Shortcuts

Hyperparameters

Lightning has utilities to interact seamlessly with the command line ArgumentParser and plays well with the hyperparameter optimization framework of your choice.


ArgumentParser

Lightning is designed to augment a lot of the functionality of the built-in Python ArgumentParser

from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument('--layer_1_dim', type=int, default=128)
args = parser.parse_args()

This allows you to call your program like so:

python trainer.py --layer_1_dim 64

Argparser Best Practices

It is best practice to layer your arguments in three sections.

  1. Trainer args (gpus, num_nodes, etc…)

  2. Model specific arguments (layer_dim, num_layers, learning_rate, etc…)

  3. Program arguments (data_path, cluster_email, etc…)


We can do this as follows. First, in your LightningModule, define the arguments specific to that module. Remember that data splits or data paths may also be specific to a module (i.e.: if your project has a model that trains on Imagenet and another on CIFAR-10).

class LitModel(LightningModule):

    @staticmethod
    def add_model_specific_args(parent_parser):
        parser = ArgumentParser(parents=[parent_parser], add_help=False)
        parser.add_argument('--encoder_layers', type=int, default=12)
        parser.add_argument('--data_path', type=str, default='/some/path')
        return parser

Now in your main trainer file, add the Trainer args, the program args, and add the model args

# ----------------
# trainer_main.py
# ----------------
from argparse import ArgumentParser
parser = ArgumentParser()

# add PROGRAM level args
parser.add_argument('--conda_env', type=str, default='some_name')
parser.add_argument('--notification_email', type=str, default='will@email.com')

# add model specific args
parser = LitModel.add_model_specific_args(parser)

# add all the available trainer options to argparse
# ie: now --gpus --num_nodes ... --fast_dev_run all work in the cli
parser = Trainer.add_argparse_args(parser)

args = parser.parse_args()

Now you can call run your program like so:

python trainer_main.py --gpus 2 --num_nodes 2 --conda_env 'my_env' --encoder_layers 12

Finally, make sure to start the training like so:

# init the trainer like this
trainer = Trainer.from_argparse_args(args, early_stopping_callback=...)

# NOT like this
trainer = Trainer(gpus=hparams.gpus, ...)

# init the model with Namespace directly
model = LitModel(args)

# or init the model with all the key-value pairs
dict_args = vars(args)
model = LitModel(**dict_args)

LightningModule hyperparameters

Often times we train many versions of a model. You might share that model or come back to it a few months later at which point it is very useful to know how that model was trained (i.e.: what learning rate, neural network, etc…).

Lightning has a few ways of saving that information for you in checkpoints and yaml files. The goal here is to improve readability and reproducibility

1. The first way is to ask lightning to save the values of anything in the __init__ for you to the checkpoint. This also makes those values available via self.hparams.

class LitMNIST(LightningModule):

    def __init__(self, layer_1_dim=128, learning_rate=1e-2, **kwargs):
        super().__init__()
        # call this to save (layer_1_dim=128, learning_rate=1e-4) to the checkpoint
        self.save_hyperparameters()

        # equivalent
        self.save_hyperparameters('layer_1_dim', 'learning_rate')

        # this now works
        self.hparams.layer_1_dim

2. Sometimes your init might have objects or other parameters you might not want to save. In that case, choose only a few

class LitMNIST(LightningModule):

    def __init__(self, loss_fx, generator_network, layer_1_dim=128 **kwargs):
        super().__init__()
        self.layer_1_dim = layer_1_dim
        self.loss_fx = loss_fx

        # call this to save (layer_1_dim=128) to the checkpoint
        self.save_hyperparameters('layer_1_dim')

# to load specify the other args
model = LitMNIST.load_from_checkpoint(PATH, loss_fx=torch.nn.SomeOtherLoss, generator_network=MyGenerator())
  1. Assign to self.hparams. Anything assigned to self.hparams will also be saved automatically

# using a argparse.Namespace
class LitMNIST(LightningModule):

    def __init__(self, hparams, *args, **kwargs):
        super().__init__()
        self.hparams = hparams

        self.layer_1 = torch.nn.Linear(28 * 28, self.hparams.layer_1_dim)
        self.layer_2 = torch.nn.Linear(self.hparams.layer_1_dim, self.hparams.layer_2_dim)
        self.layer_3 = torch.nn.Linear(self.hparams.layer_2_dim, 10)

    def train_dataloader(self):
        return DataLoader(mnist_train, batch_size=self.hparams.batch_size)
  1. You can also save full objects such as dict or Namespace to the checkpoint.

