch size with this value. Note that the value of factor will not have an effect in this case
• **desc** *(Optional[str])* – either *succeeded* or *failed*. Used purely for logging

```python
pytorch_lightning.trainer.training_tricks._run_binsearch_scaling(trainer, model, new_size, batch_arg_name, max_trials)
```

Batch scaling mode where the size is initially doubled at each iteration until an OOM error is encountered. Hereafter, the batch size is further refined using a binary search.

```python
pytorch_lightning.trainer.training_tricks._run_power_scaling(trainer, model, new_size, batch_arg_name, max_trials)
```

Batch scaling mode where the size is doubled at each iteration until an OOM error is encountered.

37.8 `pytorch_lightning.utilities` package

General utilities

37.8.1 Submodules

`pytorch_lightning.utilities.apply_func` module

```python
pytorch_lightning.utilities.apply_func.apply_to_collection(data, dtype, function, *args, **kwargs)
```

Recursively applies a function to all elements of a certain dtype.

Parameters

- **data** *(Any)* – the collection to apply the function to
- **dtype** *(Union[type, tuple])* – the given function will be applied to all elements of this dtype
- **function** *(Callable)* – the function to apply
- ***args** – positional arguments (will be forwarded to calls of function)
- ****kwargs** – keyword arguments (will be forwarded to calls of function)

Return type *Any*

Returns the resulting collection

```python
pytorch_lightning.utilities.apply_func.move_data_to_device(batch, device)
```

Transfers a collection of tensors to the given device.

Parameters

- **batch** *(Any)* – A tensor or collection of tensors. See `apply_to_collection()` for a list of supported collection types.
- **device** *(device)* – The device to which tensors should be moved

Returns the same collection but with all contained tensors residing on the new device.

See also:
• `torch.Tensor.to()`
• `torch.device`

pytorch_lightning.utilities.cloud_io module

`pytorch_lightning.utilities.cloud_io.load(path_or_url, map_location=None)`

pytorch_lightning.utilities.device_dtype_mixin module

class `pytorch_lightning.utilities.device_dtype_mixin.DeviceDtypeModuleMixin(*args, **kwargs)`

Bases: `torch.nn.Module`

cpu()
Moves all model parameters and buffers to the CPU.

Returns: self
Return type: Module

cuda(device=None)
Moves all model parameters and buffers to the GPU. This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.

Parameters:

- `device` (Optional[int]) – if specified, all parameters will be copied to that device

Returns: self
Return type: Module

double()
Casts all floating point parameters and buffers to `double` datatype.

Returns: self
Return type: Module

float()
Casts all floating point parameters and buffers to `float` datatype.

Returns: self
Return type: Module

half()
Casts all floating point parameters and buffers to `half` datatype.

Returns: self
Return type: Module

to(*args, **kwargs)
Moves and/or casts the parameters and buffers.

This can be called as .. function:: to(device=None, dtype=None, non_blocking=False) .. function:: to(dtype, non_blocking=False) .. function:: to(tensor, non_blocking=False) Its signature is similar to `torch.Tensor.to()`, but only accepts floating point desired `dtype` s. In addition, this method will only cast the floating point parameters and buffers to `dtype` (if given). The integral parameters and buffers will be moved `device`, if that is given, but with dtypes unchanged. When `non_blocking` is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices. See below for examples.
Note: This method modifies the module in-place.

Parameters

- **device** – the desired device of the parameters and buffers in this module
- **dtype** – the desired floating point type of the floating point parameters and buffers in this module
- **tensor** – Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module

Returns self

Return type Module

Example:

```python
class ExampleModule(DeviceDtypeModuleMixin):
    def __init__(self, weight: torch.Tensor):
        super().__init__()
        self.register_buffer('weight', weight)

_ = torch.manual_seed(0)
module = ExampleModule(torch.rand(3, 4))
module.weight
module.to(torch.double)
module.weight
module.to(cpu, dtype=torch.float16, non_blocking=True)
```

type (*dst_type*)

Casts all parameters and buffers to *dst_type*.

Parameters

- **dst_type** (*type or string*) – the desired type

Returns self

Return type Module

_property device: ... = None
_property dtype: Union[str, torch.dtype] = None

property device

Return type Union[str, device]

property dtype

Return type Union[str, dtype]
pytorch_lightning.utilities.distributed module

- `pytorch_lightning.utilities.distributed._info(*args, **kwargs)`
- `pytorch_lightning.utilities.distributed._warn(*args, **kwargs)`
- `pytorch_lightning.utilities.distributed.rank_zero_info(*args, **kwargs)`
- `pytorch_lightning.utilities.distributed.rank_zero_only(fn)`
- `pytorch_lightning.utilities.distributed.rank_zero_warn(*args, **kwargs)`

pytorch_lightning.utilities.exceptions module

- `exception pytorch_lightning.utilities.exceptions.MisconfigurationException Bases: Exception`

pytorch_lightning.utilities.memory module

- `pytorch_lightning.utilities.memory.garbage_collection_cuda()` Garbage collection Torch (CUDA) memory.
- `pytorch_lightning.utilities.memory.is_cuda_out_of_memory(exception)`
- `pytorch_lightning.utilities.memory.is_cudnn_snafu(exception)`
- `pytorch_lightning.utilities.memory.is_oom_error(exception)`
- `pytorch_lightning.utilities.memory.is_out_of_cpu_memory(exception)`
- `pytorch_lightning.utilities.memory.recursive_detach(in_dict)` Detach all tensors in `in_dict`.
 May operate recursively if some of the values in `in_dict` are dictionaries which contain instances of `torch.Tensor`. Other types in `in_dict` are not affected by this utility function.

 Parameters `in_dict (dict)` -
 Returns
 Return type `out_dict`

pytorch_lightning.utilities.parsing module

- `class pytorch_lightning.utilities.parsing.AttributeDict Bases: dict`

 Extended dictionary accessible with dot notation.

  ```python
  >>> ad = AttributeDict({'key1': 1, 'key2': 'abc'})
  >>> ad.key1
  1
  >>> ad.update({'my-key': 3.14})
  >>> ad.update(mew_key=42)
  >>> ad.key1 = 2
  >>> ad
  "key1": 2
  "key2": abc
  "mew_key": 42
  "my-key": 3.14
  ```
pytorch_lightning.utilities.parsing.clean_namespace(hparams)
Removes all functions from hparams so we can pickle.

pytorch_lightning.utilities.parsing.collect_init_args(frame, path_args, inside=False)
Recursively collects the arguments passed to the child constructors in the inheritance tree.

Parameters

- **frame** – the current stack frame
- **path_args** (list) – a list of dictionaries containing the constructor args in all parent classes
- **inside** (bool) – track if we are inside inheritance path, avoid terminating too soon

Return type list

Returns A list of dictionaries where each dictionary contains the arguments passed to the constructor at that level. The last entry corresponds to the constructor call of the most specific class in the hierarchy.

pytorch_lightning.utilities.parsing.get_init_args(frame)

Return type dict

pytorch_lightning.utilities.parsing.str_to_bool(val)
Convert a string representation of truth to true (1) or false (0). Copied from the python implementation distutils.util.strtobool


```
>>> str_to_bool('YES')
1
>>> str_to_bool('FALSE')
0
```

pytorch_lightning.utilities.seed module

Helper functions to help with reproducibility of models.

pytorch_lightning.utilities.seed._select_seed_randomly(min_seed_value=0, max_seed_value=255)

Return type int

pytorch_lightning.utilities.seed.seed_everything(seed=None)
Function that sets seed for pseudo-random number generators in: pytorch, numpy, python.random and sets PYTHONHASHSEED environment variable.

Return type int
pytorch_lightning.callbacks, 334
pytorch_lightning.callbacks.base, 343
pytorch_lightning.callbacks.early_stopping, 344
pytorch_lightning.callbacks.gradient_accumulation_scheduler, 345
pytorch_lightning.callbacks.lr_logger, 346
pytorch_lightning.callbacks.model_checkpoint, 346
pytorch_lightning.callbacks.progress, 349
pytorch_lightning.core, 267
pytorch_lightning.core.decorators, 298
pytorch_lightning.core.grads, 299
pytorch_lightning.core.hooks, 299
pytorch_lightning.core.lightning, 303
pytorch_lightning.core.memory, 328
pytorch_lightning.core.saving, 331
pytorch_lightning.loggers, 352
pytorch_lightning.loggers.base, 373
pytorch_lightning.loggers.comet, 378
pytorch_lightning.loggers.mlflow, 380
pytorch_lightning.loggers.neptune, 381
pytorch_lightning.loggers.tensorboard, 386
pytorch_lightning.loggers.test_tube, 388
pytorch_lightning.loggers.trains, 390
pytorch_lightning.loggers.wandb, 394
pytorch_lightning.metrics, 396
pytorch_lightning.metrics.classification, 423
pytorch_lightning.metrics.converters, 435
pytorch_lightning.metrics.functional, 411
pytorch_lightning.metrics.functional.classification, 411
pytorch_lightning.metrics.functional.reduction, 423
pytorch_lightning.metrics.metric, 438
pytorch_lightning.metrics.regression, 440
pytorch_lightning.metrics.sklearns, 442
pytorch_lightning.overrides, 454
pytorch_lightning.overrides.data_parallel, 454
pytorch_lightning.profiler, 455
pytorch_lightning.profiler.profilers, 459
pytorch_lightning.trainer, 461
pytorch_lightning.trainer.auto_mix_precision, 488
pytorch_lightning.trainer.callback_config, 489
pytorch_lightning.trainer.callback_hook, 489
pytorch_lightning.trainer.data_loading, 491
pytorch_lightning.trainer.deprecated_api, 492
pytorch_lightning.trainer.distrib_data_parallel, 493
pytorch_lightning.trainer.distrib_parts, 497
pytorch_lightning.trainer.evaluation_loop, 500
pytorch_lightning.trainer.ignored_warnings, 500
pytorch_lightning.trainer.logging, 504
pytorch_lightning.trainer.lr_finder, 505
pytorch_lightning.trainer.model_hooks, 508
pytorch_lightning.trainer.optimizers, 508
pytorch_lightning.trainer.supporters, 509
pytorch_lightning.trainer.trainer, 510
pytorch_lightning.trainer.training_io, 519
pytorch_lightning.trainer.training_loop, 522
pytorch_lightning.trainer.training_tricks, 535
pytorch_lightning.utilities, 529
pytorch_lightning.utilities.apply_func, 529
pytorch_lightning.utilities.cloud_io, 530
pytorch_lightning.utilities.device_dtype_mixin, 530
pytorch_lightning.utilities.distributed, 532
pytorch_lightning.utilities.exceptions, 532
pytorch_lightning.utilities.memory, 532
pytorch_lightning.utilities.parsing, 532
pytorch_lightning.utilities.seed, 533
INDEX

