Shortcuts

Metrics

pytorch_lightning.metrics is a Metrics API created for easy metric development and usage in PyTorch and PyTorch Lightning. It is rigorously tested for all edge cases and includes a growing list of common metric implementations.

The metrics API provides update(), compute(), reset() functions to the user. The metric base class inherits nn.Module which allows us to call metric(...) directly. The forward() method of the base Metric class serves the dual purpose of calling update() on its input and simultanously returning the value of the metric over the provided input.

These metrics work with DDP in PyTorch and PyTorch Lightning by default. When .compute() is called in distributed mode, the internal state of each metric is synced and reduced across each process, so that the logic present in .compute() is applied to state information from all processes.

The example below shows how to use a metric in your LightningModule:

Note

For v0.10.0 the user is expected to call .compute() on the metric at the end each epoch. This has been shown in the example below. For v1.0 release, we will integrate metrics with logging and .compute() will be called automatically by PyTorch Lightning.

def __init__(self):
    ...
    self.accuracy = pl.metrics.Accuracy()

def training_step(self, batch, batch_idx):
    logits = self(x)
    ...
    # log step metric
    self.log('train_acc_step', self.accuracy(logits, y))
    ...

def training_epoch_end(self, outs):
    # log epoch metric
    self.log('train_acc_epoch', self.accuracy.compute())

This metrics API is independent of PyTorch Lightning. Metrics can directly be used in PyTorch as shown in the example:

from pytorch_lightning import metrics

train_accuracy = metrics.Accuracy()
valid_accuracy = metrics.Accuracy(compute_on_step=False)

for epoch in range(epochs):
    for x, y in train_data:
        y_hat = model(x)

        # training step accuracy
        batch_acc = train_accuracy(y_hat, y)

    for x, y in valid_data:
        y_hat = model(x)
        valid_accuracy(y_hat, y)

# total accuracy over all training batches
total_train_accuracy = train_accuracy.compute()

# total accuracy over all validation batches
total_valid_accuracy = train_accuracy.compute()

Implementing a Metric

To implement your custom metric, subclass the base Metric class and implement the following methods:

  • __init__(): Each state variable should be called using self.add_state(...).

  • update(): Any code needed to update the state given any inputs to the metric.

  • compute(): Computes a final value from the state of the metric.

All you need to do is call add_state correctly to implement a custom metric with DDP. reset() is called on metric state variables added using add_state().

To see how metric states are synchronized across distributed processes, refer to add_state() docs from the base Metric class.

Example implementation:

from pytorch_lightning.metrics import Metric

class MyAccuracy(Metric):
    def __init__(self, ddp_sync_on_step=False):
        super().__init__(ddp_sync_on_step=ddp_sync_on_step)

        self.add_state("correct", default=torch.tensor(0), dist_reduce_fx="sum")
        self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum")

    def update(self, preds: torch.Tensor, target: torch.Tensor):
        preds, target = self._input_format(preds, target)
        assert preds.shape == target.shape

        self.correct += torch.sum(preds == target)
        self.total += target.numel()

    def compute(self):
        return self.correct.float() / self.total

Metric

class pytorch_lightning.metrics.Metric(compute_on_step=True, ddp_sync_on_step=False, process_group=None)[source]

Bases: torch.nn.Module, abc.ABC

Base class for all metrics present in the Metrics API.

Implements add_state(), forward(), reset() and a few other things to handle distributed synchronization and per-step metric computation.

Override update() and compute() functions to implement your own metric. Use add_state() to register metric state variables which keep track of state on each call of update() and are synchronized across processes when compute() is called.

Note

Metric state variables can either be torch.Tensors or an empty list which can we used to store torch.Tensors`.

Note

Different metrics only override update() and not forward(). A call to update() is valid, but it won’t return the metric value at the current step. A call to forward() automatically calls update() and also returns the metric value at the current step.

Parameters
  • compute_on_step (bool) – Forward only calls update() and returns None if this is set to False. default: True

  • ddp_sync_on_step (bool) – Synchronize metric state across processes at each forward() before returning the value at the step. default: False

  • process_group (Optional[Any]) – Specify the process group on which synchronization is called. default: None (which selects the entire world)

add_state(name, default, dist_reduce_fx=None)[source]

Adds metric state variable. Only used by subclasses.

