Shortcuts

Source code for pytorch_lightning.metrics.functional.classification

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import wraps
from typing import Callable, Optional, Sequence, Tuple

import torch

from pytorch_lightning.metrics.functional.average_precision import average_precision as __ap
from pytorch_lightning.metrics.functional.f_beta import fbeta as __fb, f1 as __f1
from pytorch_lightning.metrics.functional.precision_recall_curve import _binary_clf_curve, precision_recall_curve as __prc
from pytorch_lightning.metrics.functional.roc import roc as __roc
from pytorch_lightning.metrics.utils import (
    to_categorical as __tc,
    to_onehot as __to,
    get_num_classes as __gnc,
    reduce,
    class_reduce,
)
from pytorch_lightning.utilities import rank_zero_warn


def to_onehot(
        tensor: torch.Tensor,
        num_classes: Optional[int] = None,
) -> torch.Tensor:
    """
    Converts a dense label tensor to one-hot format

    .. warning :: Deprecated in favor of :func:`~pytorch_lightning.metrics.utils.to_onehot`
    """
    rank_zero_warn(
        "This `to_onehot` was deprecated in v1.1.0 in favor of"
        " `from pytorch_lightning.metrics.utils import to_onehot`."
        " It will be removed in v1.3.0", DeprecationWarning
    )
    return __to(tensor, num_classes)


def to_categorical(
        tensor: torch.Tensor,
        argmax_dim: int = 1
) -> torch.Tensor:
    """
    Converts a tensor of probabilities to a dense label tensor

    .. warning :: Deprecated in favor of :func:`~pytorch_lightning.metrics.utils.to_categorical`

    """
    rank_zero_warn(
        "This `to_categorical` was deprecated in v1.1.0 in favor of"
        " `from pytorch_lightning.metrics.utils import to_categorical`."
        " It will be removed in v1.3.0", DeprecationWarning
    )
    return __tc(tensor)


def get_num_classes(
        pred: torch.Tensor,
        target: torch.Tensor,
        num_classes: Optional[int] = None,
) -> int:
    """
    Calculates the number of classes for a given prediction and target tensor.

    .. warning :: Deprecated in favor of :func:`~pytorch_lightning.metrics.utils.get_num_classes`

    """
    rank_zero_warn(
        "This `get_num_classes` was deprecated in v1.1.0 in favor of"
        " `from pytorch_lightning.metrics.utils import get_num_classes`."
        " It will be removed in v1.3.0", DeprecationWarning
    )
    return __gnc(pred,target, num_classes)