Symbols

_ ExponentialLR (class in torch_lightning.trainer.lr_finder), 506
_ LRCallback (class in torch_lightning.trainer.lr_finder), 506
_ LRFinder (class in torch_lightning.trainer.lr_finder), 507
_ LightningModule__get_hparams_assignment_variable (pytorch_lightning.core.LightningModule method), 273
_ LightningModule__get_hparams_assignment_variable (pytorch_lightning.core.lightning.LightningModule method), 303
_ LinearLR (class in torch_lightning.trainer.lr_finder), 508
_ MockOptimizer (class in torch_lightning.trainer.optimizers), 508
_ PatchDataLoader (class in torch_lightning.trainer.trainer), 519
_ TrainerDPMixin__transfer_batch_to_device (pytorch_lightning.trainer.distrib_parts.TrainerDPMixin method), 497
_ TrainerLRFinderMixin__lr_finder_dump_params (pytorch_lightning.trainer.lr_finder.TrainerLRFinderMixin method), 505
_ TrainerLRFinderMixin__lr_finder_restore_params (pytorch_lightning.trainer.lr_finder.TrainerLRFinderMixin method), 505
_ TrainerTrainingTricksMixin__scale_batch_dump_params (pytorch_lightning.trainer.training_tricks.TrainerTrainingTricksMixin method), 483
_ TrainerTrainingTricksMixin__scale_batch_reset_params (pytorch_lightning.trainer.training_tricks.TrainerTrainingTricksMixin method), 527
_ TrainerTrainingTricksMixin__scale_batch_restore_params (pytorch_lightning.trainer.training_tricks.TrainerTrainingTricksMixin method), 527
_ Trainer__attach_dataloaders (pytorch_lightning.trainer.trainer.Trainer method), 483
_ Trainer__attach_dataloaders (pytorch_lightning.trainer.trainer.Trainer method), 514

__call__ (pytorch_lightning.metrics.metric.NumpyMetric method), 438
__call__ (pytorch_lightning.metrics.metric.TensorCollectionMetric method), 439
__call__ (pytorch_lightning.metrics.metric.TensorMetric method), 439
__call__ (pytorch_lightning.trainer.trainer_PatchDataLoader method), 519
__call__ (pytorch_lightning.trainer.supporters.TensorRunningAccum method), 509
__call__ (pytorch_lightning.loggers.LightingLoggerBase method), 353
__call__ (pytorch_lightning.loggers.base.LightingLoggerBase method), 374
__call__ (pytorch_lightning.metrics.converters), 435
__call__ (pytorch_lightning.metrics.converters), 435
__call__ (pytorch_lightning.trainer.Trainer method), 514
__call__ (pytorch_lightning.trainer.Trainer method), 514
__call__ (pytorch_lightning.trainer.Trainer method), 514
__call__ (pytorch_lightning.trainer.Trainer method), 514

_allowed_type (pytorch_lightning.trainer.trainer.Trainer method), 483
_allowed_type (pytorch_lightning.trainer.Trainer method), 483
_apply_to_inputs (in module pytorch_lightning.metrics.converters), 435
_apply_to_outputs (in module pytorch_lightning.metrics.converters), 435
_arg_default (pytorch_lightning.trainer.Trainer method), 514
_arg_default (pytorch_lightning.trainer.Trainer method), 514
_atomic_save (pytorch_lightning.trainer.io.TrainerIOMixin method), 521
_auto_collect_arguments (pytorch_lightning.core.LightningModule class method), 273
_auto_collect_arguments (pytorch_lightning.core.lightning.LightningModule class method), 303
accuracy() (in module pytorch_lightning.metrics.functional.classification), AUROC (class in pytorch_lightning.metrics), 412
add_argparse_args() (pytorch_lightning.trainer.Trainer class method), 483
add_argparse_args() (pytorch_lightning.trainer.Trainer class method), 515
add_param_group() (pytorch_lightning.trainer.optimizers._MockOptimizer method), 509
add_progress_bar_metrics() (pytorch_lightning.trainer.evaluation_loop.TrainerEvaluationLoopMixin method), 502
add_progress_bar_metrics() (pytorch_lightning.trainer.logging.TrainerLoggingMixin method), 504
add_progress_bar_metrics() (pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin method), 524
AdvancedProfiler (class in pytorch_lightning.profiler), 457
AdvancedProfiler (class in pytorch_lightning.metrics), 444
agg_and_log_metrics() (pytorch_lightning.loggers.neptune.NeptuneLoggerBase method), 375
agg_and_log_metrics() (pytorch_lightning.loggers.LightningLoggerBase method), 354
amp_level (pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin attribute), 496
amp_level (pytorch_lightning.trainer.distrib_parts.TrainerDPMixin attribute), 498
append() (pytorch_lightning.trainer.supporters.TensorRunningAccum method), 509
append_tags() (pytorch_lightning.loggers.neptune.NeptuneLoggerBase method), 384
append_tags() (pytorch_lightning.loggers.NeptuneLoggerBase method), 364
apply_to_collection() (in module pytorch_lightning.utilities.apply_func), 529
AttributeDict (class in pytorch_lightning.metrics), 398
AUC (class in pytorch_lightning.metrics), 442
auc() (in module pytorch_lightning.metrics.functional.classification), 412
auc_decorator() (in module pytorch_lightning.metrics.functional.classification), 412
B
backward() (pytorch_lightning.core.hooks.ModelHooks method), 299
barrier() (pytorch_lightning.trainer.Trainer method), 491
barrier() (pytorch_lightning.trainer.TrainerTrainLoopMixin method), 400
AveragePrecision (class in pytorch_lightning.metrics), 424
AveragePrecision (class in pytorch_lightning.metrics.functional.classification), 413
BaseProfiler (class in pytorch_lightning.profiler), 456
BaseProfiler (class in pytorch_lightning.loggers.neptune), 384
BaseProfiler (class in pytorch_lightning.profiler), 459
batch_idx (pytorch_lightning.trainer.TrainerTrainLoopMixin attribute), 525
best() (pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint property), 348
best() (pytorch_lightning.callbacks.ModelCheckpoint property), 338
bypass_mode() (pytorch_lightning.loggers.TrainsLogger method), 370
call_checkpoint_callback() (pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin method), 524

Callback (class in pytorch_lightning.callbacks), 334

Callback (class in pytorch_lightning.callbacks.base), 343

callback_metrics (pytorch_lightning.trainer.evaluation_loop.TrainerEvaluationLoopMixin attribute), 502

callback_metrics (pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin attribute), 526

callbacks (pytorch_lightning.trainer.callback_config.TrainerCallbackConfigMixin attribute), 489

callbacks (pytorch_lightning.trainer.callback_hook.TrainerCallbackHookMixin attribute), 490

callbacks (pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin attribute), 526

can_prepare_data() (pytorch_lightning.trainer.Trainer method), 484

can_prepare_data() (pytorch_lightning.trainer.Trainer method), 515

check_gpus_data_type() (in module pytorch_lightning.trainer.distrib_parts), 499

check_horovod() (pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin method), 495

check_model_configuration() (pytorch_lightning.trainer.Trainer method), 484

check_model_configuration() (pytorch_lightning.trainer.Trainer method), 515

check_monitor_top_k() (pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint method), 348

check_monitor_top_k() (pytorch_lightning.callbacks.ModelCheckpoint method), 337

check_val_every_n_epoch (pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin attribute), 526

checkpoint_callback (pytorch_lightning.trainer.callback_config.TrainerCallbackConfigMixin attribute), 489

checkpoint_callback (pytorch_lightning.core.lightning.LightningModule method), 303

checkpoint_callback (pytorch_lightning.core.LightningModule method), 274

CHECKPOINT_HYPER_PARAMS_KEY (pytorch_lightning.core.saving.ModelIO attribute), 333

CHECKPOINT_HYPER_PARAMS_NAME (pytorch_lightning.core.saving.ModelIO attribute), 333