Parameters
  • name (str) – The name of the state variable. The variable will then be accessible at self.name.

  • default – Default value of the state; can either be a torch.Tensor or an empty list. The state will be reset to this value when self.reset() is called.

  • dist_reduce_fx (Optional) – Function to reduce state accross mutliple processes in distributed mode. If value is "sum", "mean", or "cat", we will use torch.sum, torch.mean, and torch.cat respectively, each with argument dim=0. The user can also pass a custom function in this parameter.

Note

Setting dist_reduce_fx to None will return the metric state synchronized across different processes. However, there won’t be any reduction function applied to the synchronized metric state.

The metric states would be synced as follows

  • If the metric state is torch.Tensor, the synced value will be a stacked torch.Tensor across the process dimension if the metric state was a torch.Tensor. The original torch.Tensor metric state retains dimension and hence the synchronized output will be of shape (num_process, ...).

  • If the metric state is a list, the synced value will be a list containing the combined elements from all processes.

Note

When passing a custom function to dist_reduce_fx, expect the synchronized metric state to follow the format discussed in the above note.

abstract compute()[source]

Override this method to compute the final metric value from state variables synchronized across the distributed backend.

forward(*args, **kwargs)[source]

Automatically calls update(). Returns the metric value over inputs if compute_on_step is True.

reset()[source]

This method automatically resets the metric state variables to their default value.

abstract update()[source]

Override this method to update the state variables of your metric class.

Return type

None

Classification Metrics

Accuracy

class pytorch_lightning.metrics.classification.Accuracy(threshold=0.5, compute_on_step=True, ddp_sync_on_step=False, process_group=None)[source]

Bases: pytorch_lightning.metrics.metric.Metric

Computes accuracy. Works with binary, multiclass, and multilabel data. Accepts logits from a model output or integer class values in prediction. Works with multi-dimensional preds and target.

Forward accepts

  • preds (float or long tensor): (N, ...) or (N, C, ...) where C is the number of classes

  • target (long tensor): (N, ...)

If preds and target are the same shape and preds is a float tensor, we use the self.threshold argument. This is the case for binary and multi-label logits.

If preds has an extra dimension as in the case of multi-class scores we perform an argmax on dim=1.

Parameters
  • threshold (float) – Threshold value for binary or multi-label logits. default: 0.5

  • compute_on_step (bool) – Forward only calls update() and return None if this is set to False. default: True

  • ddp_sync_on_step (bool) – Synchronize metric state across processes at each forward() before returning the value at the step. default: False

  • process_group (Optional[Any]) – Specify the process group on which synchronization is called. default: None (which selects the entire world)

Example

>>> from pytorch_lightning.metrics import Accuracy
>>> target = torch.tensor([0, 1, 2, 3])
>>> preds = torch.tensor([0, 2, 1, 3])
>>> accuracy = Accuracy()
>>> accuracy(preds, target)
tensor(0.5000)
compute()[source]

Computes accuracy over state.

update(preds, target)[source]

Update state with predictions and targets.

Parameters
  • preds (Tensor) – Predictions from model

  • target (Tensor) – Ground truth values

Regression Metrics

MeanSquaredError

class pytorch_lightning.metrics.regression.MeanSquaredError(compute_on_step=True, ddp_sync_on_step=False, process_group=None)[source]

Bases: pytorch_lightning.metrics.metric.Metric

Computes mean squared error.

Example

>>> from pytorch_lightning.metrics import MeanSquaredError
>>> target = torch.tensor([2.5, 5.0, 4.0, 8.0])
>>> preds = torch.tensor([3.0, 5.0, 2.5, 7.0])
>>> mean_squared_error = MeanSquaredError()
>>> mean_squared_error(preds, target)
tensor(0.8750)
compute()[source]

Computes mean squared error over state.

update(preds, target)[source]

Update state with predictions and targets.