[docs]def stat_scores( pred: torch.Tensor, target: torch.Tensor, class_index: int, argmax_dim: int = 1, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """ Calculates the number of true positive, false positive, true negative and false negative for a specific class Args: pred: prediction tensor target: target tensor class_index: class to calculate over argmax_dim: if pred is a tensor of probabilities, this indicates the axis the argmax transformation will be applied over Return: True Positive, False Positive, True Negative, False Negative, Support Example: >>> x = torch.tensor([1, 2, 3]) >>> y = torch.tensor([0, 2, 3]) >>> tp, fp, tn, fn, sup = stat_scores(x, y, class_index=1) >>> tp, fp, tn, fn, sup (tensor(0), tensor(1), tensor(2), tensor(0), tensor(0)) """ if pred.ndim == target.ndim + 1: pred = to_categorical(pred, argmax_dim=argmax_dim) tp = ((pred == class_index) * (target == class_index)).to(torch.long).sum() fp = ((pred == class_index) * (target != class_index)).to(torch.long).sum() tn = ((pred != class_index) * (target != class_index)).to(torch.long).sum() fn = ((pred != class_index) * (target == class_index)).to(torch.long).sum() sup = (target == class_index).to(torch.long).sum() return tp, fp, tn, fn, sup
[docs]def stat_scores_multiple_classes( pred: torch.Tensor, target: torch.Tensor, num_classes: Optional[int] = None, argmax_dim: int = 1, reduction: str = 'none', ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """ Calculates the number of true positive, false positive, true negative and false negative for each class Args: pred: prediction tensor target: target tensor num_classes: number of classes if known argmax_dim: if pred is a tensor of probabilities, this indicates the axis the argmax transformation will be applied over reduction: a method to reduce metric score over labels (default: none) Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements Return: True Positive, False Positive, True Negative, False Negative, Support Example: >>> x = torch.tensor([1, 2, 3]) >>> y = torch.tensor([0, 2, 3]) >>> tps, fps, tns, fns, sups = stat_scores_multiple_classes(x, y) >>> tps tensor([0., 0., 1., 1.]) >>> fps tensor([0., 1., 0., 0.]) >>> tns tensor([2., 2., 2., 2.]) >>> fns tensor([1., 0., 0., 0.]) >>> sups tensor([1., 0., 1., 1.]) """ if pred.ndim == target.ndim + 1: pred = to_categorical(pred, argmax_dim=argmax_dim) num_classes = get_num_classes(pred=pred, target=target, num_classes=num_classes) if pred.dtype != torch.bool: pred = pred.clamp_max(max=num_classes) if target.dtype != torch.bool: target = target.clamp_max(max=num_classes) possible_reductions = ('none', 'sum', 'elementwise_mean') if reduction not in possible_reductions: raise ValueError("reduction type %s not supported" % reduction) if reduction == 'none': pred = pred.view((-1, )).long() target = target.view((-1, )).long() tps = torch.zeros((num_classes + 1,), device=pred.device) fps = torch.zeros((num_classes + 1,), device=pred.device) tns = torch.zeros((num_classes + 1,), device=pred.device) fns = torch.zeros((num_classes + 1,), device=pred.device) sups = torch.zeros((num_classes + 1,), device=pred.device) match_true = (pred == target).float() match_false = 1 - match_true tps.scatter_add_(0, pred, match_true) fps.scatter_add_(0, pred, match_false) fns.scatter_add_(0, target, match_false) tns = pred.size(0) - (tps + fps + fns) sups.scatter_add_(0, target, torch.ones_like(match_true)) tps = tps[:num_classes] fps = fps[:num_classes] tns = tns[:num_classes] fns = fns[:num_classes] sups = sups[:num_classes] elif reduction == 'sum' or reduction == 'elementwise_mean': count_match_true = (pred == target).sum().float() oob_tp, oob_fp, oob_tn, oob_fn, oob_sup = stat_scores(pred, target, num_classes, argmax_dim) tps = count_match_true - oob_tp fps = pred.nelement() - count_match_true - oob_fp fns = pred.nelement() - count_match_true - oob_fn tns = pred.nelement() * (num_classes + 1) - (tps + fps + fns + oob_tn) sups = pred.nelement() - oob_sup.float() if reduction == 'elementwise_mean': tps /= num_classes fps /= num_classes fns /= num_classes tns /= num_classes sups /= num_classes return tps.float(), fps.float(), tns.float(), fns.float(), sups.float()
