Shortcuts

Optimization

Lightning offers two modes for managing the optimization process:

  • automatic optimization (AutoOpt)

  • manual optimization

For the majority of research cases, automatic optimization will do the right thing for you and it is what most users should use.

For advanced/expert users who want to do esoteric optimization schedules or techniques, use manual optimization.


Manual optimization

For advanced research topics like reinforcement learning, sparse coding, or GAN research, it may be desirable to manually manage the optimization process. To do so, do the following:

  • Override your LightningModule automatic_optimization property to return False

  • Drop or ignore the optimizer_idx argument

  • Use self.manual_backward(loss) instead of loss.backward().

Note

This is only recommended for experts who need ultimate flexibility. Lightning will handle only precision and accelerators logic. The users are left with optimizer.zero_grad(), gradient accumulation, model toggling, etc..

Warning

Before 1.2, optimzer.step was calling optimizer.zero_grad() internally. From 1.2, it is left to the users expertize.

Tip

To perform accumulate_grad_batches with one optimizer, you can do as such.

Tip

self.optimizers() will return LightningOptimizer objects. You can access your own optimizer with optimizer.optimizer. However, if you use your own optimizer to perform a step, Lightning won’t be able to support accelerators and precision for you.

def training_step(batch, batch_idx, optimizer_idx):
    opt = self.optimizers()

    loss = self.compute_loss(batch)
    self.manual_backward(loss)

    # accumulate gradient batches
    if batch_idx % 2 == 0:
        opt.step()
        opt.zero_grad()

Tip

It is a good practice to provide the optimizer with a closure function that performs a forward and backward pass of your model. It is optional for most optimizers, but makes your code compatible if you switch to an optimizer which requires a closure. See also the PyTorch docs.

Here is the same example as above using a closure.

def training_step(batch, batch_idx, optimizer_idx):
    opt = self.optimizers()

    def forward_and_backward():
        loss = self.compute_loss(batch)
        self.manual_backward(loss)

    opt.step(closure=forward_and_backward)

    # accumulate gradient batches
    if batch_idx % 2 == 0:
        opt.zero_grad()
# Scenario for a GAN.
def training_step(...):
    opt_gen, opt_dis = self.optimizers()

    # compute generator loss
    loss_gen = self.compute_generator_loss(...)

    # zero_grad needs to be called before backward
    opt_gen.zero_grad()
    self.manual_backward(loss_gen)
    opt_gen.step()

    # compute discriminator loss
    loss_dis = self.compute_discriminator_loss(...)

    # zero_grad needs to be called before backward
    opt_dis.zero_grad()
    self.manual_backward(loss_dis)
    opt_dis.step()

Note

LightningOptimizer provides a toggle_model function as a @context_manager for advanced users. It can be useful when performing gradient accumulation with several optimizers or training in a distributed setting.

Here is an explanation of what it does:

Considering the current optimizer as A and all other optimizers as B. Toggling means that all parameters from B exclusive to A will have their requires_grad attribute set to False. Their original state will be restored when exiting the context manager.

When performing gradient accumulation, there is no need to perform grad synchronization during the accumulation phase. Setting sync_grad to False will block this synchronization and improve your training speed.

Here is an example on how to use it:

# Scenario for a GAN with gradient accumulation every 2 batches and optimized for multiple gpus.

def training_step(self, batch, batch_idx, ...):
    opt_gen, opt_dis = self.optimizers()

    accumulated_grad_batches = batch_idx % 2 == 0

    # compute generator loss
    def closure_gen():
        loss_gen = self.compute_generator_loss(...)
        self.manual_backward(loss_gen)
        if accumulated_grad_batches:
            opt_gen.zero_grad()

    with opt_gen.toggle_model(sync_grad=accumulated_grad_batches):
        opt_gen.step(closure=closure_gen)

    def closure_dis():
        loss_dis = self.compute_discriminator_loss(...)
        self.manual_backward(loss_dis)
        if accumulated_grad_batches:
            opt_dis.zero_grad()

    with opt_dis.toggle_model(sync_grad=accumulated_grad_batches):
        opt_dis.step(closure=closure_dis)

Automatic optimization

With Lightning most users don’t have to think about when to call .zero_grad(), .backward() and .step() since Lightning automates that for you.

Warning

Before 1.2.2, .zero_grad() was called after .backward() and .step() internally. From 1.2.2, Lightning calls .zero_grad() before .backward().