Parameters
  • preds (Tensor) – Predictions from model

  • target (Tensor) – Ground truth values

MeanAbsoluteError

class pytorch_lightning.metrics.regression.MeanAbsoluteError(compute_on_step=True, ddp_sync_on_step=False, process_group=None)[source]

Bases: pytorch_lightning.metrics.metric.Metric

Computes mean absolute error.

Example

>>> from pytorch_lightning.metrics import MeanAbsoluteError
>>> target = torch.tensor([3.0, -0.5, 2.0, 7.0])
>>> preds = torch.tensor([2.5, 0.0, 2.0, 8.0])
>>> mean_absolute_error = MeanAbsoluteError()
>>> mean_absolute_error(preds, target)
tensor(0.5000)
compute()[source]

Computes mean absolute error over state.

update(preds, target)[source]

Update state with predictions and targets.

Parameters
  • preds (Tensor) – Predictions from model

  • target (Tensor) – Ground truth values

MeanSquaredLogError

class pytorch_lightning.metrics.regression.MeanSquaredLogError(compute_on_step=True, ddp_sync_on_step=False, process_group=None)[source]

Bases: pytorch_lightning.metrics.metric.Metric

Computes mean squared logarithmic error.

Example

>>> from pytorch_lightning.metrics import MeanSquaredLogError
>>> target = torch.tensor([2.5, 5, 4, 8])
>>> preds = torch.tensor([3, 5, 2.5, 7])
>>> mean_squared_log_error = MeanSquaredLogError()
>>> mean_squared_log_error(preds, target)
tensor(0.0397)
compute()[source]

Compute mean squared logarithmic error over state.

update(preds, target)[source]

Update state with predictions and targets.

Parameters
  • preds (Tensor) – Predictions from model

  • target (Tensor) – Ground truth values

Functional Metrics

The functional metrics follow the simple paradigm input in, output out. This means, they don’t provide any advanced mechanisms for syncing across DDP nodes or aggregation over batches. They simply compute the metric value based on the given inputs.

Also the integration within other parts of PyTorch Lightning will never be as tight as with the class-based interface. If you look for just computing the values, the functional metrics are the way to go. However, if you are looking for the best integration and user experience, please consider also to use the class interface.

Classification

accuracy [func]

pytorch_lightning.metrics.functional.classification.accuracy(pred, target, num_classes=None, class_reduction='micro', return_state=False)[source]

Computes the accuracy classification score

Parameters
  • pred (Tensor) – predicted labels

  • target (Tensor) – ground truth labels

  • num_classes (Optional[int]) – number of classes

  • class_reduction (str) –

    method to reduce metric score over labels

    • 'micro': calculate metrics globally (default)

    • 'macro': calculate metrics for each label, and find their unweighted mean.

    • 'weighted': calculate metrics for each label, and find their weighted mean.

    • 'none': returns calculated metric per class

  • return_state (bool) – returns a internal state that can be ddp reduced before doing the final calculation

Return type

Tensor

Returns

A Tensor with the accuracy score.

Example

>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> accuracy(x, y)
tensor(0.7500)

auc [func]

pytorch_lightning.metrics.functional.classification.auc(x, y, reorder=True)[source]

Computes Area Under the Curve (AUC) using the trapezoidal rule

Parameters
  • x (Tensor) – x-coordinates

  • y (Tensor) – y-coordinates

  • reorder (bool) – reorder coordinates, so they are increasing

Return type

Tensor

Returns

Tensor containing AUC score (float)

Example

>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> auc(x, y)
tensor(4.)

auroc [func]

pytorch_lightning.metrics.functional.classification.auroc(pred, target, sample_weight=None, pos_label=1.0)[source]

Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores

Parameters
  • pred (Tensor) – estimated probabilities

  • target (Tensor) – ground-truth labels

  • sample_weight (Optional[Sequence]) – sample weights

  • pos_label (int) – the label for the positive class

Return type

Tensor

Returns

Tensor containing ROCAUC score

Example

>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 1, 0])
>>> auroc(x, y)
tensor(0.5000)

average_precision [func]

pytorch_lightning.metrics.functional.classification.average_precision(pred, target, sample_weight=None, pos_label=1.0)[source]