[docs]def accuracy( pred: torch.Tensor, target: torch.Tensor, num_classes: Optional[int] = None, class_reduction: str = 'micro', return_state: bool = False ) -> torch.Tensor: """ Computes the accuracy classification score Args: pred: predicted labels target: ground truth labels num_classes: number of classes class_reduction: method to reduce metric score over labels - ``'micro'``: calculate metrics globally (default) - ``'macro'``: calculate metrics for each label, and find their unweighted mean. - ``'weighted'``: calculate metrics for each label, and find their weighted mean. - ``'none'``: returns calculated metric per class return_state: returns a internal state that can be ddp reduced before doing the final calculation Return: A Tensor with the accuracy score. Example: >>> x = torch.tensor([0, 1, 2, 3]) >>> y = torch.tensor([0, 1, 2, 2]) >>> accuracy(x, y) tensor(0.7500) """ tps, fps, tns, fns, sups = stat_scores_multiple_classes( pred=pred, target=target, num_classes=num_classes) if return_state: return {'tps': tps, 'sups': sups} return class_reduce(tps, sups, sups, class_reduction=class_reduction)
def _confmat_normalize(cm): """ Normalization function for confusion matrix """ cm = cm / cm.sum(-1, keepdim=True) nan_elements = cm[torch.isnan(cm)].nelement() if nan_elements != 0: cm[torch.isnan(cm)] = 0 rank_zero_warn(f'{nan_elements} nan values found in confusion matrix have been replaced with zeros.') return cm
[docs]def precision_recall( pred: torch.Tensor, target: torch.Tensor, num_classes: Optional[int] = None, class_reduction: str = 'micro', return_support: bool = False, return_state: bool = False ) -> Tuple[torch.Tensor, torch.Tensor]: """ Computes precision and recall for different thresholds Args: pred: estimated probabilities target: ground-truth labels num_classes: number of classes class_reduction: method to reduce metric score over labels - ``'micro'``: calculate metrics globally (default) - ``'macro'``: calculate metrics for each label, and find their unweighted mean. - ``'weighted'``: calculate metrics for each label, and find their weighted mean. - ``'none'``: returns calculated metric per class return_support: returns the support for each class, need for fbeta/f1 calculations return_state: returns a internal state that can be ddp reduced before doing the final calculation Return: Tensor with precision and recall Example: >>> x = torch.tensor([0, 1, 2, 3]) >>> y = torch.tensor([0, 2, 2, 2]) >>> precision_recall(x, y, class_reduction='macro') (tensor(0.5000), tensor(0.3333)) """ tps, fps, tns, fns, sups = stat_scores_multiple_classes(pred=pred, target=target, num_classes=num_classes) precision = class_reduce(tps, tps + fps, sups, class_reduction=class_reduction) recall = class_reduce(tps, tps + fns, sups, class_reduction=class_reduction) if return_state: return {'tps': tps, 'fps': fps, 'fns': fns, 'sups': sups} if return_support: return precision, recall, sups return precision, recall
[docs]def precision( pred: torch.Tensor, target: torch.Tensor, num_classes: Optional[int] = None, class_reduction: str = 'micro', ) -> torch.Tensor: """ Computes precision score. Args: pred: estimated probabilities target: ground-truth labels num_classes: number of classes class_reduction: method to reduce metric score over labels - ``'micro'``: calculate metrics globally (default) - ``'macro'``: calculate metrics for each label, and find their unweighted mean. - ``'weighted'``: calculate metrics for each label, and find their weighted mean. - ``'none'``: returns calculated metric per class Return: Tensor with precision. Example: >>> x = torch.tensor([0, 1, 2, 3]) >>> y = torch.tensor([0, 1, 2, 2]) >>> precision(x, y) tensor(0.7500) """ return precision_recall(pred=pred, target=target, num_classes=num_classes, class_reduction=class_reduction)[0]