CHECKPOINT_HYPER_PARAMS_TYPE (pytorch_lightning.core.saving.ModelIO attribute), 333

ckpt_path (pytorch_lightning.trainer.callback_config.TrainerCallbackConfigMixin attribute), 489

clean_namespace() (in module pytorch_lightning.utilities.parsing), 532

clip_gradients() (pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin method), 525

clip_gradients() (pytorch_lightning.trainer.training_tricks.TrainerTrainingTricksMixin method), 527

close() (pytorch_lightning.loggers.base.LightningLoggerBase method), 375

close() (pytorch_lightning.loggers.base.LoggerCollection method), 376

close() (pytorch_lightning.loggers.LightningLoggerBase method), 354

close() (pytorch_lightning.loggers.LoggerCollection method), 355

close() (pytorch_lightning.loggers.test_tube.TestTubeLoggerBase method), 389

collect_init_args() (in module pytorch_lightning.utilities.parsing), 533

CometLogger (class in pytorch_lightning.loggers), 357

CometLogger (class in pytorch_lightning.loggers.comet), 378

configure_accumulated_gradients() (pytorch_lightning.trainer.training_tricks.TrainerTrainingTricksMixin method), 527

configure_apex() (pytorch_lightning.core.lightning.LightningModule method), 303

configure_apex() (pytorch_lightning.core.LightningModule method), 274

configure_checkpoint_callback() (pytorch_lightning.trainer.callback_config.TrainerCallbackConfigMixin method), 489
configure_ddp() (pytorch_lightning.core.lightning.LightningModule method), 304
configure_ddp() (pytorch_lightning.core.LightningModule method), 274
configure_early_stopping() (pytorch_lightning.trainer.callback_config.TrainerCallbackConfigMixin method), 489
configure_logger() (pytorch_lightning.trainer.logging.TrainerLoggingMixin method), 504
configure_optimizers() (pytorch_lightning.core.lightning.LightningModule method), 304
configure_optimizers() (pytorch_lightning.core.LightningModule method), 275
configure_progress_bar() (pytorch_lightning.trainer.callback_config.TrainerCallbackConfigMixin method), 489
configure_schedulers() (pytorch_lightning.trainer.optimizers.TrainerOptimizersMixin method), 508
configure_slurm_ddp() (pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin method), 495
confusion_matrix() (in module pytorch_lightning.metrics.functional.classification), 413
ConfusionMatrix (class in pytorch_lightning.metrics), 401
ConfusionMatrix (class in pytorch_lightning.metrics.classification), 425
ConfusionMatrix (class in pytorch_lightning.metrics.sklearns), 445
current_epoch (pytorch_lightning.core.lightning.LightningModule attribute), 327
current_epoch (pytorch_lightning.core.LightningModule attribute), 297
current_epoch (pytorch_lightning.trainer.evaluation_loop.TrainerEvaluationLoopMixin attribute), 503
current_epoch (pytorch_lightning.trainer.logging.TrainerLoggingMixin attribute), 504
cuda() (pytorch_lightning.utilities.device_dtype_mixin.DeviceDtypeModuleMixin method), 530
cpu() (pytorch_lightning.utilities.device_dtype_mixin.DeviceDtypeModuleMixin method), 530
data_loader() (in module pytorch_lightning.core), 298
data_loader() (in module pytorch_lightning.core.decorators), 299
data_parallel() (pytorch_lightning.trainer.Trainer property), 487
data_parallel() (pytorch_lightning.trainer.Trainer property), 518
data_parallel_device_ids (pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin attribute), 496
data_parallel_device_ids (pytorch_lightning.trainer.distrib_parts.TrainerDDPMixin attribute), 498
data_parallel_device_ids (pytorch_lightning.trainer.evaluation_loop.TrainerEvaluationLoopMixin attribute), 503
data_parallel_device_ids (pytorch_lightning.trainer.evaluation_loop.TrainerEvaluationLoopMixin attribute), 526
data_parallel_device_ids (pytorch_lightning.trainer.evaluation_loop.TrainerEvaluationLoopMixin attribute), 526
ddp_train() (pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin method), 495
default_attributes() (pytorch_lightning.trainer.Trainer class method), 484
default_attributes() (pytorch_lightning.trainer.Trainer class method), 515
default_root_dir (pytorch_lightning.trainer.callback_config.TrainerCallbackConfigMixin attribute), 489
default_root_dir (pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin attribute), 496
default_root_dir (pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin attribute), 504
data_loader() (in module pytorch_lightning.core), 298
data_loader() (in module pytorch_lightning.core.decorators), 299
data_parallel() (pytorch_lightning.trainer.Trainer property), 487
data_parallel() (pytorch_lightning.trainer.Trainer property), 518
data_parallel_device_ids (pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin attribute), 496
data_parallel_device_ids (pytorch_lightning.trainer.distrib_parts.TrainerDDPMixin attribute), 498
default_root_dir
 torch_lightning.trainer.lr_finder.TrainerLRFinderMixin
 (pytorch_lightning.callbacks.progress.ProgressBarBase
 method), 349

default_root_dir
 torch_lightning.trainer.training_tricks.TrainerTrainingTricksMixin
 (pytorch_lightning.callbacks.progress.ProgressBarBase
 method), 351

DEPRECATED_IN_0_9
 torch_lightning.trainer.Trainer attribute
 (pytorch_lightning.callbacks.progress.ProgressBarBase
 method), 487

DEPRECATED_IN_0_9
 torch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin
 (pytorch_lightning.callbacks.progress.ProgressBarBase
 method), 496

detect_nan_tensors()
 torch_lightning.trainer.training_loop.TrainerTrainLoopMixin
 (pytorch_lightning.callbacks.progress.ProgressBarBase
 method), 525

detect_nan_tensors()
 torch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin
 (pytorch_lightning.callbacks.progress.ProgressBarBase
 method), 527

determine_data_use_amount()
 torch_lightning.trainer.data_loading.TrainerDataLoadingMixin
 (pytorch_lightning.callbacks.progress.ProgressBarBase
 method), 491

determine_ddp_node_rank()
 torch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin
 (pytorch_lightning.callbacks.progress.ProgressBarBase
 method), 518

determine_local_rank()
 torch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin
 (pytorch_lightning.callbacks.progress.ProgressBarBase
 method), 526

determine_root_gpu_device()
 torch_lightning.trainer.distrib_parts.TrainerDDPMixin
 (pytorch_lightning.callbacks.progress.ProgressBarBase
 method), 522

device()
 torch_lightning.utilities.device_dtype_mixin.DeviceDtypeModule
 (pytorch_lightning.callbacks.progress.ProgressBarBase
 method), 531

DeviceDtypeModuleMixin (class in pytorch_lightning.utilities.device_dtype_mixin, DeviceDtypeModule
property), 530

dice_score()
 pytorch_lightning.metrics.functional.classification
 (pytorch_lightning.callbacks.progress.ProgressBarBase
 method), 414

DiceCoefficient (class in pytorch_lightning.metrics, DiceCoefficient
method), 401

DiceCoefficient (class in pytorch_lightning.metrics.classification, DiceCoefficient
method), 426