# using a argparse.Namespace
class LitMNIST(LightningModule):

    def __init__(self, conf, *args, **kwargs):
        super().__init__()
        self.hparams = conf

        # equivalent
        self.save_hyperparameters(conf)

        self.layer_1 = torch.nn.Linear(28 * 28, self.hparams.layer_1_dim)
        self.layer_2 = torch.nn.Linear(self.hparams.layer_1_dim, self.hparams.layer_2_dim)
        self.layer_3 = torch.nn.Linear(self.hparams.layer_2_dim, 10)

conf = OmegaConf.create(...)
model = LitMNIST(conf)

# this works
model.hparams.anything

Trainer args

To recap, add ALL possible trainer flags to the argparser and init the Trainer this way

parser = ArgumentParser()
parser = Trainer.add_argparse_args(parser)
hparams = parser.parse_args()

trainer = Trainer.from_argparse_args(hparams)

# or if you need to pass in callbacks
trainer = Trainer.from_argparse_args(hparams, checkpoint_callback=..., callbacks=[...])

Multiple Lightning Modules

We often have multiple Lightning Modules where each one has different arguments. Instead of polluting the main.py file, the LightningModule lets you define arguments for each one.

class LitMNIST(LightningModule):

    def __init__(self, layer_1_dim, **kwargs):
        super().__init__()
        self.layer_1 = torch.nn.Linear(28 * 28, layer_1_dim)

    @staticmethod
    def add_model_specific_args(parent_parser):
        parser = ArgumentParser(parents=[parent_parser], add_help=False)
        parser.add_argument('--layer_1_dim', type=int, default=128)
        return parser
class GoodGAN(LightningModule):

    def __init__(self, encoder_layers, **kwargs):
        super().__init__()
        self.encoder = Encoder(layers=encoder_layers)

    @staticmethod
    def add_model_specific_args(parent_parser):
        parser = ArgumentParser(parents=[parent_parser], add_help=False)
        parser.add_argument('--encoder_layers', type=int, default=12)
        return parser

Now we can allow each model to inject the arguments it needs in the main.py

def main(args):
    dict_args = vars(args)

    # pick model
    if args.model_name == 'gan':
        model = GoodGAN(**dict_args)
    elif args.model_name == 'mnist':
        model = LitMNIST(**dict_args)

    trainer = Trainer.from_argparse_args(args)
    trainer.fit(model)

if __name__ == '__main__':
    parser = ArgumentParser()
    parser = Trainer.add_argparse_args(parser)

    # figure out which model to use
    parser.add_argument('--model_name', type=str, default='gan', help='gan or mnist')

    # THIS LINE IS KEY TO PULL THE MODEL NAME
    temp_args, _ = parser.parse_known_args()

    # let the model add what it wants
    if temp_args.model_name == 'gan':
        parser = GoodGAN.add_model_specific_args(parser)
    elif temp_args.model_name == 'mnist':
        parser = LitMNIST.add_model_specific_args(parser)

    args = parser.parse_args()

    # train
    main(args)

and now we can train MNIST or the GAN using the command line interface!

$ python main.py --model_name gan --encoder_layers 24
$ python main.py --model_name mnist --layer_1_dim 128
Read the Docs v: stable
Versions
latest
stable
1.0.3
1.0.2
1.0.1
1.0.0
0.10.0
0.9.0
0.8.5
0.8.4
0.8.3
0.8.2
0.8.1
0.8.0
0.7.6
0.7.5
0.7.4
0.7.3
0.7.2
0.7.1
0.7.0
0.6.0
0.5.3.2
0.5.3
0.4.9
Downloads
pdf
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.