Shortcuts

LearningRateMonitor

class pytorch_lightning.callbacks.LearningRateMonitor(logging_interval=None)[source]

Bases: pytorch_lightning.callbacks.base.Callback

Automatically monitor and logs learning rate for learning rate schedulers during training.

Parameters

logging_interval (Optional[str]) – set to epoch or step to log lr of all optimizers at the same interval, set to None to log at individual interval according to the interval key of each scheduler. Defaults to None.

Example:

>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.callbacks import LearningRateMonitor
>>> lr_monitor = LearningRateMonitor(logging_interval='step')
>>> trainer = Trainer(callbacks=[lr_monitor])

Logging names are automatically determined based on optimizer class name. In case of multiple optimizers of same type, they will be named Adam, Adam-1 etc. If a optimizer has multiple parameter groups they will be named Adam/pg1, Adam/pg2 etc. To control naming, pass in a name keyword in the construction of the learning rate schdulers

Example:

def configure_optimizer(self):
    optimizer = torch.optim.Adam(...)
    lr_scheduler = {'scheduler': torch.optim.lr_schedulers.LambdaLR(optimizer, ...)
                    'name': 'my_logging_name'}
    return [optimizer], [lr_scheduler]
on_train_batch_start(trainer, *args, **kwargs)[source]

Called when the train batch begins.

on_train_epoch_start(trainer, *args, **kwargs)[source]

Called when the train epoch begins.

on_train_start(trainer, *args, **kwargs)[source]

Called before training, determines unique names for all lr schedulers in the case of multiple of the same type or in the case of multiple parameter groups

Read the Docs v: 1.0.7
Versions
latest
stable
1.0.7
1.0.6
1.0.5
1.0.4
1.0.3
1.0.2
1.0.1
1.0.0
0.10.0
0.9.0
0.8.5
0.8.4
0.8.3
0.8.2
0.8.1
0.8.0
0.7.6
0.7.5
0.7.4
0.7.3
0.7.2
0.7.1
0.7.0
0.6.0
0.5.3.2
0.5.3
0.4.9
release-1.0.x
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.