disable() (pytorch_lightning.callbacks.progress.ProgressBarBase
method), 341
enable() (pytorch_lightning.callbacks.ProgressBarBase method), 339
enable_early_stop (pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin attribute), 526
evaluation_forward() (pytorch_lightning.trainer.evaluation_loop.TrainerEvaluationLoopMixin method), 502
example_input_array() (pytorch_lightning.core.lightning.LightningModule property), 297
example_input_array() (pytorch_lightning.core.LightningModule property), 297
experiment() (pytorch_lightning.loggers.base.LoggerCollection property), 377
experiment() (pytorch_lightning.loggers.base.LightningLoggerBase property), 376
experiment() (pytorch_lightning.loggers.comet.CometLogger property), 359
experiment() (pytorch_lightning.loggers.comet.CometLoggerBase property), 356
experiment() (pytorch_lightning.loggers.MLFlowLogger property), 354
experiment() (pytorch_lightning.loggers.MLFlowLogger property), 361
experiment() (pytorch_lightning.loggers.neptune.NeptuneLogger property), 386
experiment() (pytorch_lightning.loggers.neptune.NeptuneLogger property), 365
experiment() (pytorch_lightning.loggers.tensorboard.TensorBoardLogger property), 387
experiment() (pytorch_lightning.loggers.tensorboard.TensorBoardLogger property), 357
experiment() (pytorch_lightning.loggers.test_tube.TestTubeLogger property), 389
experiment() (pytorch_lightning.loggers.test_tube.TestTubeLogger property), 367
experiment() (pytorch_lightning.loggers.trains.TrainsLogger property), 393
experiment() (pytorch_lightning.loggers.trains.TrainsLogger property), 372
experiment() (pytorch_lightning.loggers.wandb.WandbLogger property), 395
experiment() (pytorch_lightning.loggers.wandb.WandbLogger property), 368
F1 (class in pytorch_lightning.metrics), 402
F1 (class in pytorch_lightning.metrics.classification), 427
F1 (class in pytorch_lightning.metrics.sklearns), 446
def_score() (in module pytorch_lightning.metrics.functional.classification), 415
fast_dev_run (pytorch_lightning.trainer.evaluation_loop.TrainerEvaluationLoopMixin attribute), 503
fast_dev_run (pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin attribute), 526
FBeta (class in pytorch_lightning.metrics), 403
FBeta (class in pytorch_lightning.metrics.classification), 428
FBeta (class in pytorch_lightning.metrics.sklearns), 447
def_score() (in module pytorch_lightning.metrics.functional.classification), 415
finalize() (pytorch_lightning.loggers.base.LightningLoggerBase method), 375
finalize() (pytorch_lightning.loggers.base.LoggerCollection method), 376
finalize() (pytorch_lightning.loggers.comet.CometLogger method), 379
finalize() (pytorch_lightning.loggers.comet.CometLoggerBase method), 359
finalize() (pytorch_lightning.loggers.MLFlowLogger method), 354
finalize() (pytorch_lightning.loggers.MLFlowLogger method), 380
finalize() (pytorch_lightning.loggers.MLFlowLogger method), 360
finalize() (pytorch_lightning.loggers.neptune.NeptuneLogger method), 384
finalize() (pytorch_lightning.loggers.neptune.NeptuneLogger method), 364
finalize() (pytorch_lightning.loggers.tensorboard.TensorBoardLogger method), 387
finalize() (pytorch_lightning.loggers.tensorboard.TensorBoardLogger method), 356
finalize() (pytorch_lightning.loggers.test_tube.TestTubeLogger method), 389
finalize() (pytorch_lightning.loggers.test_tube.TestTubeLogger method), 366
finalize() (pytorch_lightning.loggers.trains.TrainsLogger method), 391
finalize() (pytorch_lightning.loggers.trains.TrainsLogger method), 370
fit() (pytorch_lightning.trainer.LR_finder.TrainerLRFinderMixin method), 505
fit() (pytorch_lightning.trainer.Trainer method), 484
forward() (pytorch_lightning.trainer.trainer.Trainer method), 515
fit() (pytorch_lightning.trainer.training_tricks.TrainerTrainingTricksMixup method), 527
float() (pytorch_lightning.utilities.device_dtype_mixin.Device DtypeModuleMixin method), 530
format_checkpoint_name() (pytorch_lightning.callbacks.callbacks.ModelCheckpoint method), 398
format_checkpoint_name() (pytorch_lightning.callbacks.callbacks.ModelCheckpoint method), 348
forward() (pytorch_lightning.callbacks.callbacks.ModelCheckpoint method), 397
forward() (pytorch_lightning.core.lightning.LightningModule method), 337
forward() (pytorch_lightning.core.LightningModule method), 277
forward() (pytorch_lightning.metrics.accuracy.Accuracy method), 400
forward() (pytorch_lightning.metrics.AUC method), 398
forward() (pytorch_lightning.metrics.AUROC method), 399
forward() (pytorch_lightning.metrics.AveragePrecision method), 400
forward() (pytorch_lightning.metrics.AUROC method), 405
forward() (pytorch_lightning.metrics.MulticlassPrecisionRecall method), 405
forward() (pytorch_lightning.metrics.MulticlassROC method), 405
forward() (pytorch_lightning.metrics.Relation method), 406
forward() (pytorch_lightning.metrics.AveragePrecision method), 406
forward() (pytorch_lightning.metrics.AUROC method), 407
forward() (pytorch_lightning.metrics.Recall method), 408
forward() (pytorch_lightning.metrics.AUROC method), 409
forward() (pytorch_lightning.metrics.AveragePrecision method), 409
forward() (pytorch_lightning.metrics.AUROC method), 410
forward() (pytorch_lightning.metrics.F1 method), 411
forward() (pytorch_lightning.metrics.SklearnMetric method), 411
forward() (pytorch_lightning.metrics.FBeta method), 411
forward() (pytorch_lightning.metrics.F1 method), 411
forward() (pytorch_lightning.metrics.SklearnMetric method), 412
forward() (pytorch_lightning.metrics.AveragePrecision method), 412
forward() (pytorch_lightning.metrics.AUROC method), 412
forward() (pytorch_lightning.metrics.F1 method), 412
forward() (pytorch_lightning.metrics.SklearnMetric method), 413
forward() (pytorch_lightning.metrics.AveragePrecision method), 413
forward() (pytorch_lightning.metrics.AUROC method), 414
forward() (pytorch_lightning.metrics.F1 method), 414
forward() (pytorch_lightning.metrics.SklearnMetric method), 414
forward() (pytorch_lightning.metrics.AveragePrecision method), 414
forward() (pytorch_lightning.metrics.AUROC method), 415
forward() (pytorch_lightning.metrics.F1 method), 415
forward() (pytorch_lightning.metrics.SklearnMetric method), 415
forward() (pytorch_lightning.metrics.AveragePrecision method), 415
forward() (pytorch_lightning.metrics.AUROC method), 416
forward() (pytorch_lightning.metrics.F1 method), 416
forward() (pytorch_lightning.metrics.SklearnMetric method), 416
forward() (pytorch_lightning.metrics.AveragePrecision method), 416
forward() (pytorch_lightning.metrics.AUROC method), 417
forward() (pytorch_lightning.metrics.F1 method), 417
forward() (pytorch_lightning.metrics.SklearnMetric method), 417
forward() (pytorch_lightning.metrics.AveragePrecision method), 417
forward() (pytorch_lightning.metrics.AUROC method), 418
forward() (pytorch_lightning.metrics.F1 method), 418
forward() (pytorch_lightning.metrics.SklearnMetric method), 418
forward() (pytorch_lightning.metrics.AveragePrecision method), 418
forward() (pytorch_lightning.metrics.AUROC method), 419
forward() (pytorch_lightning.metrics.F1 method), 419
forward() (pytorch_lightning.metrics.SklearnMetric method), 419
forward() (pytorch_lightning.metrics.AveragePrecision method), 419
forward() (pytorch_lightning.metrics.AUROC method), 420
forward() (pytorch_lightning.metrics.F1 method), 420
forward() (pytorch_lightning.metrics.SklearnMetric method), 420
forward() (pytorch_lightning.metrics.AveragePrecision method), 420
forward() (pytorch_lightning.metrics.AUROC method), 421
forward() (pytorch_lightning.metrics.F1 method), 421
forward() (pytorch_lightning.metrics.SklearnMetric method), 421
forward() (pytorch_lightning.metrics.AveragePrecision method), 421
forward() (pytorch_lightning.metrics.AUROC method), 422
forward() (pytorch_lightning.metrics.F1 method), 422
forward() (pytorch_lightning.metrics.SklearnMetric method), 422
forward() (pytorch_lightning.metrics.AveragePrecision method), 422
forward() (pytorch_lightning.metrics.FBeta method), 422
forward() (pytorch_lightning.metrics.FBeta method), 423
forward() (pytorch_lightning.metrics.Recall method), 424
forward() (pytorch_lightning.metrics.AUROC method), 425
forward() (pytorch_lightning.metrics.AveragePrecision method), 425
forward() (pytorch_lightning.metrics.AUROC method), 426
forward() (pytorch_lightning.metrics.F1 method), 426
forward() (pytorch_lightning.metrics.AUROC method), 427
forward() (pytorch_lightning.metrics.F1 method), 427
forward() (pytorch_lightning.metrics.AUROC method), 428
forward() (pytorch_lightning.metrics.F1 method), 428
forward() (pytorch_lightning.metrics.AUROC method), 429
forward() (pytorch_lightning.metrics.F1 method), 429
forward() (pytorch_lightning.metrics.AUROC method), 430
forward() (pytorch_lightning.metrics.F1 method), 430
forward() (pytorch_lightning.metrics.AUROC method), 431
forward() (pytorch_lightning.metrics.F1 method), 431
forward() (pytorch_lightning.metrics.AUROC method), 432
forward() (pytorch_lightning.metrics.F1 method), 432
forward() (pytorch_lightning.metrics.AUROC method), 433
forward() (pytorch_lightning.metrics.F1 method), 433
forward() (pytorch_lightning.metrics.AUROC method), 434
forward() (pytorch_lightning.metrics.F1 method), 434
forward() (pytorch_lightning.metrics.SklearnMetric method), 435
forward() (pytorch_lightning.metrics.AUROC method), 435
forward() (pytorch_lightning.metrics.sklearns.FBeta method), 448
global_rank (pytorch_lightning.trainer.evaluation_loop.TrainerEvaluatorMixin attribute), 498
get_a_var() (in module pytorch_lightning.core.lightning.LightningModule), 454
get_all_available_gpus() (in module pytorch_lightning.trainer.distrib_parts), 499
global_step (pytorch_lightning.core.lightning.LightingModule attribute), 327
get_deprecated_arg_names() (pytorch_lightning.trainer.Trainer class method), 485
global_step (pytorch_lightning.core.lightning.LightingModule attribute), 516
get_deprecated_arg_names() (pytorch_lightning.trainer.Trainer class method), 516
get_memory_profile() (pytorch_lightning.core.memory method), 451
get_num_classes() (in module pytorch_lightning.metrics.functional.classification), 416
get_tqdm_dict() (pytorch_lightning.core.lightning.LightningModule method), 278
get_tqdm_dict() (pytorch_lightning.core.lightning.LightningModule method), 307
get_progress_bar_dict() (pytorch_lightning.core.lightning.LightningModule method), 307
get_progress_bar_dict() (pytorch_lightning.core.lightning.LightningModule method), 278
garbage_collection_cuda() (in module pytorch_lightning.utilities.memory), 532
get_a_var() (in module pytorch_lightning.core.memory), 330
get_all_available_gpus() (in module pytorch_lightning.trainer.distrib_parts), 499
get_deprecated_arg_names() (pytorch_lightning.trainer.Trainer class method), 485
get_deprecated_arg_names() (pytorch_lightning.trainer.Trainer class method), 516
get_gpu_memory_map() (in module pytorch_lightning.core.memory), 330
get_human_readable_count() (in module pytorch_lightning.core.memory), 330
get_init_args() (in module pytorch_lightning.utilities.parsing), 533
get_init_arguments_and_types() (pytorch_lightning.trainer.Trainer class method), 485
get_init_arguments_and_types() (pytorch_lightning.trainer.Trainer class method), 516
get_lr() (pytorch_lightning.trainer.lr_finder._ExponentialLR method), 506
get_lr() (pytorch_lightning.trainer.lr_finder._LinearLR method), 508
get_model() (pytorch_lightning.trainer.callbacks.TrainerCallbackHook attribute), 490
get_model() (pytorch_lightning.trainer.distrib_parts.TrainerDPMixin method), 497
get_model() (pytorch_lightning.trainer.evaluation_loop.TrainerEvaluatorMixin method), 502
get_model() (pytorch_lightning.trainer.model_hooks.TrainerModelHooksMixin method), 521
get_model() (pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin method), 525
get_model() (pytorch_lightning.trainer.training_tricks.TrainerTrainingTricksMixin method), 527
get_num_classes() (in module pytorch_lightning.metrics.functional.classification), 416
get_tqdm_dict() (pytorch_lightning.core.lightning.LightningModule method), 307
get_tqdm_dict() (pytorch_lightning.core.lightning.LightningModule method), 278
method) | log_metrics() (pytorch_lightning.loggers.neptune.NeptuneLogger method), 385
log_metrics() (pytorch_lightning.loggers.NeptuneLogger method), 364
log_metrics() (pytorch_lightning.loggers.trains.TrainsLogger method), 371
log_metrics() (pytorch_lightning.loggers.wandb.WandbLogger method), 395
log_metrics() (pytorch_lightning.trainer.evaluation_loop.TrainerEvaluationLoopMixin method), 502
log_metrics() (pytorch_lightning.trainer.logging.TrainerLoggingMixin method), 504
log_metrics() (pytorch_lightning.trainer.logging.TrainerTrainLoopMixin method), 525
log_save_interval (pytorch_lightning.trainer.trainer.Trainer attribute), 487
log_text() (pytorch_lightning.loggers.neptune.NeptuneLogger method), 385
log_text() (pytorch_lightning.loggers.NeptuneLogger method), 365
log_text() (pytorch_lightning.loggers.trains.TrainsLogger method), 393
logger (pytorch_lightning.core.lightning.LightningModule attribute), 327
logger (pytorch_lightning.core.LightningModule attribute), 298
logger (pytorch_lightning.trainer.callback_config.TrainerCallbackConfigMixin attribute), 489
logger (pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin attribute), 496
logger (pytorch_lightning.trainer.logging.TrainerLoggingMixin attribute), 504
logger (pytorch_lightning.trainer.trainer.Trainer attribute), 518
logger (pytorch_lightning.trainer.training_io.TrainerIOMixin attribute), 522
logger (pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin attribute), 526
LoggerCollection (class in pytorch_lightning.loggers), 355
LoggerCollection (class in pytorch_lightning.loggers.base), 376
Index 553
MLFlowLogger (class in pytorch_lightning.loggers), 359
MLFlowLogger (class in pytorch_lightning.loggers.mlflow), 380