[docs]def recall( pred: torch.Tensor, target: torch.Tensor, num_classes: Optional[int] = None, class_reduction: str = 'micro', ) -> torch.Tensor: """ Computes recall score. Args: pred: estimated probabilities target: ground-truth labels num_classes: number of classes class_reduction: method to reduce metric score over labels - ``'micro'``: calculate metrics globally (default) - ``'macro'``: calculate metrics for each label, and find their unweighted mean. - ``'weighted'``: calculate metrics for each label, and find their weighted mean. - ``'none'``: returns calculated metric per class Return: Tensor with recall. Example: >>> x = torch.tensor([0, 1, 2, 3]) >>> y = torch.tensor([0, 1, 2, 2]) >>> recall(x, y) tensor(0.7500) """ return precision_recall(pred=pred, target=target, num_classes=num_classes, class_reduction=class_reduction)[1]
# todo: remove in 1.3 def roc( pred: torch.Tensor, target: torch.Tensor, sample_weight: Optional[Sequence] = None, pos_label: int = 1., ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Computes the Receiver Operating Characteristic (ROC). It assumes classifier is binary. .. warning :: Deprecated in favor of :func:`~pytorch_lightning.metrics.functional.roc.roc` """ rank_zero_warn( "This `multiclass_roc` was deprecated in v1.1.0 in favor of" " `from pytorch_lightning.metrics.functional.roc import roc`." " It will be removed in v1.3.0", DeprecationWarning ) return __roc(preds=pred, target=target, sample_weights=sample_weight, pos_label=pos_label) # TODO: deprecated in favor of general ROC in pytorch_lightning/metrics/functional/roc.py def _roc( pred: torch.Tensor, target: torch.Tensor, sample_weight: Optional[Sequence] = None, pos_label: int = 1., ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Computes the Receiver Operating Characteristic (ROC). It assumes classifier is binary. .. warning :: Deprecated in favor of :func:`~pytorch_lightning.metrics.functional.roc.roc` Example: >>> x = torch.tensor([0, 1, 2, 3]) >>> y = torch.tensor([0, 1, 1, 1]) >>> fpr, tpr, thresholds = _roc(x, y) >>> fpr tensor([0., 0., 0., 0., 1.]) >>> tpr tensor([0.0000, 0.3333, 0.6667, 1.0000, 1.0000]) >>> thresholds tensor([4, 3, 2, 1, 0]) """ rank_zero_warn( "This `multiclass_roc` was deprecated in v1.1.0 in favor of" " `from pytorch_lightning.metrics.functional.roc import roc`." " It will be removed in v1.3.0", DeprecationWarning ) fps, tps, thresholds = _binary_clf_curve(pred, target, sample_weights=sample_weight, pos_label=pos_label) # Add an extra threshold position # to make sure that the curve starts at (0, 0) tps = torch.cat([torch.zeros(1, dtype=tps.dtype, device=tps.device), tps]) fps = torch.cat([torch.zeros(1, dtype=fps.dtype, device=fps.device), fps]) thresholds = torch.cat([thresholds[0][None] + 1, thresholds]) if fps[-1] <= 0: raise ValueError("No negative samples in targets, false positive value should be meaningless") fpr = fps / fps[-1] if tps[-1] <= 0: raise ValueError("No positive samples in targets, true positive value should be meaningless") tpr = tps / tps[-1] return fpr, tpr, thresholds # TODO: deprecated in favor of general ROC in pytorch_lightning/metrics/functional/roc.py def multiclass_roc( pred: torch.Tensor, target: torch.Tensor, sample_weight: Optional[Sequence] = None, num_classes: Optional[int] = None, ) -> Tuple[Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]: """ Computes the Receiver Operating Characteristic (ROC) for multiclass predictors. .. warning :: Deprecated in favor of :func:`~pytorch_lightning.metrics.functional.roc.roc` Args: pred: estimated probabilities target: ground-truth labels sample_weight: sample weights num_classes: number of classes (default: None, computes automatically from data) Return: returns roc for each class. Number of classes, false-positive rate (fpr), true-positive rate (tpr), thresholds Example: >>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05], ... [0.05, 0.85, 0.05, 0.05], ... [0.05, 0.05, 0.85, 0.05], ... [0.05, 0.05, 0.05, 0.85]]) >>> target = torch.tensor([0, 1, 3, 2]) >>> multiclass_roc(pred, target) # doctest: +NORMALIZE_WHITESPACE ((tensor([0., 0., 1.]), tensor([0., 1., 1.]), tensor([1.8500, 0.8500, 0.0500])), (tensor([0., 0., 1.]), tensor([0., 1., 1.]), tensor([1.8500, 0.8500, 0.0500])), (tensor([0.0000, 0.3333, 1.0000]), tensor([0., 0., 1.]), tensor([1.8500, 0.8500, 0.0500])), (tensor([0.0000, 0.3333, 1.0000]), tensor([0., 0., 1.]), tensor([1.8500, 0.8500, 0.0500]))) """ rank_zero_warn( "This `multiclass_roc` was deprecated in v1.1.0 in favor of" " `from pytorch_lightning.metrics.functional.roc