Shortcuts

Source code for pytorch_lightning.metrics.functional.precision_recall_curve

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Sequence, Tuple, List, Union

import torch
import torch.nn.functional as F

from pytorch_lightning.utilities import rank_zero_warn


def _binary_clf_curve(
        preds: torch.Tensor,
        target: torch.Tensor,
        sample_weights: Optional[Sequence] = None,
        pos_label: int = 1.,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
    """
    adapted from https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/_ranking.py
    """
    if sample_weights is not None and not isinstance(sample_weights, torch.Tensor):
        sample_weights = torch.tensor(sample_weights, device=preds.device, dtype=torch.float)

    # remove class dimension if necessary
    if preds.ndim > target.ndim:
        preds = preds[:, 0]
    desc_score_indices = torch.argsort(preds, descending=True)

    preds = preds[desc_score_indices]
    target = target[desc_score_indices]

    if sample_weights is not None:
        weight = sample_weights[desc_score_indices]
    else:
        weight = 1.

    # pred typically has many tied values. Here we extract
    # the indices associated with the distinct values. We also
    # concatenate a value for the end of the curve.
    distinct_value_indices = torch.where(preds[1:] - preds[:-1])[0]
    threshold_idxs = F.pad(distinct_value_indices, (0, 1), value=target.size(0) - 1)
    target = (target == pos_label).to(torch.long)
    tps = torch.cumsum(target * weight, dim=0)[threshold_idxs]

    if sample_weights is not None:
        # express fps as a cumsum to ensure fps is increasing even in
        # the presence of floating point errors
        fps = torch.cumsum((1 - target) * weight, dim=0)[threshold_idxs]
    else:
        fps = 1 + threshold_idxs - tps

    return fps, tps, preds[threshold_idxs]


def _precision_recall_curve_update(
        preds: torch.Tensor,
        target: torch.Tensor,
        num_classes: Optional[int] = None,
        pos_label: Optional[int] = None,
) -> Tuple[torch.Tensor, torch.Tensor, int, int]:
    if not (len(preds.shape) == len(target.shape) or len(preds.shape) == len(target.shape) + 1):
        raise ValueError(
            "preds and target must have same number of dimensions, or one additional dimension for preds"
        )
    # single class evaluation
    if len(preds.shape) == len(target.shape):
        if num_classes is not None and num_classes != 1:
            raise ValueError('Preds and target have equal shape, but number of classes is different from 1')
        num_classes = 1
        if pos_label is None:
            rank_zero_warn('`pos_label` automatically set 1.')
            pos_label = 1
        preds = preds.flatten()
        target = target.flatten()

    # multi class evaluation
    if len(preds.shape) == len(target.shape) + 1:
        if pos_label is not None:
            rank_zero_warn('Argument `pos_label` should be `None` when running'
                           f'multiclass precision recall curve. Got {pos_label}')
        if num_classes != preds.shape[1]:
            raise ValueError(f'Argument `num_classes` was set to {num_classes} in'
                             f'metric `precision_recall_curve` but detected {preds.shape[1]}'
                             'number of classes from predictions')
        preds = preds.transpose(0, 1).reshape(num_classes, -1).transpose(0, 1)
        target = target.flatten()

    return preds, target, num_classes, pos_label


def _precision_recall_curve_compute(
        preds: torch.Tensor,
        target: torch.Tensor,
        num_classes: int,
        pos_label: int,
        sample_weights: Optional[Sequence] = None,
) -> Union[Tuple[torch.Tensor, torch.Tensor, torch.Tensor],
           Tuple[List[torch.Tensor], List[torch.Tensor], List[torch.Tensor]]]:

    if num_classes == 1:
        fps, tps, thresholds = _binary_clf_curve(
            preds=preds,
            target=target,
            sample_weights=sample_weights,
            pos_label=pos_label
        )

        precision = tps / (tps + fps)
        recall = tps / tps[-1]

        # stop when full recall attained
        # and reverse the outputs so recall is decreasing
        last_ind = torch.where(tps == tps[-1])[0][0]
        sl = slice(0, last_ind.item() + 1)