Compute average precision from prediction scores

Parameters
  • pred (Tensor) – estimated probabilities

  • target (Tensor) – ground-truth labels

  • sample_weight (Optional[Sequence]) – sample weights

  • pos_label (int) – the label for the positive class

Return type

Tensor

Returns

Tensor containing average precision score

Example

>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> average_precision(x, y)
tensor(0.3333)

confusion_matrix [func]

pytorch_lightning.metrics.functional.classification.confusion_matrix(pred, target, normalize=False, num_classes=None)[source]

Computes the confusion matrix C where each entry C_{i,j} is the number of observations in group i that were predicted in group j.

Parameters
  • pred (Tensor) – estimated targets

  • target (Tensor) – ground truth labels

  • normalize (bool) – normalizes confusion matrix

  • num_classes (Optional[int]) – number of classes

Return type

Tensor

Returns

Tensor, confusion matrix C [num_classes, num_classes ]

Example

>>> x = torch.tensor([1, 2, 3])
>>> y = torch.tensor([0, 2, 3])
>>> confusion_matrix(x, y)
tensor([[0., 1., 0., 0.],
        [0., 0., 0., 0.],
        [0., 0., 1., 0.],
        [0., 0., 0., 1.]])

dice_score [func]

pytorch_lightning.metrics.functional.classification.dice_score(pred, target, bg=False, nan_score=0.0, no_fg_score=0.0, reduction='elementwise_mean')[source]

Compute dice score from prediction scores

Parameters
  • pred (Tensor) – estimated probabilities

  • target (Tensor) – ground-truth labels

  • bg (bool) – whether to also compute dice for the background

  • nan_score (float) – score to return, if a NaN occurs during computation

  • no_fg_score (float) – score to return, if no foreground pixel was found in target

  • reduction (str) –

    a method to reduce metric score over labels.

    • 'elementwise_mean': takes the mean (default)

    • 'sum': takes the sum

    • 'none': no reduction will be applied

Return type

Tensor

Returns

Tensor containing dice score

Example

>>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05],
...                      [0.05, 0.85, 0.05, 0.05],
...                      [0.05, 0.05, 0.85, 0.05],
...                      [0.05, 0.05, 0.05, 0.85]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> dice_score(pred, target)
tensor(0.3333)

f1_score [func]

pytorch_lightning.metrics.functional.classification.f1_score(pred, target, num_classes=None, class_reduction='micro')[source]

Computes the F1-score (a.k.a F-measure), which is the harmonic mean of the precision and recall. It ranges between 1 and 0, where 1 is perfect and the worst value is 0.

Parameters
  • pred (Tensor) – estimated probabilities

  • target (Tensor) – ground-truth labels

  • num_classes (Optional[int]) – number of classes

  • class_reduction (str) –

    method to reduce metric score over labels

    • 'micro': calculate metrics globally (default)

    • 'macro': calculate metrics for each label, and find their unweighted mean.

    • 'weighted': calculate metrics for each label, and find their weighted mean.

    • 'none': returns calculated metric per class

Return type

Tensor

Returns

Tensor containing F1-score

Example

>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> f1_score(x, y)
tensor(0.7500)

fbeta_score [func]

pytorch_lightning.metrics.functional.classification.fbeta_score(pred, target, beta, num_classes=None, class_reduction='micro')[source]

Computes the F-beta score which is a weighted harmonic mean of precision and recall. It ranges between 1 and 0, where 1 is perfect and the worst value is 0.

Parameters
  • pred (Tensor) – estimated probabilities

  • target (Tensor) – ground-truth labels

  • beta (float) – weights recall when combining the score. beta < 1: more weight to precision. beta > 1 more weight to recall beta = 0: only precision beta -> inf: only recall

  • num_classes (Optional[int]) – number of classes

  • class_reduction (str) –

    method to reduce metric score over labels

    • 'micro': calculate metrics globally (default)

    • 'macro': calculate metrics for each label, and find their unweighted mean.

    • 'weighted': calculate metrics for each label, and find their weighted mean.

    • 'none': returns calculated metric per class

Return type

Tensor

Returns

Tensor with the value of F-score. It is a value between 0-1.