M
MAE (class in pytorch_lightning.metrics), 397
MAE (class in pytorch_lightning.metrics.regression), 441
max() (pytorch_lightning.trainer.supporters.TensorRunningAccum
method), 509
max_ckpt_in_folder() (pytorch_lightning.trainer.training_io.TrainerIOMixin
method), 521
max_epochs (pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin
attribute), 526
max_steps (pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin
attribute), 526
mean() (pytorch_lightning.trainer.supporters.TensorRunningAccum
method), 509
merge_dicts() (in module pytorch_lightning.loggers.base), 377
Metric (class in pytorch_lightning.metrics.metric), 438
metric_fn() (pytorch_lightning.metrics.SklearnMetric
property), 411
metric_fn() (pytorch_lightning.metrics.sklearn.SklearnMetric
property), 453
metrics_to_scalars() (pytorch_lightning.trainer.logging.TrainerLoggingMixIn
method), 504
min() (pytorch_lightning.trainer.supporters.TensorRunningAccum
method), 509
min_epochs (pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin
attribute), 526
min_steps (pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin
attribute), 526
MisconfigurationException, 532
MLFlowLogger (class in pytorch_lightning.loggers), 359
MLFlowLogger (class in pytorch_lightning.loggers.mlflow), 380

PyTorch-Lightning Documentation, Release 0.8.1
MulticlassROC (class in pytorch_lightning.metrics.classification), 430

NeptuneLogger (class in pytorch_lightning.loggers.neptune), 381
node_rank (pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin attribute), 496
nop() (pytorch_lightning.loggers.base.DummyExperiment method), 373
normalize_parse_gpu_input_to_list() (in module pytorch_lightning.trainer.distrib_parts), 499
normalize_parse_gpu_string_input() (in module pytorch_lightning.trainer.distrib_parts), 499
num_gpus (pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin attribute), 496
num_gpus (pytorch_lightning.trainer.trainer.Trainer attribute), 518
num_gpus() (pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin property), 496
num_gpus() (pytorch_lightning.trainer.trainer.Trainer property), 487

num_nodes (pytorch_lightning.trainer.trainer.Trainer attribute), 487
num_nodes (pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin attribute), 497
parameters () (pytorch_lightning.core.memory.LayerSummary property), 328
num_processes (pytorch_lightning.trainer.data_loading.TrainerDataLoadingMixin attribute), 492
num_processes (pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin attribute), 492
num_test_batches (pytorch_lightning.trainer.data_loading.TrainerDataLoadingMixin attribute), 497
num_test_batches (pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin attribute), 497
num_tpu_cores () (pytorch_lightning.trainer.deprecated_api.TrainerDeprecatedAPITill property), 493
num_training_batches (pytorch_lightning.trainer.data_loading.TrainerDataLoadingMixin attribute), 492
num_training_batches (pytorch_lightning.trainer.trainer.Trainer attribute), 487

NAME_HPARAMS_FILE (pytorch_lightning.loggers.tensorboard.TensorBoardLogger attribute), 387
NAME_HPARAMS_FILE (pytorch_lightning.loggers.TensorBoardLogger attribute), 357
named_modules() (pytorch_lightning.core.memory.ModelSummary property), 329
NeptuneLogger (class in pytorch_lightning.loggers), 361
num_training_batches (pytorch_lightning.trainer.io.TrainerIOMixin attribute), 522

num_training_batches (pytorch_lightning.trainer.trainer.TrainerTrainLoopMixin attribute), 526

num_val_batches (pytorch_lightning.trainer.data_loading.TrainerDataLoadingMixin attribute), 492

num_val_batches (pytorch_lightning.trainer.evaluation_loop.TrainerEvaluationLoopMixin attribute), 503

num_val_batches (pytorch_lightning.trainer.trainer.TrainerTrainLoopMixin attribute), 526

numpy_metric() (in module pytorch_lightning.metrics.converters), 437

NumpyMetric (class in pytorch_lightning.metrics.metric), 438

on_after_backward() (pytorch_lightning.core.hooks.ModelHooks method), 300

on_batch_end (pytorch_lightning.trainer.trainer.TrainerTrainLoopMixin attribute), 526

on_batch_end () (pytorch_lightning.callbacks.base.Callback method), 343

on_batch_end () (pytorch_lightning.callbacks.Callback method), 334

on_batch_end () (pytorch_lightning.core.hooks.ModelHooks method), 301

on_batch_end () (pytorch_lightning.callbacks.progress.ProgressBarBase method), 351

on_batch_end () (pytorch_lightning.callbacks.progress.ProgressBar method), 350

on_batch_end () (pytorch_lightning.callbacks.Callback method), 334

on_batch_end () (pytorch_lightning.callbacks.Callback method), 342

on_batch_end () (pytorch_lightning.callbacks.Callback method), 340

on_batch_end () (pytorch_lightning.core.hooks.ModelHooks method), 300

on_batch_end () (pytorch_lightning.callbacks.Callback method), 489

on_batch_end () (pytorch_lightning.callbacks.Callback method), 507

on_epoch_end (pytorch_lightning.core.hooks.ModelHooks method), 526

on_epoch_end() (pytorch_lightning.callbacks.base.Callback method), 343

on_epoch_end () (pytorch_lightning.callbacks.Callback method), 334
Index 557

on_keyboard_interrupt()
 (torch_lightning.callbacks.Callback method), 335

on_keyboard_interrupt()
 (torch_lightning.trainer.callback_hook.TrainerCallbackHook method), 490

on_load_checkpoint()
 (torch_lightning.core.lightning.LightningModule method), 308

