Transfer Learning¶
Using Pretrained Models¶
Sometimes we want to use a LightningModule as a pretrained model. This is fine because a LightningModule is just a torch.nn.Module!
Note
Remember that a LightningModule is EXACTLY a torch.nn.Module but with more capabilities.
Let’s use the AutoEncoder as a feature extractor in a separate model.
class Encoder(torch.nn.Module):
...
class AutoEncoder(LightningModule):
def __init__(self):
self.encoder = Encoder()
self.decoder = Decoder()
class CIFAR10Classifier(LightningModule):
def __init__(self):
# init the pretrained LightningModule
self.feature_extractor = AutoEncoder.load_from_checkpoint(PATH)
self.feature_extractor.freeze()
# the autoencoder outputs a 100-dim representation and CIFAR-10 has 10 classes
self.classifier = nn.Linear(100, 10)
def forward(self, x):
representations = self.feature_extractor(x)
x = self.classifier(representations)
...
We used our pretrained Autoencoder (a LightningModule) for transfer learning!
Example: Imagenet (computer Vision)¶
import torchvision.models as models
class ImagenetTransferLearning(LightningModule):
def __init__(self):
super().__init__()
# init a pretrained resnet
backbone = models.resnet50(pretrained=True)
num_filters = backbone.fc.in_features
layers = list(backbone.children())[:-1]
self.feature_extractor = nn.Sequential(*layers)
# use the pretrained model to classify cifar-10 (10 image classes)
num_target_classes = 10
self.classifier = nn.Linear(num_filters, num_target_classes)
def forward(self, x):
self.feature_extractor.eval()
with torch.no_grad():
representations = self.feature_extractor(x).flatten(1)
x = self.classifier(representations)
...
Finetune
model = ImagenetTransferLearning()
trainer = Trainer()
trainer.fit(model)
And use it to predict your data of interest
model = ImagenetTransferLearning.load_from_checkpoint(PATH)
model.freeze()
x = some_images_from_cifar10()
predictions = model(x)
We used a pretrained model on imagenet, finetuned on CIFAR-10 to predict on CIFAR-10. In the non-academic world we would finetune on a tiny dataset you have and predict on your dataset.
Example: BERT (NLP)¶
Lightning is completely agnostic to what’s used for transfer learning so long as it is a torch.nn.Module subclass.
Here’s a model that uses Huggingface transformers.
class BertMNLIFinetuner(LightningModule):
def __init__(self):
super().__init__()
self.bert = BertModel.from_pretrained('bert-base-cased', output_attentions=True)
self.W = nn.Linear(bert.config.hidden_size, 3)
self.num_classes = 3
def forward(self, input_ids, attention_mask, token_type_ids):
h, _, attn = self.bert(input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids)
h_cls = h[:, 0]
logits = self.W(h_cls)
return logits, attn