Under the hood Lightning does the following:

for epoch in epochs:
    for batch in data:
        loss = model.training_step(batch, batch_idx, ...)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    for lr_scheduler in lr_schedulers:
        lr_scheduler.step()

In the case of multiple optimizers, Lightning does the following:

for epoch in epochs:
    for batch in data:
        for opt in optimizers:
            loss = model.training_step(batch, batch_idx, optimizer_idx)
            opt.zero_grad()
            loss.backward()
            opt.step()

    for lr_scheduler in lr_schedulers:
        lr_scheduler.step()

Learning rate scheduling

Every optimizer you use can be paired with any Learning Rate Scheduler. In the basic use-case, the scheduler (or multiple schedulers) should be returned as the second output from the .configure_optimizers method:

# no LR scheduler
def configure_optimizers(self):
   return Adam(...)

# Adam + LR scheduler
def configure_optimizers(self):
   optimizer = Adam(...)
   scheduler = LambdaLR(optimizer, ...)
   return [optimizer], [scheduler]

# Two optimizers each with a scheduler
def configure_optimizers(self):
   optimizer1 = Adam(...)
   optimizer2 = SGD(...)
   scheduler1 = LambdaLR(optimizer1, ...)
   scheduler2 = LambdaLR(optimizer2, ...)
   return [optimizer1, optimizer2], [scheduler1, scheduler2]

When there are schedulers in which the .step() method is conditioned on a metric value (for example the ReduceLROnPlateau scheduler), Lightning requires that the output from configure_optimizers should be dicts, one for each optimizer, with the keyword monitor set to metric that the scheduler should be conditioned on.

# The ReduceLROnPlateau scheduler requires a monitor
def configure_optimizers(self):
   return {
       'optimizer': Adam(...),
       'lr_scheduler': ReduceLROnPlateau(optimizer, ...),
       'monitor': 'metric_to_track'
   }

# In the case of two optimizers, only one using the ReduceLROnPlateau scheduler
def configure_optimizers(self):
   optimizer1 = Adam(...)
   optimizer2 = SGD(...)
   scheduler1 = ReduceLROnPlateau(optimizer1, ...)
   scheduler2 = LambdaLR(optimizer2, ...)
   return (
       {'optimizer': optimizer1, 'lr_scheduler': scheduler1, 'monitor': 'metric_to_track'},
       {'optimizer': optimizer2, 'lr_scheduler': scheduler2},
   )

Note

Metrics can be made availble to condition on by simply logging it using self.log('metric_to_track', metric_val) in your lightning module.

By default, all schedulers will be called after each epoch ends. To change this behaviour, a scheduler configuration should be returned as a dict which can contain the following keywords:

  • scheduler (required): the actual scheduler object

  • monitor (optional): metric to condition

  • interval (optional): either epoch (default) for stepping after each epoch ends or step for stepping after each optimization step

  • frequency (optional): how many epochs/steps should pass between calls to scheduler.step(). Default is 1, corresponding to updating the learning rate after every epoch/step.

  • strict (optional): if set to True will enforce that value specified in monitor is available while trying to call scheduler.step(), and stop training if not found. If False will only give a warning and continue training (without calling the scheduler).

  • name (optional): if using the LearningRateMonitor callback to monitor the learning rate progress, this keyword can be used to specify a specific name the learning rate should be logged as.

# Same as the above example with additional params passed to the first scheduler
# In this case the ReduceLROnPlateau will step after every 10 processed batches
def configure_optimizers(self):
   optimizers = [Adam(...), SGD(...)]
   schedulers = [
      {
         'scheduler': ReduceLROnPlateau(optimizers[0], ...),
         'monitor': 'metric_to_track',
         'interval': 'step',
         'frequency': 10,
         'strict': True,
      },
      LambdaLR(optimizers[1], ...)
   ]
   return optimizers, schedulers

Use multiple optimizers (like GANs)

To use multiple optimizers return two or more optimizers from pytorch_lightning.core.LightningModule.configure_optimizers()

# one optimizer
def configure_optimizers(self):
   return Adam(...)

# two optimizers, no schedulers
def configure_optimizers(self):
   return Adam(...), SGD(...)

# Two optimizers, one scheduler for adam only
def configure_optimizers(self):
   return [Adam(...), SGD(...)], {'scheduler': ReduceLROnPlateau(), 'monitor': 'metric_to_track'}

Lightning will call each optimizer sequentially:

for epoch in epochs:
    for batch in data:
        for opt in optimizers:
            loss = train_step(batch, batch_idx, optimizer_idx)
            opt.zero_grad()
            loss.backward()
            opt.step()

   for lr_scheduler in lr_schedulers:
       lr_scheduler.step()

Step optimizers at arbitrary intervals

To do more interesting things with your optimizers such as learning rate warm-up or odd scheduling, override the optimizer_step() function.