on_load_checkpoint()
 (torch_lightning.core.saving.ModelIO method), 333

on_load_checkpoint()
 (torch_lightning.core.LightningModule method), 278

on_load_checkpoint()
 (torch_lightning.core.saving.ModelIO method), 333

on_post_performance_check()
 (torch_lightning.core.hooks.ModelHooks method), 301

on_pre_performance_check()
 (torch_lightning.core.hooks.ModelHooks method), 301

on_sanity_check_end()
 (torch_lightning.callbacks.base.Callback method), 343

on_sanity_check_end()
 (torch_lightning.callbacks.Callback method), 335

on_sanity_check_end()
 (torch_lightning.callbacks.ProgressBarBase method), 342

on_sanity_check_end()
 (torch_lightning.callbacks.ProgressBarBase method), 340

on_sanity_check_end()
 (torch_lightning.callbacks.ProgressBar method), 350

on_sanity_check_end()
 (torch_lightning.callbacks.ProgressBar method), 342

on_sanity_check_end()
 (torch_lightning.callbacks.ProgressBarBase method), 351

on_sanity_check_start()
 (torch_lightning.callbacks.base.Callback method), 343

on_sanity_check_start()
 (torch_lightning.callbacks.Callback method), 335

on_sanity_check_start()
 (torch_lightning.callbacks.ProgressBar method), 350

on_sanity_check_start()
 (torch_lightning.callbacks.ProgressBar method), 342

on_sanity_check_start()
 (torch_lightning.callbacks.Callback method), 490

on_test_batch_end()
 (torch_lightning.callbacks.base.Callback method), 343

on_test_batch_end()
 (torch_lightning.callbacks.Callback method), 335

on_test_batch_end()
 (torch_lightning.callbacks.ProgressBarBase method), 351

on_test_batch_end()
 (torch_lightning.callbacks.ProgressBarBase method), 340

on_test_batch_end()
 (torch_lightning.callbacks.ProgressBar method), 350

on_test_end()
 (torch_lightning.callbacks.base.Callback method), 343

on_test_end()
 (torch_lightning.callbacks.Callback method), 335

on_test_end()
 (torch_lightning.callbacks.Callback method), 490

on_test_end()
 (torch_lightning.callbacks.Callback method), 503
<table>
<thead>
<tr>
<th>Function</th>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>on_test_end()</code></td>
<td><code>torch_lightning.callbacks.progress.ProgressBar</code></td>
<td>350</td>
</tr>
<tr>
<td><code>on_test_end()</code></td>
<td><code>torch_lightning.callbacks.ProgressBar</code></td>
<td>342</td>
</tr>
<tr>
<td><code>on_test_end()</code></td>
<td><code>torch_lightning.trainer.callback_hook.TrainerCallbackHookMixin</code></td>
<td>490</td>
</tr>
<tr>
<td><code>on_test_start()</code></td>
<td><code>torch_lightning.trainer.evaluation_loop.TrainerEvaluationLoopMixin</code></td>
<td>503</td>
</tr>
<tr>
<td><code>on_test_start()</code></td>
<td><code>torch_lightning.callbacks.base.Callback</code></td>
<td>343</td>
</tr>
<tr>
<td><code>on_test_start()</code></td>
<td><code>torch_lightning.callbacks.Callback</code></td>
<td>335</td>
</tr>
<tr>
<td><code>on_test_start()</code></td>
<td><code>torch_lightning.callbacks.progress.ProgressBar</code></td>
<td>350</td>
</tr>
<tr>
<td><code>on_test_start()</code></td>
<td><code>torch_lightning.callbacks.progress.ProgressBarBase</code></td>
<td>351</td>
</tr>
<tr>
<td><code>on_test_start()</code></td>
<td><code>torch_lightning.trainer.callback_hook.TrainerCallbackHookMixin</code></td>
<td>490</td>
</tr>
<tr>
<td><code>on_train_end()</code></td>
<td><code>torch_lightning.callbacks.progress.ProgressBar</code></td>
<td>350</td>
</tr>
<tr>
<td><code>on_train_end()</code></td>
<td><code>torch_lightning.callbacks.ProgressBar</code></td>
<td>342</td>
</tr>
<tr>
<td><code>on_train_end()</code></td>
<td><code>torch_lightning.callbacks.EarlyStopping</code></td>
<td>345</td>
</tr>
<tr>
<td><code>on_train_end()</code></td>
<td><code>torch_lightning.callbacks.EarlyStopping</code></td>
<td>336</td>
</tr>
<tr>
<td><code>on_train_end()</code></td>
<td><code>torch_lightning.callbacks.LearningRateLogger</code></td>
<td>339</td>
</tr>
<tr>
<td><code>on_train_end()</code></td>
<td><code>torch_lightning.callbacks.lr_logger.LearningRateLogger</code></td>
<td>346</td>
</tr>
<tr>
<td><code>on_train_end()</code></td>
<td><code>torch_lightning.callbacks.progress.ProgressBar</code></td>
<td>350</td>
</tr>
<tr>
<td><code>on_train_end()</code></td>
<td><code>torch_lightning.callbacks.ProgressBarBase</code></td>
<td>340</td>
</tr>
<tr>
<td><code>on_train_end()</code></td>
<td><code>torch_lightning.trainer.callback_hook.TrainerCallbackHookMixin</code></td>
<td>490</td>
</tr>
<tr>
<td><code>on_tpu()</code></td>
<td><code>torch_lightning.trainer.Trainer</code></td>
<td>487</td>
</tr>
<tr>
<td><code>on_tpu()</code></td>
<td><code>torch_lightning.trainer.callback_hook.TrainerCallbackHookMixin</code></td>
<td>518</td>
</tr>
<tr>
<td><code>on_tpu()</code></td>
<td><code>torch_lightning.trainer.io.TrainerIOMixin</code></td>
<td>522</td>
</tr>
<tr>
<td><code>on_train_end()</code></td>
<td><code>torch_lightning.callbacks.progress.ProgressBar</code></td>
<td>342</td>
</tr>
<tr>
<td><code>on_train_end()</code></td>
<td><code>torch_lightning.callbacks.ProgressBarBase</code></td>
<td>340</td>
</tr>
<tr>
<td><code>on_train_end()</code></td>
<td><code>torch_lightning.core.hooks.ModelHooks</code></td>
<td>301</td>
</tr>
<tr>
<td><code>on_train_end()</code></td>
<td><code>torch_lightning.callbacks.early_stopping.EarlyStopping</code></td>
<td>345</td>
</tr>
<tr>
<td><code>on_train_end()</code></td>
<td><code>torch_lightning.callbacks.early_stopping.EarlyStopping</code></td>
<td>336</td>
</tr>
<tr>
<td><code>on_train_end()</code></td>
<td><code>torch_lightning.callbacks.lr_logger.LearningRateLogger</code></td>
<td>339</td>
</tr>
<tr>
<td><code>on_train_end()</code></td>
<td><code>torch_lightning.callbacks.progress.ProgressBar</code></td>
<td>350</td>
</tr>
<tr>
<td><code>on_train_end()</code></td>
<td><code>torch_lightning.callbacks.ProgressBarBase</code></td>
<td>340</td>
</tr>
<tr>
<td><code>on_train_end()</code></td>
<td><code>torch_lightning.core.hooks.ModelHooks</code></td>
<td>301</td>
</tr>
<tr>
<td><code>on_train_end()</code></td>
<td><code>torch_lightning.callbacks.early_stopping.EarlyStopping</code></td>
<td>345</td>
</tr>
<tr>
<td><code>on_train_end()</code></td>
<td><code>torch_lightning.callbacks.early_stopping.EarlyStopping</code></td>
<td>336</td>
</tr>
<tr>
<td><code>on_train_end()</code></td>
<td><code>torch_lightning.callbacks.lr_logger.LearningRateLogger</code></td>
<td>339</td>
</tr>
<tr>
<td><code>on_validation_batch_end()</code></td>
<td><code>torch_lightning.trainer.callback_hook.TrainerCallbackHookMixin</code></td>
<td>490</td>
</tr>
<tr>
<td><code>on_validation_batch_end()</code></td>
<td><code>torch_lightning.trainer.evaluation_loop.TrainerEvaluationLoopMixin</code></td>
<td>503</td>
</tr>
<tr>
<td><code>on_validation_batch_end()</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>on_validation_batch_end()</td>
<td>torch_lightning.callbacks.base.Callback method</td>
<td>343</td>
</tr>
<tr>
<td>on_validation_batch_end()</td>
<td>torch_lightning.callbacks.Callback method</td>
<td>335</td>
</tr>
<tr>
<td>on_validation_batch_end()</td>
<td>torch_lightning.callbacks.progress.ProgressBar method</td>
<td>350</td>
</tr>
<tr>
<td>on_validation_batch_end()</td>
<td>torch_lightning.callbacks.progress.ProgressBarBase method</td>
<td>351</td>
</tr>
<tr>
<td>on_validation_batch_end()</td>
<td>torch_lightning.callbacks.ProgressBar method</td>
<td>342</td>
</tr>
<tr>
<td>on_validation_batch_end()</td>
<td>torch_lightning.callbacks.ProgressBarBase method</td>
<td>340</td>
</tr>
<tr>
<td>on_validation_batch_end()</td>
<td>torch_lightning.callbacks.model_checkpoint.ModelCheckpoint method</td>
<td>338</td>
</tr>
<tr>
<td>on_validation_end()</td>
<td>torch_lightning.callbacks.progress.ProgressBar method</td>
<td>350</td>
</tr>
<tr>
<td>on_validation_end()</td>
<td>torch_lightning.callbacks.ModelCheckpoint method</td>
<td>338</td>
</tr>
<tr>
<td>on_validation_end()</td>
<td>torch_lightning.callbacks.progress.ProgressBar method</td>
<td>342</td>
</tr>
<tr>
<td>on_validation_end()</td>
<td>torch_lightning.callbacks.trainer.callback_hook.TrainerCallbackHookMixin method</td>
<td>490</td>
</tr>
<tr>
<td>on_validation_start()</td>
<td>torch_lightning.callbacks.base.Callback method</td>
<td>344</td>
</tr>
<tr>
<td>on_validation_start()</td>
<td>torch_lightning.callbacks.Callback method</td>
<td>335</td>
</tr>
<tr>
<td>on_validation_start()</td>
<td>torch_lightning.callbacks.progress.ProgressBar method</td>
<td>350</td>
</tr>
<tr>
<td>on_validation_start()</td>
<td>torch_lightning.callbacks.progress.ProgressBarBase method</td>
<td>351</td>
</tr>
<tr>
<td>on_validation_start()</td>
<td>torch_lightning.callbacks.ProgressBar method</td>
<td>342</td>
</tr>
<tr>
<td>on_validation_start()</td>
<td>torch_lightning.callbacks.ProgressBarBase method</td>
<td>340</td>
</tr>
<tr>
<td>on_validation_start()</td>
<td>torch_lightning.callbacks.model_checkpoint.ModelCheckpoint method</td>
<td>338</td>
</tr>
<tr>
<td>on_validation_start()</td>
<td>torch_lightning.callbacks.trainer.callback_hook.TrainerCallbackHookMixin method</td>
<td>490</td>
</tr>
<tr>
<td>optimizer_frequencies</td>
<td>torch_lightning.trainer.training_loop.TrainerTrainLoopMixin attribute</td>
<td>526</td>
</tr>
<tr>
<td>optimizer_step()</td>
<td>torch_lightning.core.lightning.LightningModule method</td>
<td>309</td>
</tr>
<tr>
<td>optimizer_step()</td>
<td>torch_lightning.core.LightningModule method</td>
<td>279</td>
</tr>
<tr>
<td>optimizers</td>
<td>torch_lightning.trainer.Trainer attribute</td>
<td>488</td>
</tr>
<tr>
<td>optimizers</td>
<td>torch_lightning.trainer.trainer.TrainerIOMixin attribute</td>
<td>519</td>
</tr>
<tr>
<td>optimizers</td>
<td>torch_lightning.trainer.training_input.TrainingInput attribute</td>
<td>522</td>
</tr>
<tr>
<td>optimizers</td>
<td>torch_lightning.trainer.training_loop.TrainerTrainLoopMixin attribute</td>
<td>526</td>
</tr>
<tr>
<td>out_size()</td>
<td>torch_lightning.core.memory.LayerSummary property</td>
<td>328</td>
</tr>
</tbody>
</table>
out_sizes() (pytorch_lightning.core.memory.ModelSummary property), 330
overfit_batches (pytorch_lightning.trainer.deprecated_api.TrainerDeprecationWarning attribute), 492
overfit_pct() (pytorch_lightning.trainer.deprecated_api.TrainerDeprecationWarning attribute), 492
parallel_apply() (in module pytorch_lightning.overrides.data_parallel), 454
parallel_apply() (pytorch_lightning.overrides.data_parallel.LightningDataParallel method), 454
parallel_apply() (pytorch_lightning.overrides.data_parallel.LightningDistributedDataParallel method), 454
param_nums() (pytorch_lightning.core.memory.ModelSummary property), 330
parse_argparser() (pytorch_lightning.trainer.Trainer static method), 486
parse_argparser() (pytorch_lightning.trainer.Trainer static method), 517
parse_batch_shape() (in module pytorch_lightning.core.memory), 331
parse_gpu_ids() (in module pytorch_lightning.trainer.distrib_parts), 499
PassThroughProfiler (class in pytorch_lightning.profiler), 458
PassThroughProfiler (class in pytorch_lightning.profiler.profilers), 460
pick_multiple_gpus() (in module pytorch_lightning.trainer.distrib_parts), 499
pick_single_gpu() (in module pytorch_lightning.trainer.distrib_parts), 499
plot() (pytorch_lightning.trainer.lr_finder.LRFinder method), 507
Precision (class in pytorch_lightning.metrics), 406
Precision (class in pytorch_lightning.metrics.classification), 431
Precision (class in pytorch_lightning.metrics.sklearn), 448
precision (pytorch_lightning.trainer.auto_mix_precision.TrainerAMPMix attribute), 457
precision (pytorch_lightning.trainer.profilers.BaseProfiler method), 458
precision (pytorch_lightning.trainer.distrib_parts.TrainerDPMix attribute), 498
precision (pytorch_lightning.trainer.training_loop.TrainerTrainLoopMethod attribute), 526
precision (pytorch_lightning.trainer.training_tricks.TrainerTrainingTricksMixin attribute), 528
PrecisionRecall (class in pytorch_lightning.metrics), 406
PrecisionRecall (class in pytorch_lightning.metrics.classification), 432
PrecisionRecallCurve (class in pytorch_lightning.metrics), 407
PrecisionRecallCurve (class in pytorch_lightning.metrics.sklearn), 450
prepare_data() (pytorch_lightning.core.LightningModule method), 280
prepare_data() (pytorch_lightning.core.LightningModule method), 310
print() (pytorch_lightning.core.LightningModule method), 281
print() (pytorch_lightning.core.LightningModule method), 310
print_nan_gradients() (pytorch_lightning.trainer.training_tricks.TrainerTrainingTricksMixin method), 528
process_output (pytorch_lightning.trainer.evaluation_loop.TrainerEvaluationLoopMixin attribute), 503
process_output () (pytorch_lightning.trainer.logging.TrainerLoggingMixin method), 504
process_output () (pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin method), 525
process_position() (pytorch_lightning.callbacks.progress.ProgressBar property), 350
process_position() (pytorch_lightning.callbacks.ProgressBar property), 342
profile() (pytorch_lightning.profiler.BaseProfiler method), 457
method, 459
profiler (pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin
attribute), 526
progress_bar_callback (pytorch_lightning.callbacks lr_logger
attribute), 493
progress_bar_callback (pytorch_lightning.callbacks.progress
attribute), 497
progress_bar_callback (pytorch_lightning.callbacks.progress
attribute), 498
progress_bar_dict (pytorch_lightning.callbacks.progress
attribute), 503
progress_bar_dict (pytorch_lightning.callbacks.progress
attribute), 504
ProgressBar (class in pytorch_lightning.callbacks), 340
ProgressBar (class in pytorch_lightning.callbacks.progress), 349
ProgressBarBase (class in pytorch_lightning.callbacks), 339
ProgressBarBase (class in pytorch_lightning.callbacks.progress), 351
pytorch_lightning.callbacks (module), 334
pytorch_lightning.callbacks.base (module), 343
pytorch_lightning.callbacks.early_stopping
(module), 442...
run_pretrain_routine() (pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin method), 496
run_pretrain_routine() (pytorch_lightning.trainer.distrib_parts.TrainerDDPMixin method), 497
run_pretrain_routine() (pytorch_lightning.trainer.Trainer method), 486
run_pretrain_routine() (pytorch_lightning.trainer.trainer.Trainer method), 517
run_training_batch() (pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin method), 281
run_training_epoch() (pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin method), 498
run_training_teardown() (pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin method), 496
running_loss (pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin attribute), 527