        # need to call reversed explicitly, since including that to slice would
        # introduce negative strides that are not yet supported in pytorch
        precision = torch.cat([reversed(precision[sl]),
                               torch.ones(1, dtype=precision.dtype,
                                          device=precision.device)])

        recall = torch.cat([reversed(recall[sl]),
                            torch.zeros(1, dtype=recall.dtype,
                                        device=recall.device)])

        thresholds = reversed(thresholds[sl]).clone()

        return precision, recall, thresholds

    # Recursively call per class
    precision, recall, thresholds = [], [], []
    for c in range(num_classes):
        preds_c = preds[:, c]
        res = precision_recall_curve(
            preds=preds_c,
            target=target,
            num_classes=1,
            pos_label=c,
            sample_weights=sample_weights,
        )
        precision.append(res[0])
        recall.append(res[1])
        thresholds.append(res[2])

    return precision, recall, thresholds


[docs]def precision_recall_curve( preds: torch.Tensor, target: torch.Tensor, num_classes: Optional[int] = None, pos_label: Optional[int] = None, sample_weights: Optional[Sequence] = None, ) -> Union[Tuple[torch.Tensor, torch.Tensor, torch.Tensor], Tuple[List[torch.Tensor], List[torch.Tensor], List[torch.Tensor]]]: """ Computes precision-recall pairs for different thresholds. Args: num_classes: integer with number of classes. Not nessesary to provide for binary problems. pos_label: integer determining the positive class. Default is ``None`` which for binary problem is translate to 1. For multiclass problems this argument should not be set as we iteratively change it in the range [0,num_classes-1] sample_weight: sample weights for each data point Returns: 3-element tuple containing precision: tensor where element i is the precision of predictions with score >= thresholds[i] and the last element is 1. If multiclass, this is a list of such tensors, one for each class. recall: tensor where element i is the recall of predictions with score >= thresholds[i] and the last element is 0. If multiclass, this is a list of such tensors, one for each class. thresholds: Thresholds used for computing precision/recall scores Example (binary case): >>> pred = torch.tensor([0, 1, 2, 3]) >>> target = torch.tensor([0, 1, 1, 0]) >>> precision, recall, thresholds = precision_recall_curve(pred, target, pos_label=1) >>> precision tensor([0.6667, 0.5000, 0.0000, 1.0000]) >>> recall tensor([1.0000, 0.5000, 0.0000, 0.0000]) >>> thresholds tensor([1, 2, 3]) Example (multiclass case): >>> pred = torch.tensor([[0.75, 0.05, 0.05, 0.05, 0.05], ... [0.05, 0.75, 0.05, 0.05, 0.05], ... [0.05, 0.05, 0.75, 0.05, 0.05], ... [0.05, 0.05, 0.05, 0.75, 0.05]]) >>> target = torch.tensor([0, 1, 3, 2]) >>> precision, recall, thresholds = precision_recall_curve(pred, target, num_classes=5) >>> precision [tensor([1., 1.]), tensor([1., 1.]), tensor([0.2500, 0.0000, 1.0000]), tensor([0.2500, 0.0000, 1.0000]), tensor([0., 1.])] >>> recall [tensor([1., 0.]), tensor([1., 0.]), tensor([1., 0., 0.]), tensor([1., 0., 0.]), tensor([nan, 0.])] >>> thresholds [tensor([0.7500]), tensor([0.7500]), tensor([0.0500, 0.7500]), tensor([0.0500, 0.7500]), tensor([0.0500])] """ preds, target, num_classes, pos_label = _precision_recall_curve_update(preds, target, num_classes, pos_label) return _precision_recall_curve_compute(preds, target, num_classes, pos_label, sample_weights)

© Copyright Copyright (c) 2018-2021, William Falcon et al... Revision c462b274.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: stable
Versions
latest
stable
1.1.6
1.1.5
1.1.4
1.1.3
1.1.2
1.1.1
1.1.0
1.0.8
1.0.7
1.0.6
1.0.5
1.0.4
1.0.3
1.0.2
1.0.1
1.0.0
0.10.0
0.9.0
0.8.5
0.8.4
0.8.3
0.8.2
0.8.1
0.8.0
0.7.6
0.7.5
0.7.4
0.7.3
0.7.2
0.7.1
0.7.0
0.6.0
0.5.3.2
0.5.3
0.4.9
release-1.0.x
Downloads
pdf
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.