For example, here step optimizer A every 2 batches and optimizer B every 4 batches

Note

When using Trainer(enable_pl_optimizer=True), there is no need to call .zero_grad().

def optimizer_zero_grad(self, current_epoch, batch_idx, optimizer, opt_idx):
  optimizer.zero_grad()

# Alternating schedule for optimizer steps (ie: GANs)
def optimizer_step(self, current_epoch, batch_nb, optimizer, optimizer_idx, closure, on_tpu=False, using_native_amp=False, using_lbfgs=False):
    # update generator opt every 2 steps
    if optimizer_idx == 0:
        if batch_nb % 2 == 0 :
           optimizer.step(closure=closure)

    # update discriminator opt every 4 steps
    if optimizer_idx == 1:
        if batch_nb % 4 == 0 :
           optimizer.step(closure=closure)

Here we add a learning-rate warm up

# learning rate warm-up
def optimizer_step(self, current_epoch, batch_nb, optimizer, optimizer_idx, closure, on_tpu=False, using_native_amp=False, using_lbfgs=False):
    # warm up lr
    if self.trainer.global_step < 500:
        lr_scale = min(1., float(self.trainer.global_step + 1) / 500.)
        for pg in optimizer.param_groups:
            pg['lr'] = lr_scale * self.hparams.learning_rate

    # update params
    optimizer.step(closure=closure)

Note

The default optimizer_step is relying on the internal LightningOptimizer to properly perform a step. It handles TPUs, AMP, accumulate_grad_batches and much more …

# function hook in LightningModule
def optimizer_step(self, current_epoch, batch_nb, optimizer, optimizer_idx, closure, on_tpu=False, using_native_amp=False, using_lbfgs=False):
  optimizer.step(closure=closure)

Note

To access your wrapped Optimizer from LightningOptimizer, do as follow.

# function hook in LightningModule
def optimizer_step(self, current_epoch, batch_nb, optimizer, optimizer_idx, closure, on_tpu=False, using_native_amp=False, using_lbfgs=False):

  # `optimizer is a ``LightningOptimizer`` wrapping the optimizer.
  # To access it, do as follow:
  optimizer = optimizer.optimizer

  # run step. However, it won't work on TPU, AMP, etc...
  optimizer.step(closure=closure)

Using the closure functions for optimization

When using optimization schemes such as LBFGS, the second_order_closure needs to be enabled. By default, this function is defined by wrapping the training_step and the backward steps as follows

Warning

Before 1.2.2, .zero_grad() was called outside the closure internally. From 1.2.2, the closure calls .zero_grad() inside, so there is no need to define your own closure when using similar optimizers to torch.optim.LBFGS which requires reevaluation of the loss with the closure in optimizer.step().

def second_order_closure(pl_module, split_batch, batch_idx, opt_idx, optimizer, hidden):
    # Model training step on a given batch
    result = pl_module.training_step(split_batch, batch_idx, opt_idx, hidden)

    # Model backward pass
    pl_module.backward(result, optimizer, opt_idx)

    # on_after_backward callback
    pl_module.on_after_backward(result.training_step_output, batch_idx, result.loss)

    return result

# This default `second_order_closure` function can be enabled by passing it directly into the `optimizer.step`
def optimizer_step(self, current_epoch, batch_nb, optimizer, optimizer_idx, second_order_closure, on_tpu=False, using_native_amp=False, using_lbfgs=False):
    # update params
    optimizer.step(second_order_closure)
Read the Docs v: stable
Versions
latest
stable
1.2.2
1.2.1
1.2.0
1.1.8
1.1.7
1.1.6
1.1.5
1.1.4
1.1.3
1.1.2
1.1.1
1.1.0
1.0.8
1.0.7
1.0.6
1.0.5
1.0.4
1.0.3
1.0.2
1.0.1
1.0.0
0.10.0
0.9.0
0.8.5
0.8.4
0.8.3
0.8.2
0.8.1
0.8.0
0.7.6
0.7.5
0.7.4
0.7.3
0.7.2
0.7.1
0.7.0
0.6.0
0.5.3.2
0.5.3
0.4.9
release-1.2-dev
release-1.0.x
Downloads
pdf
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.