import roc`." " It will be removed in v1.3.0", DeprecationWarning ) num_classes = get_num_classes(pred, target, num_classes) class_roc_vals = [] for c in range(num_classes): pred_c = pred[:, c] class_roc_vals.append(_roc(pred=pred_c, target=target, sample_weight=sample_weight, pos_label=c)) return tuple(class_roc_vals)
[docs]def auc( x: torch.Tensor, y: torch.Tensor, ) -> torch.Tensor: """ Computes Area Under the Curve (AUC) using the trapezoidal rule Args: x: x-coordinates y: y-coordinates Return: Tensor containing AUC score (float) Example: >>> x = torch.tensor([0, 1, 2, 3]) >>> y = torch.tensor([0, 1, 2, 2]) >>> auc(x, y) tensor(4.) """ dx = x[1:] - x[:-1] if (dx < 0).any(): if (dx <= 0).all(): direction = -1. else: raise ValueError(f"The 'x' array is neither increasing or decreasing: {x}. Reorder is not supported.") else: direction = 1. return direction * torch.trapz(y, x)
def auc_decorator() -> Callable: def wrapper(func_to_decorate: Callable) -> Callable: @wraps(func_to_decorate) def new_func(*args, **kwargs) -> torch.Tensor: x, y = func_to_decorate(*args, **kwargs)[:2] return auc(x, y) return new_func return wrapper def multiclass_auc_decorator() -> Callable: def wrapper(func_to_decorate: Callable) -> Callable: @wraps(func_to_decorate) def new_func(*args, **kwargs) -> torch.Tensor: results = [] for class_result in func_to_decorate(*args, **kwargs): x, y = class_result[:2] results.append(auc(x, y)) return torch.stack(results) return new_func return wrapper
[docs]def auroc( pred: torch.Tensor, target: torch.Tensor, sample_weight: Optional[Sequence] = None, pos_label: int = 1., ) -> torch.Tensor: """ Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores Args: pred: estimated probabilities target: ground-truth labels sample_weight: sample weights pos_label: the label for the positive class Return: Tensor containing ROCAUC score Example: >>> x = torch.tensor([0, 1, 2, 3]) >>> y = torch.tensor([0, 1, 1, 0]) >>> auroc(x, y) tensor(0.5000) """ if any(target > 1): raise ValueError('AUROC metric is meant for binary classification, but' ' target tensor contains value different from 0 and 1.' ' Use `multiclass_auroc` for multi class classification.') @auc_decorator() def _auroc(pred, target, sample_weight, pos_label): return _roc(pred, target, sample_weight, pos_label) return _auroc(pred=pred, target=target, sample_weight=sample_weight, pos_label=pos_label)
[docs]def multiclass_auroc( pred: torch.Tensor, target: torch.Tensor, sample_weight: Optional[Sequence] = None, num_classes: Optional[int] = None, ) -> torch.Tensor: """ Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from multiclass prediction scores Args: pred: estimated probabilities, with shape [N, C] target: ground-truth labels, with shape [N,] sample_weight: sample weights num_classes: number of classes (default: None, computes automatically from data) Return: Tensor containing ROCAUC score Example: >>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05], ... [0.05, 0.85, 0.05, 0.05], ... [0.05, 0.05, 0.85, 0.05], ... [0.05, 0.05, 0.05, 0.85]]) >>> target = torch.tensor([0, 1, 3, 2]) >>> multiclass_auroc(pred, target, num_classes=4) tensor(0.6667) """ if not torch.allclose(pred.sum(dim=1), torch.tensor(1.0)): raise ValueError( "Multiclass AUROC metric expects the target scores to be" " probabilities, i.e. they should sum up to 1.0 over classes") if torch.unique(target).size(0) != pred.size(1): raise ValueError( f"Number of classes found in in 'target' ({torch.unique(target).size(0)})" f" does not equal the number of columns in 'pred' ({pred.size(1)})." " Multiclass AUROC is not defined when all of the classes do not" " occur in the target labels.") if num_classes is not None and num_classes != pred.size(1): raise ValueError( f"Number of classes deduced from 'pred' ({pred.size(1)}) does not equal" f" the number of classes passed in 'num_classes' ({num_classes}).") @multiclass_auc_decorator() def _multiclass_auroc(pred, target, sample_weight, num_classes): return multiclass_roc(pred, target, sample_weight, num_classes) class_aurocs = _multiclass_auroc(pred=pred, target=target, sample_weight=sample_weight, num_classes=num_classes) return torch.mean(class_aurocs)
