Shortcuts

Early stopping

Stopping an epoch early

You can stop an epoch early by overriding on_batch_start() to return -1 when some condition is met.

If you do this repeatedly, for every epoch you had originally requested, then this will stop your entire run.


Default Epoch End Callback Behavior

By default early stopping will be enabled if ‘val_loss’ is found in validation_epoch_end()’s return dict. Otherwise training will proceed with early stopping disabled.


Enable Early Stopping using the EarlyStopping Callback

The EarlyStopping callback can be used to monitor a validation metric and stop the training when no improvement is observed.

There are two ways to enable the EarlyStopping callback:

  • Set early_stop_callback=True. The callback will look for ‘val_loss’ in the dict returned by validation_epoch_end() and raise an error if val_loss is not present.

    trainer = Trainer(early_stop_callback=True)
    
  • Create the callback object and pass it to the trainer. This allows for further customization.

    early_stop_callback = EarlyStopping(
       monitor='val_accuracy',
       min_delta=0.00,
       patience=3,
       verbose=False,
       mode='max'
    )
    trainer = Trainer(early_stop_callback=early_stop_callback)
    

In case you need early stopping in a different part of training, subclass EarlyStopping and change where it is called:

class MyEarlyStopping(EarlyStopping):

    def on_validation_end(self, trainer, pl_module):
        # override this to disable early stopping at the end of val loop
        pass

    def on_train_end(self, trainer, pl_module):
        # instead, do it at the end of training loop
        self._run_early_stopping_check(trainer, pl_module)

Note

The EarlyStopping callback runs at the end of every validation epoch, which, under the default configuration, happen after every training epoch. However, the frequency of validation can be modified by setting various parameters on the Trainer, for example check_val_every_n_epoch and val_check_interval. It must be noted that the patience parameter counts the number of validation epochs with no improvement, and not the number of training epochs. Therefore, with parameters check_val_every_n_epoch=10 and patience=3, the trainer will perform at least 40 training epochs before being stopped.


Disable Early Stopping with callbacks on epoch end

To disable early stopping pass False to the early_stop_callback. Note that None will not disable early stopping but will lead to the default behaviour.

Read the Docs v: latest
Versions
latest
stable
0.8.5
0.8.4
0.8.3
0.8.2
0.8.1
0.8.0
0.7.6
0.7.5
0.7.4
0.7.3
0.7.2
0.7.1
0.7.0
0.6.0
0.5.3.2
0.4.9
Downloads
pdf
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.