Shortcuts

Source code for pytorch_lightning.loops.batch.training_batch_loop

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, List, Optional, Tuple, Union

from deprecate import void
from torch import Tensor

from pytorch_lightning.loops.base import Loop
from pytorch_lightning.loops.optimization.manual_loop import _OUTPUTS_TYPE as _MANUAL_LOOP_OUTPUTS_TYPE
from pytorch_lightning.loops.optimization.manual_loop import ManualOptimization
from pytorch_lightning.loops.optimization.optimizer_loop import _OUTPUTS_TYPE as _OPTIMIZER_LOOP_OUTPUTS_TYPE
from pytorch_lightning.loops.optimization.optimizer_loop import OptimizerLoop
from pytorch_lightning.loops.utilities import _get_active_optimizers
from pytorch_lightning.trainer.supporters import TensorRunningAccum

_OUTPUTS_TYPE = List[Union[_OPTIMIZER_LOOP_OUTPUTS_TYPE, _MANUAL_LOOP_OUTPUTS_TYPE]]


[docs]class TrainingBatchLoop(Loop[_OUTPUTS_TYPE]): """Runs over a single batch of data.""" def __init__(self) -> None: super().__init__() self.accumulated_loss = TensorRunningAccum(window_length=20) self.running_loss = TensorRunningAccum(window_length=20) # the current split index when the batch gets split into chunks in truncated backprop through time self.split_idx: int = 0 self.optimizer_loop = OptimizerLoop() self.manual_loop = ManualOptimization() self._outputs: _OUTPUTS_TYPE = [] self._remaining_splits: List[Tuple[int, Any]] = [] @property def done(self) -> bool: """Returns if all batch splits have been processed already.""" return len(self._remaining_splits) == 0
[docs] def connect( # type: ignore[override] self, optimizer_loop: Optional[OptimizerLoop] = None, manual_loop: Optional[ManualOptimization] = None ) -> None: if optimizer_loop is not None: self.optimizer_loop = optimizer_loop if manual_loop is not None: self.manual_loop = manual_loop
[docs] def reset(self) -> None: """Resets the loop state.""" self._outputs = []
[docs] def on_run_start(self, batch: Any, batch_idx: int) -> None: # type: ignore[override] """Splits the data into tbptt splits. Args: batch: the current batch to run the trainstep on batch_idx: the index of the current batch """ void(batch_idx) self._remaining_splits = list(enumerate(self._tbptt_split_batch(batch)))
[docs] def advance(self, batch: Any, batch_idx: int) -> None: # type: ignore[override] """Runs the train step together with optimization (if necessary) on the current batch split. Args: batch: the current batch to run the training on (this is not the split!) batch_idx: the index of the current batch """ void(batch) self.split_idx, split_batch = self._remaining_splits.pop(0) self.trainer.logger_connector.on_train_split_start(self.split_idx) outputs: Optional[Union[_OPTIMIZER_LOOP_OUTPUTS_TYPE, _MANUAL_LOOP_OUTPUTS_TYPE]] = None # for mypy # choose which loop will run the optimization if self.trainer.lightning_module.automatic_optimization: optimizers = _get_active_optimizers(self.trainer.optimizers, self.trainer.optimizer_frequencies, batch_idx) outputs = self.optimizer_loop.run(split_batch, optimizers, batch_idx) else: outputs = self.manual_loop.run(split_batch, batch_idx) if outputs: # automatic: can be empty if all optimizers skip their batches # manual: #9052 added support for raising `StopIteration` in the `training_step`. If that happens, # then `advance` doesn't finish and an empty dict is returned self._outputs.append(outputs)
[docs] def on_run_end(self) -> _OUTPUTS_TYPE: self.optimizer_loop._hiddens = None # this is not necessary as the manual loop runs for only 1 iteration, but just in case self.manual_loop._hiddens = None output, self._outputs = self._outputs, [] # free memory self._remaining_splits = [] return output
[docs] def teardown(self) -> None: self.optimizer_loop.teardown() self.manual_loop.teardown()
def _tbptt_split_batch(self, batch: Any) -> List[Any]: """Splits a single batch into a list of sequence steps for tbptt. Args: batch: the current batch to split """ tbptt_steps = self.trainer.lightning_module.truncated_bptt_steps if tbptt_steps == 0: return [batch] splits = self.trainer._call_lightning_module_hook("tbptt_split_batch", batch, tbptt_steps) return splits def _update_running_loss(self, current_loss: Tensor) -> None: """Updates the running loss value with the current value.""" if self.trainer.lightning_module.automatic_optimization: # track total loss for logging (avoid mem leaks) self.accumulated_loss.append(current_loss) accumulated_loss = self.accumulated_loss.mean() if accumulated_loss is not None: # calculate running loss for display self.running_loss.append(self.accumulated_loss.mean() * self.trainer.accumulate_grad_batches) # reset for next set of accumulated grads self.accumulated_loss.reset()

© Copyright Copyright (c) 2018-2022, William Falcon et al... Revision 86b177eb.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: latest
Versions
latest
stable
1.5.9
1.5.8
1.5.7
1.5.6
1.5.5
1.5.4
1.5.3
1.5.2
1.5.1
1.5.0
1.4.9
1.4.8
1.4.7
1.4.6
1.4.5
1.4.4
1.4.3
1.4.2
1.4.1
1.4.0
1.3.8
1.3.7
1.3.6
1.3.5
1.3.4
1.3.3
1.3.2
1.3.1
1.3.0
1.2.10
1.2.8
1.2.7
1.2.6
1.2.5
1.2.4
1.2.3
1.2.2
1.2.1
1.2.0
1.1.8
1.1.7
1.1.6
1.1.5
1.1.4
1.1.3
1.1.2
1.1.1
1.1.0
1.0.8
1.0.7
1.0.6
1.0.5
1.0.4
1.0.3
1.0.2
1.0.1
1.0.0
0.10.0
0.9.0
0.8.5
0.8.4
0.8.3
0.8.2
0.8.1
0.8.0
0.7.6
0.7.5
0.7.4
0.7.3
0.7.2
0.7.1
0.7.0
0.6.0
0.5.3
0.4.9
ipynb-update
docs-search
Downloads
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.