[docs]def dice_score( pred: torch.Tensor, target: torch.Tensor, bg: bool = False, nan_score: float = 0.0, no_fg_score: float = 0.0, reduction: str = 'elementwise_mean', ) -> torch.Tensor: """ Compute dice score from prediction scores Args: pred: estimated probabilities target: ground-truth labels bg: whether to also compute dice for the background nan_score: score to return, if a NaN occurs during computation no_fg_score: score to return, if no foreground pixel was found in target reduction: a method to reduce metric score over labels. - ``'elementwise_mean'``: takes the mean (default) - ``'sum'``: takes the sum - ``'none'``: no reduction will be applied Return: Tensor containing dice score Example: >>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05], ... [0.05, 0.85, 0.05, 0.05], ... [0.05, 0.05, 0.85, 0.05], ... [0.05, 0.05, 0.05, 0.85]]) >>> target = torch.tensor([0, 1, 3, 2]) >>> dice_score(pred, target) tensor(0.3333) """ num_classes = pred.shape[1] bg = (1 - int(bool(bg))) scores = torch.zeros(num_classes - bg, device=pred.device, dtype=torch.float32) for i in range(bg, num_classes): if not (target == i).any(): # no foreground class scores[i - bg] += no_fg_score continue tp, fp, tn, fn, sup = stat_scores(pred=pred, target=target, class_index=i) denom = (2 * tp + fp + fn).to(torch.float) # nan result score_cls = (2 * tp).to(torch.float) / denom if torch.is_nonzero(denom) else nan_score scores[i - bg] += score_cls return reduce(scores, reduction=reduction)
[docs]def iou( pred: torch.Tensor, target: torch.Tensor, ignore_index: Optional[int] = None, absent_score: float = 0.0, num_classes: Optional[int] = None, reduction: str = 'elementwise_mean', ) -> torch.Tensor: """ Intersection over union, or Jaccard index calculation. Args: pred: Tensor containing integer predictions, with shape [N, d1, d2, ...] target: Tensor containing integer targets, with shape [N, d1, d2, ...] ignore_index: optional int specifying a target class to ignore. If given, this class index does not contribute to the returned score, regardless of reduction method. Has no effect if given an int that is not in the range [0, num_classes-1], where num_classes is either given or derived from pred and target. By default, no index is ignored, and all classes are used. absent_score: score to use for an individual class, if no instances of the class index were present in `pred` AND no instances of the class index were present in `target`. For example, if we have 3 classes, [0, 0] for `pred`, and [0, 2] for `target`, then class 1 would be assigned the `absent_score`. Default is 0.0. num_classes: Optionally specify the number of classes reduction: a method to reduce metric score over labels. - ``'elementwise_mean'``: takes the mean (default) - ``'sum'``: takes the sum - ``'none'``: no reduction will be applied Return: IoU score : Tensor containing single value if reduction is 'elementwise_mean', or number of classes if reduction is 'none' Example: >>> target = torch.randint(0, 2, (10, 25, 25)) >>> pred = torch.tensor(target) >>> pred[2:5, 7:13, 9:15] = 1 - pred[2:5, 7:13, 9:15] >>> iou(pred, target) tensor(0.9660) """ if pred.size() != target.size(): raise ValueError(f"'pred' shape ({pred.size()}) must equal 'target' shape ({target.size()})") if not torch.allclose(pred.float(), pred.int().float()): raise ValueError("'pred' must contain integer targets.") num_classes = get_num_classes(pred=pred, target=target, num_classes=num_classes) tps, fps, tns, fns, sups = stat_scores_multiple_classes(pred, target, num_classes) scores = torch.zeros(num_classes, device=pred.device, dtype=torch.float32) for class_idx in range(num_classes): if class_idx == ignore_index: continue tp = tps[class_idx] fp = fps[class_idx] fn = fns[class_idx] sup = sups[class_idx] # If this class is absent in the target (no support) AND absent in the pred (no true or false # positives), then use the absent_score for this class. if sup + tp + fp == 0: scores[class_idx] = absent_score continue denom = tp + fp + fn # Note that we do not need to worry about division-by-zero here since we know (sup + tp + fp != 0) from above, # which means ((tp+fn) + tp + fp != 0), which means (2tp + fp + fn != 0). Since all vars are non-negative, we # can conclude (tp + fp + fn > 0), meaning the denominator is non-zero for each class. score = tp.to(torch.float) / denom scores[class_idx] = score # Remove the ignored class index from the scores. if ignore_index is not None and ignore_index >= 0 and ignore_index < num_classes: scores = torch.cat([ scores[:ignore_index], scores[ignore_index + 1:], ]) return reduce(scores, reduction=reduction)