S
sanitize_gpu_ids() (in module pytorch_lightning.trainer.distrib_parts), 500
save() (pytorch_lightning.loggers.base.LightningLoggerBase method), 375
save() (pytorch_lightning.loggers.base.LoggerCollection method), 376
save() (pytorch_lightning.loggers.LightningLoggerBase method), 354
save() (pytorch_lightning.loggers.LoggerCollection method), 355
save() (pytorch_lightning.loggers.tensorboard.TensorBoardLogger method), 387
save() (pytorch_lightning.loggers.TensorBoardLogger method), 357
save() (pytorch_lightning.loggers.test_tube.TestTubeLogger method), 389
save() (pytorch_lightning.loggers.TestTubeLogger method), 367
save_checkpoint() (pytorch_lightning.trainer.callback_config.TrainerCallbackConfigMixin method), 489
save_checkpoint() (pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin method), 496
save_checkpoint() (pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin method), 496
save_checkpoint() (pytorch_lightning.trainer.lr_finder.TrainerLRFinderMixin method), 506
save_checkpoint() (pytorch_lightning.trainer.training_io.TrainerIOMixin method), 385

scaler (pytorch_lightning.trainer.Trainer attribute), 488
scaler (pytorch_lightning.trainer.Trainer attribute), 519
scaler (pytorch_lightning.trainer.training_io.TrainerIOMixin attribute), 522
seed_everything() (in module pytorch_lightning), 488
seed_everything() (in module pytorch_lightning.utilities.seed), 533
set_bypass_mode() (pytorch_lightning.loggers.TrainsLogger class method), 372
set_credentials() (pytorch_lightning.loggers.TrainsLogger class method), 393
set_property() (pytorch_lightning.loggers.neptune.NeptuneLogger method), 385
set_distributed_mode() (pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin method), 496
set_nvidia_flags() (pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin method), 496
set_property() (pytorch_lightning.loggers.neptune.NeptuneLogger method), 385
tng_dataloader() (pytorch_lightning.core.LightningModule method), 287

to() (pytorch_lightning.utilities.device_dtype_mixin.Device DtypeModule method), 530
to_categorical() (in module pytorch_lightning.metrics.functional.classification), 422
to_onehot() (in module pytorch_lightning.metrics.functional.classification), 422
total_batch_idx (pytorch_lightning.trainer.lr_finder.TrainerLRFinderMixin attribute), 506

total_batch_idx (pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin attribute), 527

total_test_batches() (pytorch_lightning.callbacks.progress.ProgressBarBase property), 352

total_test_batches() (pytorch_lightning.callbacks.ProgressBarBase property), 340

total_train_batches() (pytorch_lightning.callbacks.progress.ProgressBarBase property), 352

total_train_batches() (pytorch_lightning.callbacks.ProgressBarBase property), 340

total_val_batches() (pytorch_lightning.callbacks.progress.ProgressBarBase property), 352

total_val_batches() (pytorch_lightning.callbacks.ProgressBarBase property), 340

tpu_cores (pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin attribute), 497

tpu_global_core_rank (TrainerAMPMMixin (class in pytorch_lightning.trainer.auto_mix_precision), 488

tpu_id (pytorch_lightning.trainer.distrib_parts.TrainerDPMixin attribute), 498

tpu_id (pytorch_lightning.trainer.evaluation_loop.TrainerEvaluationLoopHookMixin attribute), 503

tpu_id (pytorch_lightning.trainer.training_loop.TrainerLoadingMixin attribute), 527

tpu_local_core_rank (pytorch_lightning.trainer.distrib_parts.TrainerDPMixin attribute), 492

tpu_local_core_rank (pytorch_lightning.trainer.distrib_parts.TrainerDPMixin attribute), 498