Example

>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> fbeta_score(x, y, 0.2)
tensor(0.7500)

iou [func]

pytorch_lightning.metrics.functional.classification.iou(pred, target, ignore_index=None, absent_score=0.0, num_classes=None, reduction='elementwise_mean')[source]

Intersection over union, or Jaccard index calculation.

Parameters
  • pred (Tensor) – Tensor containing predictions

  • target (Tensor) – Tensor containing targets

  • ignore_index (Optional[int]) – optional int specifying a target class to ignore. If given, this class index does not contribute to the returned score, regardless of reduction method. Has no effect if given an int that is not in the range [0, num_classes-1], where num_classes is either given or derived from pred and target. By default, no index is ignored, and all classes are used.

  • absent_score (float) – score to use for an individual class, if no instances of the class index were present in pred AND no instances of the class index were present in target. For example, if we have 3 classes, [0, 0] for pred, and [0, 2] for target, then class 1 would be assigned the absent_score. Default is 0.0.

  • num_classes (Optional[int]) – Optionally specify the number of classes

  • reduction (str) –

    a method to reduce metric score over labels.

    • 'elementwise_mean': takes the mean (default)

    • 'sum': takes the sum

    • 'none': no reduction will be applied

Returns

Tensor containing single value if reduction is ‘elementwise_mean’, or number of classes if reduction is ‘none’

Return type

IoU score

Example

>>> target = torch.randint(0, 1, (10, 25, 25))
>>> pred = torch.tensor(target)
>>> pred[2:5, 7:13, 9:15] = 1 - pred[2:5, 7:13, 9:15]
>>> iou(pred, target)
tensor(0.4914)

multiclass_roc [func]

pytorch_lightning.metrics.functional.classification.multiclass_roc(pred, target, sample_weight=None, num_classes=None)[source]

Computes the Receiver Operating Characteristic (ROC) for multiclass predictors.

Parameters
  • pred (Tensor) – estimated probabilities

  • target (Tensor) – ground-truth labels

  • sample_weight (Optional[Sequence]) – sample weights

  • num_classes (Optional[int]) – number of classes (default: None, computes automatically from data)

Return type

Tuple[Tuple[Tensor, Tensor, Tensor]]

Returns

returns roc for each class. Number of classes, false-positive rate (fpr), true-positive rate (tpr), thresholds

Example

>>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05],
...                      [0.05, 0.85, 0.05, 0.05],
...                      [0.05, 0.05, 0.85, 0.05],
...                      [0.05, 0.05, 0.05, 0.85]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> multiclass_roc(pred, target)   
((tensor([0., 0., 1.]), tensor([0., 1., 1.]), tensor([1.8500, 0.8500, 0.0500])),
 (tensor([0., 0., 1.]), tensor([0., 1., 1.]), tensor([1.8500, 0.8500, 0.0500])),
 (tensor([0.0000, 0.3333, 1.0000]), tensor([0., 0., 1.]), tensor([1.8500, 0.8500, 0.0500])),
 (tensor([0.0000, 0.3333, 1.0000]), tensor([0., 0., 1.]), tensor([1.8500, 0.8500, 0.0500])))

precision [func]

pytorch_lightning.metrics.functional.classification.precision(pred, target, num_classes=None, class_reduction='micro')[source]

Computes precision score.

Parameters
  • pred (Tensor) – estimated probabilities

  • target (Tensor) – ground-truth labels

  • num_classes (Optional[int]) – number of classes

  • class_reduction (str) –

    method to reduce metric score over labels

    • 'micro': calculate metrics globally (default)

    • 'macro': calculate metrics for each label, and find their unweighted mean.

    • 'weighted': calculate metrics for each label, and find their weighted mean.

    • 'none': returns calculated metric per class

Return type

Tensor

Returns

Tensor with precision.