# todo: remove in 1.3 def precision_recall_curve( pred: torch.Tensor, target: torch.Tensor, sample_weight: Optional[Sequence] = None, pos_label: int = 1., ): """ Computes precision-recall pairs for different thresholds. .. warning :: Deprecated in favor of :func:`~pytorch_lightning.metrics.functional.precision_recall_curve.precision_recall_curve` """ rank_zero_warn( "This `precision_recall_curve` was deprecated in v1.1.0 in favor of" " `from pytorch_lightning.metrics.functional.precision_recall_curve import precision_recall_curve`." " It will be removed in v1.3.0", DeprecationWarning ) return __prc(preds=pred, target=target, sample_weights=sample_weight, pos_label=pos_label) # todo: remove in 1.3 def multiclass_precision_recall_curve( pred: torch.Tensor, target: torch.Tensor, sample_weight: Optional[Sequence] = None, num_classes: Optional[int] = None, ): """ Computes precision-recall pairs for different thresholds given a multiclass scores. .. warning :: Deprecated in favor of :func:`~pytorch_lightning.metrics.functional.precision_recall_curve.precision_recall_curve` """ rank_zero_warn( "This `multiclass_precision_recall_curve` was deprecated in v1.1.0 in favor of" " `from pytorch_lightning.metrics.functional.precision_recall_curve import precision_recall_curve`." " It will be removed in v1.3.0", DeprecationWarning ) if num_classes is None: num_classes = get_num_classes(pred, target, num_classes) return __prc(preds=pred, target=target, sample_weights=sample_weight, num_classes=num_classes) # todo: remove in 1.3 def average_precision( pred: torch.Tensor, target: torch.Tensor, sample_weight: Optional[Sequence] = None, pos_label: int = 1., ): """ Compute average precision from prediction scores. .. warning :: Deprecated in favor of :func:`~pytorch_lightning.metrics.functional.average_precision.average_precision` """ rank_zero_warn( "This `average_precision` was deprecated in v1.1.0 in favor of" " `pytorch_lightning.metrics.functional.average_precision import average_precision`." " It will be removed in v1.3.0", DeprecationWarning ) return __ap(preds=pred, target=target, sample_weights=sample_weight, pos_label=pos_label) # todo: remove in 1.2 def fbeta_score( pred: torch.Tensor, target: torch.Tensor, beta: float, num_classes: Optional[int] = None, class_reduction: str = 'micro', ) -> torch.Tensor: """ Computes the F-beta score which is a weighted harmonic mean of precision and recall. .. warning :: Deprecated in favor of :func:`~pytorch_lightning.metrics.functional.f_beta.fbeta` """ rank_zero_warn( "This `average_precision` was deprecated in v1.0.x in favor of" " `from pytorch_lightning.metrics.functional.f_beta import fbeta`." " It will be removed in v1.2.0", DeprecationWarning ) if num_classes is None: num_classes = get_num_classes(pred, target) return __fb(preds=pred, target=target, beta=beta, num_classes=num_classes, average=class_reduction) # todo: remove in 1.2 def f1_score( pred: torch.Tensor, target: torch.Tensor, num_classes: Optional[int] = None, class_reduction: str = 'micro', ) -> torch.Tensor: """ Computes the F1-score (a.k.a F-measure), which is the harmonic mean of the precision and recall. .. warning :: Deprecated in favor of :func:`~pytorch_lightning.metrics.functional.f_beta.f1` """ rank_zero_warn( "This `average_precision` was deprecated in v1.0.x in favor of" " `from pytorch_lightning.metrics.functional.f_beta import f1`." " It will be removed in v1.2.0", DeprecationWarning ) if num_classes is None: num_classes = get_num_classes(pred, target) return __f1(preds=pred, target=target, num_classes=num_classes, average=class_reduction)

© Copyright Copyright (c) 2018-2021, William Falcon et al... Revision e429f97b.

Built with Sphinx using a theme provided by Read the Docs.