Shortcuts

Source code for pytorch_lightning.strategies.sharded_spawn

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from contextlib import contextmanager
from typing import Dict, Generator, List, Tuple

from torch import Tensor
from torch.nn import Module
from torch.optim import Optimizer

import pytorch_lightning as pl
from lightning_lite.strategies.fairscale import _FAIRSCALE_AVAILABLE, _reinit_optimizers_with_oss
from lightning_lite.utilities.optimizer import _optimizers_to_device
from pytorch_lightning.core.optimizer import LightningOptimizer
from pytorch_lightning.overrides.base import _LightningModuleWrapperBase, _LightningPrecisionModuleWrapperBase
from pytorch_lightning.strategies.ddp_spawn import DDPSpawnStrategy
from pytorch_lightning.trainer.states import TrainerFn
from pytorch_lightning.utilities.exceptions import MisconfigurationException

if _FAIRSCALE_AVAILABLE:
    from fairscale.nn.data_parallel.sharded_ddp import ShardedDataParallel
    from fairscale.optim import OSS

else:
    OSS = ShardedDataParallel = object


[docs]class DDPSpawnShardedStrategy(DDPSpawnStrategy): """Optimizer sharded training provided by FairScale.""" strategy_name = "ddp_sharded_spawn"
[docs] def connect(self, model: "pl.LightningModule") -> None: if not _FAIRSCALE_AVAILABLE: # pragma: no cover raise MisconfigurationException( "`DDPSpawnShardedStrategy` requires `fairscale` to be installed." " Install it by running `pip install fairscale`." ) return super().connect(model)
def configure_ddp(self) -> None: # set up optimizers after the wrapped module has been moved to the device assert self.lightning_module is not None self.setup_optimizers(self.lightning_module.trainer) assert isinstance(self.model, (pl.LightningModule, _LightningPrecisionModuleWrapperBase)) self.model, self.optimizers = self._setup_model_and_optimizers( model=_LightningModuleWrapperBase(self.model), optimizers=self.optimizers ) _optimizers_to_device(self.optimizers, self.root_device) def _setup_model_and_optimizers(self, model: Module, optimizers: List[Optimizer]) -> Tuple[Module, List[Optimizer]]: """Wraps the model and optimizers with fairscale components. Return: The model wrapped into a :class:`~fairscale.nn.data_parallel.ShardedDataParallel` module and a list of optimizer wrapped in :class:~`fairscale.optim.OSS`. """ optimizers = self._wrap_optimizers(optimizers) model = ShardedDataParallel(model, sharded_optimizer=optimizers, **self._ddp_kwargs) return model, optimizers def _wrap_optimizers(self, optimizers: List[Optimizer]) -> List["OSS"]: assert self.lightning_module if self.model is not None and self.lightning_module.trainer.state.fn != TrainerFn.FITTING: return optimizers optimizers = [o._optimizer if isinstance(o, LightningOptimizer) else o for o in optimizers] return _reinit_optimizers_with_oss(optimizers, self.precision_plugin, self.num_nodes)
[docs] @contextmanager def block_backward_sync(self) -> Generator: """Blocks syncing gradients behaviour on backwards pass. This is useful for skipping sync when accumulating gradients, reducing communication overhead Returns: context manager with sync behaviour off """ if isinstance(self.model, ShardedDataParallel): with self.model.no_sync(): yield None else: yield None
[docs] def pre_backward(self, closure_loss: Tensor) -> None: pass
def post_training_step(self) -> None: pass @classmethod def register_strategies(cls, strategy_registry: Dict) -> None: strategy_registry.register( "ddp_sharded_spawn_find_unused_parameters_false", cls, description="DDP Spawn Sharded Strategy with `find_unused_parameters` as False", find_unused_parameters=False, ) strategy_registry.register( cls.strategy_name, cls, description=f"{cls.__class__.__name__}", )

© Copyright Copyright (c) 2018-2022, Lightning AI et al... Revision f4fcad36.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: latest
Versions
latest
stable
1.8.3post1
1.8.3.post0
1.8.3
1.8.2
1.8.1
1.8.0.post1
1.8.0
1.7.7
1.7.6
1.7.5
1.7.4
1.7.3
1.7.2
1.7.1
1.7.0
1.6.5
1.6.4
1.6.3
1.6.2
1.6.1
1.6.0
1.5.10
1.5.9
1.5.8
1.5.7
1.5.6
1.5.5
1.5.4
1.5.3
1.5.2
1.5.1
1.5.0
1.4.9
1.4.8
1.4.7
1.4.6
1.4.5
1.4.4
1.4.3
1.4.2
1.4.1
1.4.0
1.3.8
1.3.7
1.3.6
1.3.5
1.3.4
1.3.3
1.3.2
1.3.1
1.3.0
1.2.10
1.2.8
1.2.7
1.2.6
1.2.5
1.2.4
1.2.3
1.2.2
1.2.1
1.2.0
1.1.8
1.1.7
1.1.6
1.1.5
1.1.4
1.1.3
1.1.2
1.1.1
1.1.0
1.0.8
1.0.7
1.0.6
1.0.5
1.0.4
1.0.3
1.0.2
1.0.1
1.0.0
0.10.0
0.9.0
0.8.5
0.8.4
0.8.3
0.8.2
0.8.1
0.8.0
0.7.6
0.7.5
0.7.4
0.7.3
0.7.2
0.7.1
0.7.0
0.6.0
0.5.3
0.4.9
Downloads
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.