Example

>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> precision(x, y)
tensor(0.7500)

precision_recall [func]

pytorch_lightning.metrics.functional.classification.precision_recall(pred, target, num_classes=None, class_reduction='micro', return_support=False, return_state=False)[source]

Computes precision and recall for different thresholds

Parameters
  • pred (Tensor) – estimated probabilities

  • target (Tensor) – ground-truth labels

  • num_classes (Optional[int]) – number of classes

  • class_reduction (str) –

    method to reduce metric score over labels

    • 'micro': calculate metrics globally (default)

    • 'macro': calculate metrics for each label, and find their unweighted mean.

    • 'weighted': calculate metrics for each label, and find their weighted mean.

    • 'none': returns calculated metric per class

  • return_support (bool) – returns the support for each class, need for fbeta/f1 calculations

  • return_state (bool) – returns a internal state that can be ddp reduced before doing the final calculation

Return type

Tuple[Tensor, Tensor]

Returns

Tensor with precision and recall

Example

>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 2, 2, 2])
>>> precision_recall(x, y, class_reduction='macro')
(tensor(0.5000), tensor(0.3333))

precision_recall_curve [func]

pytorch_lightning.metrics.functional.classification.precision_recall_curve(pred, target, sample_weight=None, pos_label=1.0)[source]

Computes precision-recall pairs for different thresholds.

Parameters
  • pred (Tensor) – estimated probabilities

  • target (Tensor) – ground-truth labels

  • sample_weight (Optional[Sequence]) – sample weights

  • pos_label (int) – the label for the positive class

Return type

Tuple[Tensor, Tensor, Tensor]

Returns

precision, recall, thresholds

Example

>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 1, 0])
>>> precision, recall, thresholds = precision_recall_curve(pred, target)
>>> precision
tensor([0.6667, 0.5000, 0.0000, 1.0000])
>>> recall
tensor([1.0000, 0.5000, 0.0000, 0.0000])
>>> thresholds
tensor([1, 2, 3])

recall [func]

pytorch_lightning.metrics.functional.classification.recall(pred, target, num_classes=None, class_reduction='micro')[source]

Computes recall score.

Parameters
  • pred (Tensor) – estimated probabilities

  • target (Tensor) – ground-truth labels

  • num_classes (Optional[int]) – number of classes

  • class_reduction (str) –

    method to reduce metric score over labels

    • 'micro': calculate metrics globally (default)

    • 'macro': calculate metrics for each label, and find their unweighted mean.

    • 'weighted': calculate metrics for each label, and find their weighted mean.

    • 'none': returns calculated metric per class

Return type

Tensor

Returns

Tensor with recall.

Example

>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> recall(x, y)
tensor(0.7500)

roc [func]

pytorch_lightning.metrics.functional.classification.roc(pred, target, sample_weight=None, pos_label=1.0)[source]

Computes the Receiver Operating Characteristic (ROC). It assumes classifier is binary.

Parameters
  • pred (Tensor) – estimated probabilities

  • target (Tensor) – ground-truth labels

  • sample_weight (Optional[Sequence]) – sample weights

  • pos_label (int) – the label for the positive class

Return type

Tuple[Tensor, Tensor, Tensor]

Returns

false-positive rate (fpr), true-positive rate (tpr), thresholds

Example

>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 1, 1])
>>> fpr, tpr, thresholds = roc(x, y)
>>> fpr
tensor([0., 0., 0., 0., 1.])
>>> tpr
tensor([0.0000, 0.3333, 0.6667, 1.0000, 1.0000])
>>> thresholds
tensor([4, 3, 2, 1, 0])

stat_scores [func]

pytorch_lightning.metrics.functional.classification.stat_scores(pred, target, class_index, argmax_dim=1)[source]

Calculates the number of true positive, false positive, true negative and false negative for a specific class

Parameters
  • pred (Tensor) – prediction tensor

  • target (Tensor) – target tensor

  • class_index (int) – class to calculate over

  • argmax_dim (int) – if pred is a tensor of probabilities, this indicates the axis the argmax transformation will be applied over

Return type

Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]