tpu_train() (pytorch_lightning.trainer.distrib_parts.TrainerDPMixin method), 497
torch_lightning.trainer.distrib_parts), 497
TrainerEvaluationLoopMixin (class in pytorch_lightning.trainer.evaluation_loop), 502
TrainerIMixin (class in pytorch_lightning.trainer.training_io), 521
TrainerLoggingMixin (class in pytorch_lightning.trainer.logging), 504
TrainerLRFinderMixin (class in pytorch_lightning.trainer.lr_finder), 505
TrainerModelHooksMixin (class in pytorch_lightning.trainer.model_hooks), 508
TrainerOptimizersMixin (class in pytorch_lightning.trainer.optimizers), 508
TrainerTrainingTricksMixin (class in pytorch_lightning.trainer.training_tricks), 527
TrainerTrainLoopMixin (class in pytorch_lightning.trainer.training_loop), 524
training_end() (pytorch_lightning.core.lightning.LightningModule method), 318
training_end() (pytorch_lightning.core.LightningModule method), 288
training_epoch_end() (pytorch_lightning.core.lightning.LightningModule method), 318
training_epoch_end() (pytorch_lightning.core.LightningModule method), 288
training_forward() (pytorch_lightning.trainer.training_loop.TrainerTrainLoopMixin method), 525
training_step() (pytorch_lightning.core.lightning.LightningModule method), 319
training_step() (pytorch_lightning.core.LightningModule method), 290
training_step_end() (pytorch_lightning.core.lightning.LightningModule method), 321
training_step_end() (pytorch_lightning.core.LightningModule method), 291
training_tqdm_dict() (pytorch_lightning.trainer.deprecated_api.TrainerDeprecatedAPI method), 493
TrainsLogger (class in pytorch_lightning.loggers), 369
TrainsLogger (class in pytorch_lightning.loggers.train), 390
transfer_batch_to_device() (pytorch_lightning.core.hooks.ModelHooks method), 302
transfer_batch_to_gpu() (pytorch_lightning.trainer.distrib_parts.TrainerDPMixin method), 497
transfer_batch_to_gpu() (pytorch_lightning.trainer.evaluation_loop.TrainerEvaluationLoopMixin method), 502
transfer_batch_to_gpu() (pytorch_lightning.trainer.train_loop.TrainerTrainLoopMixin method), 525
transfer_batch_to_tpu() (pytorch_lightning.trainer.distrib_parts.TrainerDPMixin method), 498
transfer_batch_to_tpu() (pytorch_lightning.trainer.evaluation_loop.TrainerEvaluationLoopMixin method), 502
transfer_batch_to_tpu() (pytorch_lightning.trainer.train_loop.TrainerTrainLoopMixin method), 525
truncated_bptt_steps (pytorch_lightning.trainer.train_loop.TrainerTrainLoopMixin attribute), 527
type() (pytorch_lightning.utilities.device_dtype_mixin.DeviceDtypeModuleMixin method), 531

U
unfreeze() (pytorch_lightning.core.lightning.LightningModule method), 322
unfreeze() (pytorch_lightning.core.LightningModule method), 292
update_agg_funcs() (pytorch_lightning.loggers.base.LightningLoggerBase method), 375
update_agg_funcs() (pytorch_lightning.loggers.LightningLoggerBase method), 354
update_hparams() (in module pytorch_lightning.core.saving), 334
update_learning_rates() (pytorch_lightning.trainer.train_loop.TrainerTrainLoopMixin method), 525
use_amp (pytorch_lightning.core.lightning.LightningModule attribute), 327
use_amp (pytorch_lightning.core.LightningModule attribute), 298
use_amp (pytorch_lightning.trainer.train_loop.TrainerIOMixin attribute), 302
use_amp() (pytorch_lightning.trainer.auto_mix_precision.TrainerAMPMixin property), 488
use_amp() (pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin property), 497
use_amp() (pytorch_lightning.trainer.distrib_parts.TrainerDPMixin property), 498
use_ddp (pytorch_lightning.core.lightning.LightningModule attribute), 327
use_ddp (pytorch_lightning.core.LightningModule attribute), 298
use_ddp (pytorch_lightning.trainer.data_loading.TrainerDataLoadingMixIn attribute), 492
use_ddp (pytorch_lightning.trainer.distrib_parts.TrainerDPMixin attribute), 498
use_ddp (pytorch_lightning.trainer.evaluation_loop.TrainerEvaluationLoopMixIn attribute), 488
use_ddp (pytorch_lightning.trainer.Trainer attribute), 488
use_ddp (pytorch_lightning.trainer.evaluation_loop.TrainerEvaluationLoopMixIn attribute), 519
use_ddp (pytorch_lightning.trainer.data_loading.TrainerDataLoadingMixIn attribute), 492
use_ddp (pytorch_lightning.trainer.distrib_parts.TrainerDPMixin attribute), 498
use_ddp2 (pytorch_lightning.core.LightningModule attribute), 327
use_ddp2 (pytorch_lightning.core.LightningModule attribute), 298
use_ddp2 (pytorch_lightning.core.LightningModule attribute), 488
use_ddp2 (pytorch_lightning.trainer.Trainer attribute), 488
use_ddp2 (pytorch_lightning.trainer.data_loading.TrainerDataLoadingMixIn attribute), 492
use_ddp2 (pytorch_lightning.trainer.evaluation_loop.TrainerEvaluationLoopMixIn attribute), 503
use_ddp2 (pytorch_lightning.trainer.distrib_parts.TrainerDPMixin attribute), 498
use_ddp2 (pytorch_lightning.trainer.evaluation_loop.TrainerEvaluationLoopMixIn attribute), 504
use_ddp2 (pytorch_lightning.trainer.logging.TrainerLoggingMixIn attribute), 488
use_ddp2 (pytorch_lightning.trainer.trainer.Trainer attribute), 488
use_ddp2 (pytorch_lightning.trainer.data_loading.TrainerDataLoadingMixIn attribute), 519
use_ddp2 (pytorch_lightning.trainer.distrib_parts.TrainerDPMixin attribute), 499
use_tpu (pytorch_lightning.trainer.data_loading.TrainerDataLoadingMixIn attribute), 519
use_tpu (pytorch_lightning.trainer.data_loading.TrainerDataLoadingMixIn attribute), 522
use_tpu (pytorch_lightning.trainer.data_loading.TrainerDataLoadingMixIn attribute), 503
use_tpu (pytorch_lightning.trainer.distrib_data_parallel.TrainerDDPMixin attribute), 497
use_tpu (pytorch_lightning.trainer.distrib_parts.TrainerDPMixin attribute), 499
use_tpu (pytorch_lightning.trainer.evaluation_loop.TrainerEvaluationLoopMixIn attribute), 503
use_tpu (pytorch_lightning.trainer.trainer.Trainer attribute), 527
use_tpu (pytorch_lightning.trainer.trainer.Trainer attribute), 522
use_horovod (pytorch_lightning.trainer.trainer.Trainer attribute), 519
use_horovod (pytorch_lightning.trainer.data_loading.TrainerDataLoadingMixIn attribute), 492
use_horovod (pytorch_lightning.trainer.evaluation_loop.TrainerEvaluationLoopMixIn attribute), 503
use_horovod (pytorch_lightning.trainer.Trainer attribute), 488

PyTorch-Lightning Documentation, Release 0.8.1

val_batch_idx () (pytorch_lightning.core.lightning.LightningModule property), 352
val_batch_idx () (pytorch_lightning.callbacks.progress.ProgressBarBase property), 340
val_check_batch () (pytorch_lightning.callbacks.progress.ProgressBarBase property), 492
val_check_batch () (pytorch_lightning.trainer.data_loading.TrainerDataLoadingMixIn attribute), 492
val_check_interval (pytorch_lightning.callbacks.progress.ProgressBarBase property), 492
val_check_interval (pytorch_lightning.trainer.data_loading.TrainerDataLoadingMixIn attribute), 492
val_check_interval (pytorch_lightning.trainer.Trainer attribute), 488
val_check_interval (pytorch_lightning.core.lightning.LightningModule method), 322
PyTorch-Lightning Documentation, Release 0.8.1

val_dataloader()
 (pytorch_lightning.core.LightningModule method), 292

val_dataloaders
 (pytorch_lightning.trainer.data_loading.TrainerDataLoadingMixin attribute), 492

val_dataloaders
 (pytorch_lightning.trainer.evaluation_loop.TrainerEvaluationLoopMixin attribute), 503

val_percent_check()
 (pytorch_lightning.trainer.deprecated_api.TrainerDeprecatedAPI attribute), 493

validation_end()
 (pytorch_lightning.core.lightning.LightningModule method), 323

validation_end()
 (pytorch_lightning.core.LightningModule method), 293

validation_epoch_end()
 (pytorch_lightning.core.lightning.LightningModule method), 323

validation_epoch_end()
 (pytorch_lightning.core.LightningModule method), 293

validation_step()
 (pytorch_lightning.core.lightning.LightningModule method), 324

validation_step()
 (pytorch_lightning.core.LightningModule method), 295

validation_step_end()
 (pytorch_lightning.core.lightning.LightningModule method), 326

validation_step_end()
 (pytorch_lightning.core.LightningModule method), 296

version() (pytorch_lightning.loggers.neptune.NeptuneLogger property), 386

version() (pytorch_lightning.loggers.TensorBoardLogger property), 388

version() (pytorch_lightning.loggers.test_tube.TestTubeLogger property), 389

version() (pytorch_lightning.loggers.trains.TrainsLogger property), 394

version() (pytorch_lightning.loggers.wandb.WandbLogger property), 395

version() (pytorch_lightning.loggers.wandb.WandbLogger property), 395

version() (pytorch_lightning.loggers.WandbLogger property), 368

W

WandbLogger (class in pytorch_lightning.loggers), 367

WandbLogger (class in pytorch_lightning.loggers), 367

watch() (pytorch_lightning.loggers.wandb.WandbLogger method), 395

watch() (pytorch_lightning.loggers.WandbLogger method), 368

weights_save_path
 (pytorch_lightning.trainer.callback_config.TrainerCallbackConfigMixin attribute), 489

weights_save_path
 (pytorch_lightning.trainer.Trainer attribute), 488

weights_save_path
 (pytorch_lightning.trainer.callback_config.TrainerCallbackConfigMixin attribute), 489

weights_save_path
 (pytorch_lightning.trainer.Trainer attribute), 488

weights_save_path
 (pytorch_lightning.trainer.callback_config.TrainerCallbackConfigMixin attribute), 489

weights_save_path
 (pytorch_lightning.trainer.Trainer attribute), 488

zero_grad() (pytorch_lightning.trainer.optimizers._MockOptimizer method), 509

570 Index