Returns

True Positive, False Positive, True Negative, False Negative, Support

Example

>>> x = torch.tensor([1, 2, 3])
>>> y = torch.tensor([0, 2, 3])
>>> tp, fp, tn, fn, sup = stat_scores(x, y, class_index=1)
>>> tp, fp, tn, fn, sup
(tensor(0), tensor(1), tensor(2), tensor(0), tensor(0))

stat_scores_multiple_classes [func]

pytorch_lightning.metrics.functional.classification.stat_scores_multiple_classes(pred, target, num_classes=None, argmax_dim=1, reduction='none')[source]

Calculates the number of true positive, false positive, true negative and false negative for each class

Parameters
  • pred (Tensor) – prediction tensor

  • target (Tensor) – target tensor

  • num_classes (Optional[int]) – number of classes if known

  • argmax_dim (int) – if pred is a tensor of probabilities, this indicates the axis the argmax transformation will be applied over

  • reduction (str) –

    a method to reduce metric score over labels (default: none) Available reduction methods:

    • elementwise_mean: takes the mean

    • none: pass array

    • sum: add elements

Return type

Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]

Returns

True Positive, False Positive, True Negative, False Negative, Support

Example

>>> x = torch.tensor([1, 2, 3])
>>> y = torch.tensor([0, 2, 3])
>>> tps, fps, tns, fns, sups = stat_scores_multiple_classes(x, y)
>>> tps
tensor([0., 0., 1., 1.])
>>> fps
tensor([0., 1., 0., 0.])
>>> tns
tensor([2., 2., 2., 2.])
>>> fns
tensor([1., 0., 0., 0.])
>>> sups
tensor([1., 0., 1., 1.])

to_categorical [func]

pytorch_lightning.metrics.functional.classification.to_categorical(tensor, argmax_dim=1)[source]

Converts a tensor of probabilities to a dense label tensor

Parameters
  • tensor (Tensor) – probabilities to get the categorical label [N, d1, d2, …]

  • argmax_dim (int) – dimension to apply

Return type

Tensor

Returns

A tensor with categorical labels [N, d2, …]

Example

>>> x = torch.tensor([[0.2, 0.5], [0.9, 0.1]])
>>> to_categorical(x)
tensor([1, 0])

to_onehot [func]

pytorch_lightning.metrics.functional.classification.to_onehot(tensor, num_classes=None)[source]

Converts a dense label tensor to one-hot format

Parameters
  • tensor (Tensor) – dense label tensor, with shape [N, d1, d2, …]

  • num_classes (Optional[int]) – number of classes C

Output:

A sparse label tensor with shape [N, C, d1, d2, …]

Example

>>> x = torch.tensor([1, 2, 3])
>>> to_onehot(x)
tensor([[0, 1, 0, 0],
        [0, 0, 1, 0],
        [0, 0, 0, 1]])
Return type

Tensor

Regression

mae [func]

pytorch_lightning.metrics.functional.regression.mae(pred, target, reduction='elementwise_mean', return_state=False)[source]

Computes mean absolute error

Parameters
  • pred (Tensor) – estimated labels

  • target (Tensor) – ground truth labels

  • reduction (str) –

    a method to reduce metric score over labels.

    • 'elementwise_mean': takes the mean (default)

    • 'sum': takes the sum

    • 'none': no reduction will be applied

  • return_state (bool) – returns a internal state that can be ddp reduced before doing the final calculation

Return type

Tensor

Returns

Tensor with MAE

Example

>>> x = torch.tensor([0., 1, 2, 3])
>>> y = torch.tensor([0., 1, 2, 2])
>>> mae(x, y)
tensor(0.2500)

mse [func]

pytorch_lightning.metrics.functional.regression.mse(pred, target, reduction='elementwise_mean', return_state=False)[source]

Computes mean squared error

Parameters
  • pred (Tensor) – estimated labels

  • target (Tensor) – ground truth labels

  • reduction (str) –

    a method to reduce metric score over labels.

    • 'elementwise_mean': takes the mean (default)

    • 'sum': takes the sum

    • 'none': no reduction will be applied

  • return_state (bool) – returns a internal state that can be ddp reduced before doing the final calculation

Return type

Tensor

Returns

Tensor with MSE

Example

>>> x = torch.tensor([0., 1, 2, 3])
>>> y = torch.tensor([0., 1, 2, 2])
>>> mse(x, y)
tensor(0.2500)

psnr [func]

pytorch_lightning.metrics.functional.regression.psnr(pred, target, data_range=None, base=10.0, reduction='elementwise_mean', return_state=False)[source]

Computes the peak signal-to-noise ratio

Parameters
  • pred (Tensor) – estimated signal

  • target (Tensor) – groun truth signal

  • data_range (Optional[float]) – the range of the data. If None, it is determined from the data (max - min)

  • base (float) – a base of a logarithm to use (default: 10)

  • reduction (str) –

    a method to reduce metric score over labels.

    • 'elementwise_mean': takes the mean (default)

    • 'sum': takes the sum

    • 'none': no reduction will be applied

  • return_state (bool) – returns a internal state that can be ddp reduced before doing the final calculation

Return type

Tensor

Returns

Tensor with PSNR score

Example

>>> pred = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
>>> target = torch.tensor([[3.0, 2.0], [1.0, 0.0]])
>>> psnr(pred, target)
tensor(2.5527)

rmse [func]

pytorch_lightning.metrics.functional.regression.rmse(pred, target, reduction='elementwise_mean', return_state=False)[source]

Computes root mean squared error

Parameters
  • pred (Tensor) – estimated labels

  • target (Tensor) – ground truth labels

  • reduction (str) –

    a method to reduce metric score over labels.

    • 'elementwise_mean': takes the mean (default)

    • 'sum': takes the sum

    • 'none': no reduction will be applied

  • return_state (bool) – returns a internal state that can be ddp reduced before doing the final calculation

Return type

Tensor

Returns

Tensor with RMSE

>>> x = torch.tensor([0., 1, 2, 3])
>>> y = torch.tensor([0., 1, 2, 2])
>>> rmse(x, y)
tensor(0.5000)

rmsle [func]

pytorch_lightning.metrics.functional.regression.rmsle(pred, target, reduction='elementwise_mean')[source]

Computes root mean squared log error

Parameters
  • pred (Tensor) – estimated labels

  • target (Tensor) – ground truth labels

  • reduction (str) –

    a method to reduce metric score over labels.

    • 'elementwise_mean': takes the mean (default)

    • 'sum': takes the sum

    • 'none': no reduction will be applied

Return type

Tensor

Returns

Tensor with RMSLE

Example

>>> x = torch.tensor([0., 1, 2, 3])
>>> y = torch.tensor([0., 1, 2, 2])
>>> rmsle(x, y)
tensor(0.1438)

ssim [func]

pytorch_lightning.metrics.functional.regression.mae(pred, target, reduction='elementwise_mean', return_state=False)[source]

Computes mean absolute error

Parameters
  • pred (Tensor) – estimated labels

  • target (Tensor) – ground truth labels

  • reduction (str) –

    a method to reduce metric score over labels.

    • 'elementwise_mean': takes the mean (default)

    • 'sum': takes the sum

    • 'none': no reduction will be applied

  • return_state (bool) – returns a internal state that can be ddp reduced before doing the final calculation

Return type

Tensor

Returns

Tensor with MAE

Example

>>> x = torch.tensor([0., 1, 2, 3])
>>> y = torch.tensor([0., 1, 2, 2])
>>> mae(x, y)
tensor(0.2500)

NLP

bleu_score [func]

pytorch_lightning.metrics.functional.nlp.bleu_score(translate_corpus, reference_corpus, n_gram=4, smooth=False)[source]

Calculate BLEU score of machine translated text with one or more references

Parameters
  • translate_corpus (Sequence[str]) – An iterable of machine translated corpus

  • reference_corpus (Sequence[str]) – An iterable of iterables of reference corpus

  • n_gram (int) – Gram value ranged from 1 to 4 (Default 4)

  • smooth (bool) – Whether or not to apply smoothing – Lin et al. 2004

Return type

Tensor

Returns

Tensor with BLEU Score

Example

>>> translate_corpus = ['the cat is on the mat'.split()]
>>> reference_corpus = [['there is a cat on the mat'.split(), 'a cat is on the mat'.split()]]
>>> bleu_score(translate_corpus, reference_corpus)
tensor(0.7598)